Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download

📚 The CoCalc Library - books, templates and other resources

Views: 96106
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section22.3Exercises

1

Calculate each of the following.

  1. [GF(36):GF(33)][\gf(3^6) : \gf(3^3)]

  2. [GF(128):GF(16)][\gf(128): \gf(16)]

  3. [GF(625):GF(25)][\gf(625) : \gf(25) ]

  4. [GF(p12):GF(p2)][\gf(p^{12}): \gf(p^2)]

Hint

Make sure that you have a field extension.

2

Calculate [GF(pm):GF(pn)],[\gf(p^m): \gf(p^n)]\text{,} where nm.n \mid m\text{.}

3

What is the lattice of subfields for GF(p30)?\gf(p^{30})\text{?}

4

Let α\alpha be a zero of x3+x2+1x^3 + x^2 + 1 over Z2.{\mathbb Z}_2\text{.} Construct a finite field of order 8. Show that x3+x2+1x^3 + x^2 + 1 splits in Z2(α).{\mathbb Z}_2(\alpha)\text{.}

Hint

There are eight elements in Z2(α).{\mathbb Z}_2(\alpha)\text{.} Exhibit two more zeros of x3+x2+1x^3 + x^2 + 1 other than α\alpha in these eight elements.

5

Construct a finite field of order 27.

Hint

Find an irreducible polynomial p(x)p(x) in Z3[x]{\mathbb Z}_3[x] of degree 3 and show that Z3[x]/p(x){\mathbb Z}_3[x]/ \langle p(x) \rangle has 27 elements.

6

Prove or disprove: Q{\mathbb Q}^\ast is cyclic.

7

Factor each of the following polynomials in Z2[x].{\mathbb Z}_2[x]\text{.}

  1. x51x^5- 1

  2. x6+x5+x4+x3+x2+x+1x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

  3. x91x^9 - 1

  4. x4+x3+x2+x+1x^4 +x^3 + x^2 + x + 1

Hint

(a) x51=(x+1)(x4+x3+x2+x+1);x^5 -1 = (x+1)(x^4+x^3 + x^2 + x+ 1)\text{;} (c) x91=(x+1)(x2+x+1)(x6+x3+1).x^9 -1 = (x+1)( x^2 + x+ 1)(x^6+x^3+1)\text{.}

8

Prove or disprove: Z2[x]/x3+x+1Z2[x]/x3+x2+1.{\mathbb Z}_2[x] / \langle x^3 + x + 1 \rangle \cong {\mathbb Z}_2[x] / \langle x^3 + x^2 + 1 \rangle\text{.}

Hint

True.

9

Determine the number of cyclic codes of length nn for n=6,n = 6\text{,} 7, 8, 10.

10

Prove that the ideal t+1\langle t + 1 \rangle in RnR_n is the code in Z2n{\mathbb Z}_2^n consisting of all words of even parity.

11

Construct all BCH codes of

  1. length 7.

  2. length 15.

Hint

(a) Use the fact that x71=(x+1)(x3+x+1)(x3+x2+1).x^7 -1 = (x+1)( x^3 + x+ 1)(x^3+x^2+1)\text{.}

12

Prove or disprove: There exists a finite field that is algebraically closed.

Hint

False.

13

Let pp be prime. Prove that the field of rational functions Zp(x){\mathbb Z}_p(x) is an infinite field of characteristic p.p\text{.}

14

Let DD be an integral domain of characteristic p.p\text{.} Prove that (ab)pn=apnbpn(a - b)^{p^n} = a^{p^n} - b^{p^n} for all a,bD.a, b \in D\text{.}

15

Show that every element in a finite field can be written as the sum of two squares.

16

Let EE and FF be subfields of a finite field K.K\text{.} If EE is isomorphic to F,F\text{,} show that E=F.E=F\text{.}

17

Let FEKF \subset E \subset K be fields. If KK is a separable extension of F,F\text{,} show that KK is also separable extension of E.E\text{.}

Hint

If p(x)F[x],p(x) \in F[x]\text{,} then p(x)E[x].p(x) \in E[x]\text{.}

18

Let EE be an extension of a finite field F,F\text{,} where FF has qq elements. Let αE\alpha \in E be algebraic over FF of degree n.n\text{.} Prove that F(α)F( \alpha ) has qnq^n elements.

