Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download

📚 The CoCalc Library - books, templates and other resources

Views: 96108
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section21.4Exercises

1

Show that each of the following numbers is algebraic over Q{\mathbb Q} by finding the minimal polynomial of the number over Q.{\mathbb Q}\text{.}

  1. 1/3+7\sqrt{ 1/3 + \sqrt{7} }

  2. 3+53\sqrt{ 3} + \sqrt[3]{5}

  3. 3+2i\sqrt{3} + \sqrt{2}\, i

  4. cosθ+isinθ\cos \theta + i \sin \theta for θ=2π/n\theta = 2 \pi /n with nNn \in {\mathbb N}

  5. 23i\sqrt{ \sqrt[3]{2} - i }

Hint

(a) x4(2/3)x262/9;x^4 - (2/3) x^2 - 62/9\text{;} (c) x42x2+25.x^4 - 2 x^2 + 25\text{.}

2

Find a basis for each of the following field extensions. What is the degree of each extension?

  1. Q(3,6){\mathbb Q}( \sqrt{3}, \sqrt{6}\, ) over Q{\mathbb Q}

  2. Q(23,33){\mathbb Q}( \sqrt[3]{2}, \sqrt[3]{3}\, ) over Q{\mathbb Q}

  3. Q(2,i){\mathbb Q}( \sqrt{2}, i) over Q{\mathbb Q}

  4. Q(3,5,7){\mathbb Q}( \sqrt{3}, \sqrt{5}, \sqrt{7}\, ) over Q{\mathbb Q}

  5. ParseError: KaTeX parse error: Undefined control sequence: \root at position 24: … Q}( \sqrt{2}, \̲r̲o̲o̲t̲ ̲3 \of{2}\, ) over Q{\mathbb Q}

  6. Q(8){\mathbb Q}( \sqrt{8}\, ) over Q(2){\mathbb Q}(\sqrt{2}\, )

  7. Q(i,2+i,3+i){\mathbb Q}(i, \sqrt{2} +i, \sqrt{3} + i ) over Q{\mathbb Q}

  8. Q(2+5){\mathbb Q}( \sqrt{2} + \sqrt{5}\, ) over Q(5){\mathbb Q} ( \sqrt{5}\, )

  9. Q(2,6+10){\mathbb Q}( \sqrt{2}, \sqrt{6} + \sqrt{10}\, ) over Q(3+5){\mathbb Q} ( \sqrt{3} + \sqrt{5}\, )

Hint

(a) {1,2,3,6};\{ 1, \sqrt{2}, \sqrt{3}, \sqrt{6}\, \}\text{;} (c) {1,i,2,2i};\{ 1, i, \sqrt{2}, \sqrt{2}\, i \}\text{;} (e) {1,21/6,21/3,21/2,22/3,25/6}.\{1, 2^{1/6}, 2^{1/3}, 2^{1/2}, 2^{2/3}, 2^{5/6} \}\text{.}

3

Find the splitting field for each of the following polynomials.

  1. x410x2+21x^4 - 10 x^2 + 21 over Q{\mathbb Q}

  2. x4+1x^4 + 1 over Q{\mathbb Q}

  3. x3+2x+2x^3 + 2x + 2 over Z3{\mathbb Z}_3

  4. x33x^3 - 3 over Q{\mathbb Q}

Hint

(a) Q(3,7).{\mathbb Q}(\sqrt{3}, \sqrt{7}\, )\text{.}

4

Consider the field extension Q(34,i){\mathbb Q}( \sqrt[4]{3}, i ) over Q.\mathbb Q\text{.}

  1. Find a basis for the field extension Q(34,i){\mathbb Q}( \sqrt[4]{3}, i ) over Q.\mathbb Q\text{.} Conclude that [Q(34,i):Q]=8.[{\mathbb Q}( \sqrt[4]{3}, i ): \mathbb Q] = 8\text{.}

  2. Find all subfields FF of Q(34,i){\mathbb Q}( \sqrt[4]{3}, i ) such that [F:Q]=2.[F:\mathbb Q] = 2\text{.}

  3. Find all subfields FF of Q(34,i){\mathbb Q}( \sqrt[4]{3}, i ) such that [F:Q]=4.[F:\mathbb Q] = 4\text{.}

5

Show that Z2[x]/x3+x+1{\mathbb Z}_2[x] / \langle x^3 + x + 1 \rangle is a field with eight elements. Construct a multiplication table for the multiplicative group of the field.

