Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download

📚 The CoCalc Library - books, templates and other resources

Views: 96105
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section6.4Exercises

1

Suppose that GG is a finite group with an element gg of order 5 and an element hh of order 7. Why must G35?|G| \geq 35\text{?}

Hint

The order of gg and the order hh must both divide the order of G.G\text{.}

2

Suppose that GG is a finite group with 60 elements. What are the orders of possible subgroups of G?G\text{?}

Hint

The possible orders must divide 60.

3

Prove or disprove: Every subgroup of the integers has finite index.

Hint

This is true for every proper nontrivial subgroup.

4

Prove or disprove: Every subgroup of the integers has finite order.

Hint

False.

5

List the left and right cosets of the subgroups in each of the following.

  1. 8\langle 8 \rangle in Z24{\mathbb Z}_{24}

  2. 3\langle 3 \rangle in U(8)U(8)

  3. 3Z3 {\mathbb Z} in Z{\mathbb Z}

  4. A4A_4 in S4S_4

  5. AnA_n in SnS_n

  6. D4D_4 in S4S_4

  7. T{\mathbb T} in C{\mathbb C}^\ast

  8. H={(1),(123),(132)}H = \{ (1), (123), (132) \} in S4S_4

Hint

(a) 8,\langle 8 \rangle\text{,} 1+8,1 + \langle 8 \rangle\text{,} 2+8,2 + \langle 8 \rangle\text{,} 3+8,3 + \langle 8 \rangle\text{,} 4+8,4 + \langle 8 \rangle\text{,} 5+8,5 + \langle 8 \rangle\text{,} 6+8,6 + \langle 8 \rangle\text{,} and 7+8;7 + \langle 8 \rangle\text{;} (c) 3Z,3 {\mathbb Z}\text{,} 1+3Z,1 + 3 {\mathbb Z}\text{,} and 2+3Z.2 + 3 {\mathbb Z}\text{.}

6

Describe the left cosets of SL2(R)SL_2( {\mathbb R} ) in GL2(R).GL_2( {\mathbb R})\text{.} What is the index of SL2(R)SL_2( {\mathbb R} ) in GL2(R)?GL_2( {\mathbb R})\text{?}

7

Verify Euler's Theorem for n=15n = 15 and a=4.a = 4\text{.}

Hint

4ϕ(15)481(mod15).4^{\phi(15)} \equiv 4^8 \equiv 1 \pmod{15}\text{.}

8

Use Fermat's Little Theorem to show that if p=4n+3p= 4n+3 is prime, there is no solution to the equation x21(modp).x^2 \equiv -1 \pmod{p}\text{.}

9

Show that the integers have infinite index in the additive group of rational numbers.

10

Show that the additive group of real numbers has infinite index in the additive group of the complex numbers.

11

Let HH be a subgroup of a group GG and suppose that g1,g2G.g_1, g_2 \in G\text{.} Prove that the following conditions are equivalent.

  1. g1H=g2Hg_1 H = g_2 H

  2. Hg11=Hg21H g_1^{-1} = H g_2^{-1}

  3. g1Hg2Hg_1 H \subset g_2 H

  4. g2g1Hg_2 \in g_1 H

  5. g11g2Hg_1^{-1} g_2 \in H

12

If ghg1Hghg^{-1} \in H for all gGg \in G and hH,h \in H\text{,} show that right cosets are identical to left cosets. That is, show that gH=HggH = Hg for all gG.g \in G\text{.}

Hint

Let g1gH.g_1 \in gH\text{.} Show that g1Hgg_1 \in Hg and thus gHHg.gH \subset Hg\text{.}

13

What fails in the proof of Theorem 6.8 if ϕ:LHRH\phi : {\mathcal L}_H \rightarrow {\mathcal R}_H is defined by ϕ(gH)=Hg?\phi( gH ) = Hg\text{?}

14

Suppose that gn=e.g^n = e\text{.} Show that the order of gg divides n.n\text{.}

15

Show that any two permutations α,βSn\alpha, \beta \in S_n have the same cycle structure if and only if there exists a permutation γ\gamma such that β=γαγ1.\beta = \gamma \alpha \gamma^{-1}\text{.} If β=γαγ1\beta = \gamma \alpha \gamma^{-1} for some γSn,\gamma \in S_n\text{,} then α\alpha and β\beta are .

16

If G=2n,|G| = 2n\text{,} prove that the number of elements of order 2 is odd. Use this result to show that GG must contain a subgroup of order 2.

17

Suppose that [G:H]=2.[G : H] = 2\text{.} If aa and bb are not in H,H\text{,} show that abH.ab \in H\text{.}

18

If [G:H]=2,[G : H] = 2\text{,} prove that gH=Hg.gH = Hg\text{.}

19

Let HH and KK be subgroups of a group G.G\text{.} Prove that gHgKgH \cap gK is a coset of HKH \cap K in G.G\text{.}

Hint

Show that g(HK)=gHgK.g(H \cap K) = gH \cap gK\text{.}

20

Let HH and KK be subgroups of a group G.G\text{.} Define a relation \sim on GG by aba \sim b if there exists an hHh \in H and a kKk \in K such that hak=b.hak = b\text{.} Show that this relation is an equivalence relation. The corresponding equivalence classes are called . Compute the double cosets of H={(1),(123),(132)}H = \{ (1),(123), (132) \} in A4.A_4\text{.}

21

Let GG be a cyclic group of order n.n\text{.} Show that there are exactly ϕ(n)\phi(n) generators for G.G\text{.}

22

Let n=p1e1p2e2pkek,n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}\text{,} where p1,p2,,pkp_1, p_2, \ldots, p_k are distinct primes. Prove that

ϕ(n)=n(11p1)(11p2)(11pk).\begin{equation*} \phi(n) = n \left( 1 - \frac{1}{p_1} \right) \left( 1 - \frac{1}{p_2} \right)\cdots \left( 1 - \frac{1}{p_k} \right). \end{equation*}
Hint

If gcd(m,n)=1,\gcd(m,n) = 1\text{,} then ϕ(mn)=ϕ(m)ϕ(n)\phi(mn) = \phi(m)\phi(n) (Exercise 2.3.26 in Chapter 2).

23

Show that

n=dnϕ(d)\begin{equation*} n = \sum_{d \mid n} \phi(d) \end{equation*}

for all positive integers n.n\text{.}