Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

Supplemental material for "Origins of cosmological temperature"

Views: 349
Kernel: SageMath (system-wide)

Numerical calculations for "Origins of Cosmological Temperature"

This SageMath notebook performs numerical calculations for the paper Origins of Cosmological Temperature and the supplemental note Calculations for "Origins of Cosmological Temperature".

It makes graphs of the two anharmonic potentials and does some arithmetic.

Section headings are as in the supplemental note.

3.5 Action in dimensionless variables

ah = var('ah') E_ah = 0.15 ah_lim=1.08 ah_plot=plot((1/2)*(ah^2-ah^4), (ah,-ah_lim,ah_lim),aspect_ratio=12) ah_plot+=text(r'$E_{\hat{a}}$', (-1.35,E_ah),fontsize=8) ah_plot+=text(r'$0$',(-1.3,0),fontsize=6) ah_plot+=text(r'$\frac{1}{8}$',(-1.32,0.125),fontsize=6,aspect_ratio=1) ah_plot+=text(r'$0$',(0,-0.006),fontsize=6,aspect_ratio=1) ah_plot+=text(r'$1$',(0.95,-0.006),fontsize=6,aspect_ratio=1) ah_plot+=text(r'$-1$',(-1.0,-0.006),fontsize=6,aspect_ratio=1) ah_plot+=text(r'$V_{\hat{a}}=\frac{1}{2}(\hat{a}^2-\hat{a}^4)$',(0,-0.04),fontsize=12) ah_plot+= plot(0.125,(ah,-1.25,1.25),linestyle=":") ah_plot+= plot(0,(ah,-1.25,1.25),linestyle=":") ah_plot+= plot(E_ah,(ah,-1.25,1.25),linestyle=":") ah_plot+=arrow((1.11,-0.08),(1.13,-0.08-.02),width=.5,arrowsize=1.5) ah_plot+=arrow((-1.13,-0.08-.02),(-1.11,-0.08),width=.5,arrowsize=1.5) ah_plot+=arrow((0.97,1/16),(1.00,1/16-.02),width=.5,arrowsize=1.5) ah_plot+=arrow((-1.00,1/16-.02),(-0.97,1/16),width=.5,arrowsize=1.5) ah_plot+=arrow((-.34,1/16),(-.27,1/16-.017),width=.5,arrowsize=1.5) ah_plot+=arrow((.27,1/16-.017),(.34,1/16),width=.5,arrowsize=1.5) ah_plot.save('plot_ah.pdf',dpi=200,axes=False) show(ah_plot,axes=False,dpi=200,figsize=[3.2,2.4])
Image in a Jupyter notebook
b = var('b') E_b = 12 b_plot=plot((1/2)*(b^2-1)^2, (b,-2.5,2.5),aspect_ratio=.5) b_plot+=text(r'$E_b$',(-3.1,E_b),fontsize=10) b_plot+=text(r'$0$',(-3.0,0),fontsize=6) b_plot+=text(r'$V_b=\frac{1}{2}(b^2-1)^2$',(0,E_b/2),fontsize=12) b_plot+=text(r'$b$',(0,-1),fontsize=12) b_plot+= plot(0,(b,-2.7,2.7),linestyle=":") b_plot+= plot(E_b,(b,-2.7,2.7),linestyle=":") b_plot+=text(r'$1$',(1.0,-0.4),fontsize=6) b_plot+=text(r'$0$',(0.0,-0.4),fontsize=6) b_plot+=text(r'$-1$',(-1.09,-0.4),fontsize=6) b_plot+=arrow((-1.97,E_b-2),(-1.9,E_b-4),width=.5,arrowsize=2) b_plot.save('plot_b.pdf',dpi=200,axes=False) show(b_plot,axes=False,dpi=200,figsize=[3.2,2.4])
Image in a Jupyter notebook