Hint

Use the fact that the elements of Z2[x]/x3+x+1{\mathbb Z}_2[x]/ \langle x^3 + x + 1 \rangle are 0, 1, α,\alpha\text{,} 1+α,1 + \alpha\text{,} α2,\alpha^2\text{,} 1+α2,1 + \alpha^2\text{,} α+α2,\alpha + \alpha^2\text{,} 1+α+α21 + \alpha + \alpha^2 and the fact that α3+α+1=0.\alpha^3 + \alpha + 1 = 0\text{.}

6

Show that the regular 9-gon is not constructible with a straightedge and compass, but that the regular 20-gon is constructible.

7

Prove that the cosine of one degree (cos1\cos 1^\circ) is algebraic over Q{\mathbb Q} but not constructible.

8

Can a cube be constructed with three times the volume of a given cube?

Hint

False.

9

Prove that Q(3,34,38,){\mathbb Q}(\sqrt{3}, \sqrt[4]{3}, \sqrt[8]{3}, \ldots ) is an algebraic extension of Q{\mathbb Q} but not a finite extension.

10

Prove or disprove: π\pi is algebraic over Q(π3).{\mathbb Q}(\pi^3)\text{.}

11

Let p(x)p(x) be a nonconstant polynomial of degree nn in F[x].F[x]\text{.} Prove that there exists a splitting field EE for p(x)p(x) such that [E:F]n!.[E : F] \leq n!\text{.}

12

Prove or disprove: Q(2)Q(3).{\mathbb Q}( \sqrt{2}\, ) \cong {\mathbb Q}( \sqrt{3}\, )\text{.}

13

Prove that the fields Q(34){\mathbb Q}(\sqrt[4]{3}\, ) and Q(34i){\mathbb Q}(\sqrt[4]{3}\, i) are isomorphic but not equal.

14

Let KK be an algebraic extension of E,E\text{,} and EE an algebraic extension of F.F\text{.} Prove that KK is algebraic over F.F\text{.} [Caution: Do not assume that the extensions are finite.]

Hint

Suppose that EE is algebraic over FF and KK is algebraic over E.E\text{.} Let αK.\alpha \in K\text{.} It suffices to show that α\alpha is algebraic over some finite extension of F.F\text{.} Since α\alpha is algebraic over E,E\text{,} it must be the zero of some polynomial p(x)=β0+β1x++βnxnp(x) = \beta_0 + \beta_1 x + \cdots + \beta_n x^n in E[x].E[x]\text{.} Hence α\alpha is algebraic over F(β0,,βn).F(\beta_0, \ldots, \beta_n)\text{.}

15

Prove or disprove: Z[x]/x32{\mathbb Z}[x] / \langle x^3 -2 \rangle is a field.

16

Let FF be a field of characteristic p.p\text{.} Prove that p(x)=xpap(x) = x^p - a either is irreducible over FF or splits in F.F\text{.}

17

Let EE be the algebraic closure of a field F.F\text{.} Prove that every polynomial p(x)p(x) in F[x]F[x] splits in E.E\text{.}

18

If every irreducible polynomial p(x)p(x) in F[x]F[x] is linear, show that FF is an algebraically closed field.

19

Prove that if α\alpha and β\beta are constructible numbers such that β0,\beta \neq 0\text{,} then so is α/β.\alpha / \beta\text{.}

20

Show that the set of all elements in R{\mathbb R} that are algebraic over Q{\mathbb Q} form a field extension of Q{\mathbb Q} that is not finite.

