Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download

📚 The CoCalc Library - books, templates and other resources

Views: 96107
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section4.4Exercises

1

Prove or disprove each of the following statements.

  1. All of the generators of Z60{\mathbb Z}_{60} are prime.

  2. U(8)U(8) is cyclic.

  3. Q{\mathbb Q} is cyclic.

  4. If every proper subgroup of a group GG is cyclic, then GG is a cyclic group.

  5. A group with a finite number of subgroups is finite.

Hint

(a) False; (c) false; (e) true.

2

Find the order of each of the following elements.

  1. 5Z125 \in {\mathbb Z}_{12}

  2. 3R\sqrt{3} \in {\mathbb R}

  3. 3R\sqrt{3} \in {\mathbb R}^\ast

  4. iC-i \in {\mathbb C}^\ast

  5. 72 in Z240{\mathbb Z}_{240}

  6. 312 in Z471{\mathbb Z}_{471}

Hint

(a) 12; (c) infinite; (e) 10.

3

List all of the elements in each of the following subgroups.

  1. The subgroup of Z{\mathbb Z} generated by 7

  2. The subgroup of Z24{\mathbb Z}_{24} generated by 15

  3. All subgroups of Z12{\mathbb Z}_{12}

  4. All subgroups of Z60{\mathbb Z}_{60}

  5. All subgroups of Z13{\mathbb Z}_{13}

  6. All subgroups of Z48{\mathbb Z}_{48}

  7. The subgroup generated by 3 in U(20)U(20)

  8. The subgroup generated by 5 in U(18)U(18)

  9. The subgroup of R{\mathbb R}^\ast generated by 7

  10. The subgroup of C{\mathbb C}^\ast generated by ii where i2=1i^2 = -1

  11. The subgroup of C{\mathbb C}^\ast generated by 2i2i

  12. The subgroup of C{\mathbb C}^\ast generated by (1+i)/2(1 + i) / \sqrt{2}

  13. The subgroup of C{\mathbb C}^\ast generated by (1+3i)/2(1 + \sqrt{3}\, i) / 2

Hint

(a) 7Z={,7,0,7,14,};7 {\mathbb Z} = \{ \ldots, -7, 0, 7, 14, \ldots \}\text{;} (b) {0,3,6,9,12,15,18,21};\{ 0, 3, 6, 9, 12, 15, 18, 21 \}\text{;} (c) {0},\{ 0 \}\text{,} {0,6},\{ 0, 6 \}\text{,} {0,4,8},\{ 0, 4, 8 \}\text{,} {0,3,6,9},\{ 0, 3, 6, 9 \}\text{,} {0,2,4,6,8,10};\{ 0, 2, 4, 6, 8, 10 \}\text{;} (g) {1,3,7,9};\{ 1, 3, 7, 9 \}\text{;} (j) {1,1,i,i}.\{ 1, -1, i, -i \}\text{.}

4

Find the subgroups of GL2(R)GL_2( {\mathbb R }) generated by each of the following matrices.

  1. (0110)\displaystyle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}

  2. (01/330)\displaystyle \begin{pmatrix} 0 & 1/3 \\ 3 & 0 \end{pmatrix}

  3. (1110)\displaystyle \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}

  4. (1101)\displaystyle \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}

  5. (1110)\displaystyle \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}

  6. (3/21/21/23/2)\displaystyle \begin{pmatrix} \sqrt{3}/ 2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}

Hint

(a)

(1001),(1001),(0110),(0110).\begin{equation*} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \end{equation*}

(c)

(1001),(1110),(1110),(0111),(0111),(1001).\begin{equation*} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \\ \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}. \end{equation*}
5

Find the order of every element in Z18.{\mathbb Z}_{18}\text{.}

6

Find the order of every element in the symmetry group of the square, D4.D_4\text{.}

7

What are all of the cyclic subgroups of the quaternion group, Q8?Q_8\text{?}

8

List all of the cyclic subgroups of U(30).U(30)\text{.}

9

List every generator of each subgroup of order 8 in Z32.{\mathbb Z}_{32}\text{.}

10

Find all elements of finite order in each of the following groups. Here the “\ast” indicates the set with zero removed.