5.1 Fundamental constants

%display latex LE = lambda latex_string: LatexExpr(latex_string);

declare units as variables

s = var('s', domain='positive'); assume(s,'real'); GeV = var('GeV', domain='positive'); assume(GeV,'real'); J = var('J', domain='positive'); assume(J,'real'); m = var('m', domain='positive'); assume(m,'real'); meters = var('meters', domain='positive'); assume(meters,'real'); kg = var('kg', domain='positive'); assume(kg,'real'); K = var('K', domain='positive'); assume(K,'real'); C = var('C', domain='positive'); assume(C,'real');

fundamental constents from NIST 2018

c = 299792458 * meters * s^(-1); e_charge = 1.602176634 * 10^(-19) * C; hbar = 1.054571817*10^(-34)*J*s; kB = 1.380649*10^(-23)*J*K^(-1); G = 6.67430*10^(-11)*m^3*kg^(-1)* s^(-2); kappa = N(8*pi)*G; # pretty_print(LE(r"c ="),c); pretty_print(LE(r"e ="),e_charge); pretty_print(LE(r"\hbar ="),hbar); pretty_print(LE(r"k_{B} ="),kB); pretty_print(LE(r"G ="),G); pretty_print(LE(r"\kappa ="),kappa);

use c=1 units with unit of energy = GeV

m = c^(-1)*meters; J = e_charge^(-1) * C * 10^(-9) * GeV kg = J*s^2*m^(-2) def conv(*args): return [arg.subs(m=m,kg=kg,J=J) for arg in args] [hbar,kB,G,kappa] = conv(hbar,kB,G,kappa) pretty_print(LE(r"\hbar ="),hbar); pretty_print(LE(r"k_{B} ="),kB); pretty_print(LE(r"G ="),G); pretty_print(LE(r"\kappa ="),kappa);

5.2 Standard Model coupling constants from PDG (2018, 2019)

GFermi = 1.1663787*10^(-5)*GeV^(-2); mW = 80.379*GeV; mH = 125.10*GeV; # pretty_print(LE(r"G_F ="),GFermi); pretty_print(LE(r"m_W ="),mW); pretty_print(LE(r"m_H ="),mH);
hbar_v = N(2^(-1/4))*GFermi^(-1/2) pretty_print(LE(r"\hbar v = 2^{-1/4} G_F^{-1/2}="),hbar_v) v = hbar_v/hbar pretty_print(LE(r"v ^{-1} ="),1/v); g = 2*mW/hbar_v; pretty_print(LE(r"g = \frac{2 m_W}{\hbar v }="),g) lambdaH = mH/hbar_v; pretty_print(LE(r"\lambda = \frac{m_H}{\hbar v }="),lambdaH)

5.3 Gravitational and weak time scales tgravt_{\mathrm{grav}}, tWt_{\mathrm{W}}

tgrav = sqrt(kappa*hbar); pretty_print(LE(r"t_{\mathrm{grav}} = (\hbar\kappa)^{1/2}=\ (8\pi)^{1/2} t_{P}="),N((8*pi)^(1/2)),LE(r"t_{P}\\="),tgrav)
tW = hbar/mW; pretty_print(LE(r"t_{\mathrm{W}}=\frac{\hbar}{m_W}="),tW)

5.4 The scalar field energy density E0\mathcal{E}_{0}

E0 = hbar*lambdaH^2*v^4/8; ratio1 = tW^4*E0/hbar; pretty_print(LE(r"\frac{1}{\hbar}\mathcal{E}_{0}="),\ ratio1,LE(r"\: t_{\mathrm{W}}^{-4}"))

5.5 Seesaw time scale tIt_{I}

tI = (3/(kappa*E0))^(1/2); ratio2 = tI*tgrav/tW^2; pretty_print(LE(r"t_{I}="), ratio2,LE(r"\:\frac{t_{\mathrm{W}}^{2}}{t_{\mathrm{grav}}}"),\ LE(r"="),tI)
ratio12 = N(sqrt(3/2))*g^2/lambdaH; pretty_print(LE(r"\sqrt{\frac32}\frac{g^2}{\lambda}="),ratio12);
tI*c; pretty_print(LE(r"t_{I} c="),tI*c);