21

Let EE be an algebraic extension of a field F,F\text{,} and let σ\sigma be an automorphism of EE leaving FF fixed. Let αE.\alpha \in E\text{.} Show that σ\sigma induces a permutation of the set of all zeros of the minimal polynomial of α\alpha that are in E.E\text{.}

22

Show that Q(3,7)=Q(3+7).{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) = {\mathbb Q}( \sqrt{3} + \sqrt{7}\, )\text{.} Extend your proof to show that Q(a,b)=Q(a+b),{\mathbb Q}( \sqrt{a}, \sqrt{b}\, ) = {\mathbb Q}( \sqrt{a} + \sqrt{b}\, )\text{,} where gcd(a,b)=1.\gcd(a, b) = 1\text{.}

Hint

Since {1,3,7,21}\{ 1, \sqrt{3}, \sqrt{7}, \sqrt{21}\, \} is a basis for Q(3,7){\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) over Q,{\mathbb Q}\text{,} Q(3,7)Q(3+7).{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) \supset {\mathbb Q}( \sqrt{3} +\sqrt{7}\, )\text{.} Since [Q(3,7):Q]=4,[{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) : {\mathbb Q}] = 4\text{,} [Q(3+7):Q]=2[{\mathbb Q}( \sqrt{3} + \sqrt{7}\, ) : {\mathbb Q}] = 2 or 4. Since the degree of the minimal polynomial of 3+7\sqrt{3} +\sqrt{7} is 4, Q(3,7)=Q(3+7).{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) = {\mathbb Q}( \sqrt{3} +\sqrt{7}\, )\text{.}

23

Let EE be a finite extension of a field F.F\text{.} If [E:F]=2,[E:F] = 2\text{,} show that EE is a splitting field of FF for some polynomial f(x)F[x].f(x) \in F[x]\text{.}

24

Prove or disprove: Given a polynomial p(x)p(x) in Z6[x],{\mathbb Z}_6[x]\text{,} it is possible to construct a ring RR such that p(x)p(x) has a root in R.R\text{.}

25

Let EE be a field extension of FF and αE.\alpha \in E\text{.} Determine [F(α):F(α3)].[F(\alpha): F(\alpha^3)]\text{.}

26

Let α,β\alpha, \beta be transcendental over Q.{\mathbb Q}\text{.} Prove that either αβ\alpha \beta or α+β\alpha + \beta is also transcendental.

27

Let EE be an extension field of FF and αE\alpha \in E be transcendental over F.F\text{.} Prove that every element in F(α)F(\alpha) that is not in FF is also transcendental over F.F\text{.}

Hint

Let βF(α)\beta \in F(\alpha) not in F.F\text{.} Then β=p(α)/q(α),\beta = p(\alpha)/q(\alpha)\text{,} where pp and qq are polynomials in α\alpha with q(α)0q(\alpha) \neq 0 and coefficients in F.F\text{.} If β\beta is algebraic over F,F\text{,} then there exists a polynomial f(x)F[x]f(x) \in F[x] such that f(β)=0.f(\beta) = 0\text{.} Let f(x)=a0+a1x++anxn.f(x) = a_0 + a_1 x + \cdots + a_n x^n\text{.} Then

0=f(β)=f(p(α)q(α))=a0+a1(p(α)q(α))++an(p(α)q(α))n.\begin{equation*} 0 = f(\beta) = f\left( \frac{p(\alpha)}{q(\alpha)} \right) = a_0 + a_1 \left( \frac{p(\alpha)}{q(\alpha)} \right) + \cdots + a_n \left( \frac{p(\alpha)}{q(\alpha)} \right)^n. \end{equation*}

Now multiply both sides by q(α)nq(\alpha)^n to show that there is a polynomial in F[x]F[x] that has α\alpha as a zero.

28

Let α\alpha be a root of an irreducible monic polynomial p(x)F[x],p(x) \in F[x]\text{,} with degp=n.\deg p = n\text{.} Prove that [F(α):F]=n.[F(\alpha) : F] = n\text{.}

Hint

See the comments following Theorem 21.13.