  1. Z{\mathbb Z}

  2. Q{\mathbb Q}^\ast

  3. R{\mathbb R}^\ast

Hint

(a) 0;0\text{;} (b) 1,1.1, -1\text{.}

11

If a24=ea^{24} =e in a group G,G\text{,} what are the possible orders of a?a\text{?}

Hint

1, 2, 3, 4, 6, 8, 12, 24.

12

Find a cyclic group with exactly one generator. Can you find cyclic groups with exactly two generators? Four generators? How about nn generators?

13

For n20,n \leq 20\text{,} which groups U(n)U(n) are cyclic? Make a conjecture as to what is true in general. Can you prove your conjecture?

14

Let

A=(0110)andB=(0111)\begin{equation*} A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \text{and} \qquad B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \end{equation*}

be elements in GL2(R).GL_2( {\mathbb R} )\text{.} Show that AA and BB have finite orders but ABAB does not.

15

Evaluate each of the following.

  1. (32i)+(5i6)(3-2i)+ (5i-6)

  2. (45i)(4i4)(4-5i)-\overline{(4i -4)}

  3. (54i)(7+2i)(5-4i)(7+2i)

  4. (9i)(9i)(9-i) \overline{(9-i)}

  5. i45i^{45}

  6. (1+i)+(1+i)(1+i)+\overline{(1+i)}

Hint

(a) 3+3i;-3 + 3i\text{;} (c) 4318i;43- 18i\text{;} (e) ii

16

Convert the following complex numbers to the form a+bi.a + bi\text{.}

  1. 2cis(π/6)2 \cis(\pi / 6 )

  2. 5cis(9π/4)5 \cis(9\pi/4)

  3. 3cis(π)3 \cis(\pi)

  4. cis(7π/4)/2\cis(7\pi/4) /2

Hint

(a) 3+i;\sqrt{3} + i\text{;} (c) 3.-3\text{.}

17

Change the following complex numbers to polar representation.

  1. 1i1-i

  2. 5-5

  3. 2+2i2+2i

  4. 3+i\sqrt{3} + i

  5. 3i-3i

  6. 2i+232i + 2 \sqrt{3}

Hint

(a) 2cis(7π/4);\sqrt{2} \cis( 7 \pi /4)\text{;} (c) 22cis(π/4);2 \sqrt{2} \cis( \pi /4)\text{;} (e) 3cis(3π/2).3 \cis(3 \pi/2)\text{.}

18

Calculate each of the following expressions.

  1. (1+i)1(1+i)^{-1}

  2. (1i)6(1 - i)^{6}

  3. (3+i)5(\sqrt{3} + i)^{5}

  4. (i)10(-i)^{10}

  5. ((1i)/2)4((1-i)/2)^{4}

  6. (22i)12(-\sqrt{2} - \sqrt{2}\, i)^{12}

  7. (2+2i)5(-2 + 2i)^{-5}

Hint

(a) (1i)/2;(1 - i)/2\text{;} (c) 16(i3);16(i - \sqrt{3}\, )\text{;} (e) 1/4.-1/4\text{.}

19

Prove each of the following statements.

  1. z=z|z| = | \overline{z}|

  2. zz=z2z \overline{z} = |z|^2

  3. z1=z/z2z^{-1} = \overline{z} / |z|^2

  4. z+wz+w|z +w| \leq |z| + |w|

  5. zwzw|z - w| \geq | |z| - |w||

  6. zw=zw|z w| = |z| |w|

20

List and graph the 6th roots of unity. What are the generators of this group? What are the primitive 6th roots of unity?

21

List and graph the 5th roots of unity. What are the generators of this group? What are the primitive 5th roots of unity?

22

Calculate each of the following.

  1. 2923171(mod582)292^{3171} \pmod{ 582}

  2. 2557341(mod5681)2557^{ 341} \pmod{ 5681}

  3. 20719521(mod4724)2071^{ 9521} \pmod{ 4724}

  4. 971321(mod765)971^{ 321} \pmod{ 765}

Hint

(a) 292; (c) 1523.

23

Let a,bG.a, b \in G\text{.} Prove the following statements.

  1. The order of aa is the same as the order of a1.a^{-1}\text{.}

  2. For all gG,g \in G\text{,} a=g1ag.|a| = |g^{-1}ag|\text{.}

  3. The order of abab is the same as the order of ba.ba\text{.}

24

Let pp and qq be distinct primes. How many generators does Zpq{\mathbb Z}_{pq} have?