5.6 Seesaw ratio ϵW\epsilon_W

epsilonW = (kappa*hbar/(2*g^2*tI^2))^(1/4); pretty_print(LE(r"\epsilon_{W}="),epsilonW)
ratio3 = epsilonW*tW/tgrav; ratio4 = epsilonW*tI/tW; ratio34 = sqrt(ratio3*ratio4); pretty_print(LE(r"\epsilon_{W}="),ratio34, LE(r"\:\left(\frac{t_{\mathrm{grav}}}{t_{I}}\right)^{1/2}")) pretty_print(LE(r"\epsilon_{W}="),ratio3, LE(r"\:\frac{t_{\mathrm{grav}}}{t_{\mathrm{W}}}")) pretty_print(LE(r"\epsilon_{W}="),ratio4, LE(r"\:\frac{t_{\mathrm{W}}}{t_{I}}"))
ratio134=(2*g^2)^(-1/4); pretty_print(LE(r"\left(\frac{1}{2g^2}\right)^{1/4}="),ratio134)
ratio13=(lambdaH^2/(3*g^6))^(1/4); pretty_print(LE(r"\left(\frac{\lambda^2}{3g^6}\right)^{1/4}="),ratio13)
ratio14=((3*g^2)/(4*lambdaH^2))^(1/4); pretty_print(LE(r"\left(\frac{3g^2}{4\lambda^2}\right)^{1/4}="),ratio14)

5.7 Units of action for the two oscillators

ratio5=6*N(pi)^2/g^2; pretty_print(LE(r"\frac{6\pi^{2}}{g^2}="),ratio5)

7.5 K(1/2)K(1/\sqrt{2})

K = N(gamma(1/4)^2/(4*pi^(1/2))); pretty_print(LE(r"K(1/\sqrt{2}) = \frac{\Gamma(1/4)^{2}}{4 \pi^{1/2}}="),K)

7.6 ⟨cn2⟩\langle \mathrm{cn}^2 \rangle for k=1/2k=1/\sqrt2

cn2ave = N(pi/2)/K^2; pretty_print(LE(r"\langle \mathrm{cn}^2 \rangle=\frac{2}{\pi^{2}}\frac{1}{K^{2}}="),cn2ave)

8. Cosmological temperature

kT = mH/N((6*pi)^(1/2)); pretty_print(LE(r"k_B T ="),kT)
pretty_print(LE(r"T ="),kT/kB)

9.1 Solution for a^\hat a in co-moving time

pretty_print(LE(r"\frac{\epsilon_W}{\sqrt{2}} ="),epsilonW/N(sqrt(2)))

9.2 a^EW\hat a_{\mathrm{EW}}

ratio6 =N(3^(1/2)*pi/(8*K^2))*(2*mW/mH); pretty_print(LE(r"\hat a^2_{\mathrm{EW}} ="),\ LE(r"\frac{3^{1/2}\pi}{8 K^2}\frac{2m_W}{m_H}(2 E_{\hat a})^{1/2}="),\ ratio6,LE(r"\:(2 E_{\hat a})^{1/2}"))
pretty_print(LE(r"\hat a_{\mathrm{EW}} ="),\ sqrt(ratio6),\ LE(r"\:(2 E_{\hat a})^{1/4}"))
thatEW = asinh(ratio6)/2; pretty_print(LE(r"\hat t_{\mathrm{EW}} ="),thatEW)
tEW = thatEW * tI; pretty_print(LE(r"t_{\mathrm{EW}} ="),tEW)
TEW = inverse_jacobi('cn', e^(-thatEW), 0.5); pretty_print(LE(r"T_{\mathrm{EW}} ="),TEW,LE(r"\;\epsilon_a"))