Hint

Since α\alpha is algebraic over FF of degree n,n\text{,} we can write any element βF(α)\beta \in F(\alpha) uniquely as β=a0+a1α++an1αn1\beta = a_0 + a_1 \alpha + \cdots + a_{n-1} \alpha^{n-1} with aiF.a_i \in F\text{.} There are qnq^n possible nn-tuples (a0,a1,,an1).(a_0, a_1, \ldots, a_{n-1})\text{.}

19

Show that every finite extension of a finite field FF is simple; that is, if EE is a finite extension of a finite field F,F\text{,} prove that there exists an αE\alpha \in E such that E=F(α).E = F( \alpha )\text{.}

20

Show that for every nn there exists an irreducible polynomial of degree nn in Zp[x].{\mathbb Z}_p[x]\text{.}

21

Prove that the Φ:GF(pn)GF(pn)\Phi : \gf(p^n) \rightarrow \gf(p^n) given by Φ:ααp\Phi : \alpha \mapsto \alpha^p is an automorphism of order n.n\text{.}

22

Show that every element in GF(pn)\gf(p^n) can be written in the form apa^p for some unique aGF(pn).a \in \gf(p^n)\text{.}

23

Let EE and FF be subfields of GF(pn).\gf(p^n)\text{.} If E=pr|E| = p^r and F=ps,|F| = p^s\text{,} what is the order of EF?E \cap F\text{?}

24Wilson's Theorem

Let pp be prime. Prove that (p1)!1(modp).(p-1)! \equiv -1 \pmod{p}\text{.}

Hint

Factor xp11x^{p-1} - 1 over Zp.{\mathbb Z}_p\text{.}

25

If g(t)g(t) is the minimal generator polynomial for a cyclic code CC in Rn,R_n\text{,} prove that the constant term of g(x)g(x) is 1.1\text{.}

26

Often it is conceivable that a burst of errors might occur during transmission, as in the case of a power surge. Such a momentary burst of interference might alter several consecutive bits in a codeword. Cyclic codes permit the detection of such error bursts. Let CC be an (n,k)(n,k)-cyclic code. Prove that any error burst up to nkn-k digits can be detected.

27

Prove that the rings RnR_n and Z2n{\mathbb Z}_2^n are isomorphic as vector spaces.

28

Let CC be a code in RnR_n that is generated by g(t).g(t)\text{.} If f(t)\langle f(t) \rangle is another code in Rn,R_n\text{,} show that g(t)f(t)\langle g(t) \rangle \subset \langle f(t) \rangle if and only if f(x)f(x) divides g(x)g(x) in Z2[x].{\mathbb Z}_2[x]\text{.}

29

Let C=g(t)C = \langle g(t) \rangle be a cyclic code in RnR_n and suppose that xn1=g(x)h(x),x^n - 1 = g(x) h(x)\text{,} where g(x)=g0+g1x++gnkxnkg(x) = g_0 + g_1 x + \cdots + g_{n - k} x^{n - k} and h(x)=h0+h1x++hkxk.h(x) = h_0 + h_1 x + \cdots + h_k x^k\text{.} Define GG to be the n×kn \times k matrix

G=(g000g1g00gnkgnk1g00gnkg100gnk)\begin{equation*} G = \begin{pmatrix} g_0 & 0 & \cdots & 0 \\ g_1 & g_0 & \cdots & 0 \\ \vdots & \vdots &\ddots & \vdots \\ g_{n-k} & g_{n-k-1} & \cdots & g_0 \\ 0 & g_{n-k} & \cdots & g_{1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & g_{n-k} \end{pmatrix} \end{equation*}

and HH to be the (nk)×n(n-k) \times n matrix

H=(000hkh000hkh00hkh0000).\begin{equation*} H = \begin{pmatrix} 0 & \cdots & 0 & 0 & h_k & \cdots & h_0 \\ 0 & \cdots & 0 & h_k & \cdots & h_0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ h_k & \cdots & h_0 & 0 & 0 & \cdots & 0 \end{pmatrix}. \end{equation*}
  1. Prove that GG is a generator matrix for C.C\text{.}

  2. Prove that HH is a parity-check matrix for C.C\text{.}

  3. Show that HG=0.HG = 0\text{.}