25

Let pp be prime and rr be a positive integer. How many generators does Zpr{\mathbb Z}_{p^r} have?

26

Prove that Zp{\mathbb Z}_{p} has no nontrivial subgroups if pp is prime.

27

If gg and hh have orders 15 and 16 respectively in a group G,G\text{,} what is the order of gh?\langle g \rangle \cap \langle h \rangle \text{?}

Hint

gh=1.|\langle g \rangle \cap \langle h \rangle| = 1\text{.}

28

Let aa be an element in a group G.G\text{.} What is a generator for the subgroup aman?\langle a^m \rangle \cap \langle a^n \rangle\text{?}

29

Prove that Zn{\mathbb Z}_n has an even number of generators for n>2.n \gt 2\text{.}

30

Suppose that GG is a group and let a,a\text{,} bG.b \in G\text{.} Prove that if a=m|a| = m and b=n|b| = n with gcd(m,n)=1,\gcd(m,n) = 1\text{,} then ab={e}.\langle a \rangle \cap \langle b \rangle = \{ e \}\text{.}

31

Let GG be an abelian group. Show that the elements of finite order in GG form a subgroup. This subgroup is called the of G.G\text{.}

Hint

The identity element in any group has finite order. Let g,hGg, h \in G have orders mm and n,n\text{,} respectively. Since (g1)m=e(g^{-1})^m = e and (gh)mn=e,(gh)^{mn} = e\text{,} the elements of finite order in GG form a subgroup of G.G\text{.}

32

Let GG be a finite cyclic group of order nn generated by x.x\text{.} Show that if y=xky = x^k where gcd(k,n)=1,\gcd(k,n) = 1\text{,} then yy must be a generator of G.G\text{.}

33

If GG is an abelian group that contains a pair of cyclic subgroups of order 2, show that GG must contain a subgroup of order 4. Does this subgroup have to be cyclic?

34

Let GG be an abelian group of order pqpq where gcd(p,q)=1.\gcd(p,q) = 1\text{.} If GG contains elements aa and bb of order pp and qq respectively, then show that GG is cyclic.

35

Prove that the subgroups of Z\mathbb Z are exactly nZn{\mathbb Z} for n=0,1,2,.n = 0, 1, 2, \ldots\text{.}

36

Prove that the generators of Zn{\mathbb Z}_n are the integers rr such that 1r<n1 \leq r \lt n and gcd(r,n)=1.\gcd(r,n) = 1\text{.}

37

Prove that if GG has no proper nontrivial subgroups, then GG is a cyclic group.

Hint

If gg is an element distinct from the identity in G,G\text{,} gg must generate G;G\text{;} otherwise, g\langle g \rangle is a nontrivial proper subgroup of G.G\text{.}

38

Prove that the order of an element in a cyclic group GG must divide the order of the group.

39

Prove that if GG is a cyclic group of order mm and dm,d \mid m\text{,} then GG must have a subgroup of order d.d\text{.}

40

For what integers nn is 1-1 an nnth root of unity?

41

If z=r(cosθ+isinθ)z = r( \cos \theta + i \sin \theta) and w=s(cosϕ+isinϕ)w = s(\cos \phi + i \sin \phi) are two nonzero complex numbers, show that

zw=rs[cos(θ+ϕ)+isin(θ+ϕ)].\begin{equation*} zw = rs[ \cos( \theta + \phi) + i \sin( \theta + \phi)]. \end{equation*}
42

Prove that the circle group is a subgroup of C.{\mathbb C}^*\text{.}

43

Prove that the nnth roots of unity form a cyclic subgroup of T{\mathbb T} of order n.n\text{.}

44

Let αT.\alpha \in \mathbb T\text{.} Prove that αm=1\alpha^m =1 and αn=1\alpha^n = 1 if and only if αd=1\alpha^d = 1 for d=gcd(m,n).d = \gcd(m,n)\text{.}

45

Let zC.z \in {\mathbb C}^\ast\text{.} If z1,|z| \neq 1\text{,} prove that the order of zz is infinite.

46

Let z=cosθ+isinθz =\cos \theta + i \sin \theta be in T{\mathbb T} where θQ.\theta \in {\mathbb Q}\text{.} Prove that the order of zz is infinite.