Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

SageMath notebooks associated to the Black Hole Lectures (https://luth.obspm.fr/~luthier/gourgoulhon/bh16)

Project: BHLectures
Views: 20113
Kernel: SageMath 10.0.beta2

Reissner-Nordström black hole with a magnetic monopole

version()
'SageMath version 10.0.beta2, Release Date: 2023-02-23'
%display latex

Spacetime manifold

We declare the Lorentzian manifold MM and the ingoing null Eddington-Finkelstein coordinates (v,r,θ,ϕ)(v,r,\theta,\phi) as a chart on MM:

M = Manifold(4, 'M', structure='Lorentzian') X.<v,r,th,ph> = M.chart(r'v r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') X

(M,(v,r,θ,ϕ))\displaystyle \left(M,(v, r, {\theta}, {\phi})\right)

We shall use the ingoing null Eddington-Finkelstein coordinates for they are regular on the black hole event horizon.

Metric tensor

We introduce the parameters mm, qq and pp, where mm is the ADM (= Komar) mass and qq and pp are related to the electric charge QQ and the magnetic charge PP via q=μ04πQandp=μ04πP q = \sqrt{\frac{\mu_0}{4\pi}} Q \quad\mbox{and}\quad p = \sqrt{\frac{\mu_0}{4\pi}} P We are using SI units and in the following we set μ0=1\mu_0 = 1 (in addition to c=1c=1 and G=1G=1).

m = var('m') q = var('q') p = var('p') assume(m>0) assume(m^2 - q^2 - p^2 >= 0)
g = M.metric() g[0,0] = - (1 - 2*m/r + (q^2 + p^2)/r^2) g[0,1] = 1 g[2,2] = r^2 g[3,3] = r^2*sin(th)^2 g.display()

g=(2mrp2+q2r21)dvdv+dvdr+drdv+r2dθdθ+r2sin(θ)2dϕdϕ\displaystyle g = \left( \frac{2 \, m}{r} - \frac{p^{2} + q^{2}}{r^{2}} - 1 \right) \mathrm{d} v\otimes \mathrm{d} v +\mathrm{d} v\otimes \mathrm{d} r +\mathrm{d} r\otimes \mathrm{d} v + r^{2} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + r^{2} \sin\left({\theta}\right)^{2} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

The event horizon H\mathscr{H} is located at r=rHr=r_H, with rH=m+m2q2p2r_H = m + \sqrt{m^2 - q^2 - p^2}:

rH = m + sqrt(m^2 - q^2 - p^2)

A generic point on H\mathscr{H}:

pH = M((v, rH, th, ph)) print(pH)
Point on the 4-dimensional Lorentzian manifold M
X(pH)

(v,m+m2p2q2,θ,ϕ)\displaystyle \left(v, m + \sqrt{m^{2} - p^{2} - q^{2}}, {\theta}, {\phi}\right)

Ricci tensor

Ric = g.ricci() Ric.display()

Ric(g)=(p4+2p2q2+q4+(p2+q2)r22(mp2+mq2)rr6)dvdv+(p2+q2r4)dvdr+(p2+q2r4)drdv+(p2+q2r2)dθdθ+(p2+q2)sin(θ)2r2dϕdϕ\displaystyle \mathrm{Ric}\left(g\right) = \left( \frac{p^{4} + 2 \, p^{2} q^{2} + q^{4} + {\left(p^{2} + q^{2}\right)} r^{2} - 2 \, {\left(m p^{2} + m q^{2}\right)} r}{r^{6}} \right) \mathrm{d} v\otimes \mathrm{d} v + \left( -\frac{p^{2} + q^{2}}{r^{4}} \right) \mathrm{d} v\otimes \mathrm{d} r + \left( -\frac{p^{2} + q^{2}}{r^{4}} \right) \mathrm{d} r\otimes \mathrm{d} v + \left( \frac{p^{2} + q^{2}}{r^{2}} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{{\left(p^{2} + q^{2}\right)} \sin\left({\theta}\right)^{2}}{r^{2}} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Ric.apply_map(factor) Ric[:]

((p2+q22mr+r2)(p2+q2)r6p2+q2r400p2+q2r400000p2+q2r20000(p2+q2)sin(θ)2r2)\displaystyle \left(\begin{array}{rrrr} \frac{{\left(p^{2} + q^{2} - 2 \, m r + r^{2}\right)} {\left(p^{2} + q^{2}\right)}}{r^{6}} & -\frac{p^{2} + q^{2}}{r^{4}} & 0 & 0 \\ -\frac{p^{2} + q^{2}}{r^{4}} & 0 & 0 & 0 \\ 0 & 0 & \frac{p^{2} + q^{2}}{r^{2}} & 0 \\ 0 & 0 & 0 & \frac{{\left(p^{2} + q^{2}\right)} \sin\left({\theta}\right)^{2}}{r^{2}} \end{array}\right)

The Ricci scalar vanishes indentically:

R = g.ricci_scalar() R.display()

r(g):MR(v,r,θ,ϕ)0\displaystyle \begin{array}{llcl} \mathrm{r}\left(g\right):& M & \longrightarrow & \mathbb{R} \\ & \left(v, r, {\theta}, {\phi}\right) & \longmapsto & 0 \end{array}

Einstein tensor

G = Ric - R/2*g G.set_name('G') G.display()

G=(p2+q22mr+r2)(p2+q2)r6dvdv+(p2+q2r4)dvdr+(p2+q2r4)drdv+(p2+q2r2)dθdθ+(p2+q2)sin(θ)2r2dϕdϕ\displaystyle G = \frac{{\left(p^{2} + q^{2} - 2 \, m r + r^{2}\right)} {\left(p^{2} + q^{2}\right)}}{r^{6}} \mathrm{d} v\otimes \mathrm{d} v + \left( -\frac{p^{2} + q^{2}}{r^{4}} \right) \mathrm{d} v\otimes \mathrm{d} r + \left( -\frac{p^{2} + q^{2}}{r^{4}} \right) \mathrm{d} r\otimes \mathrm{d} v + \left( \frac{p^{2} + q^{2}}{r^{2}} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{{\left(p^{2} + q^{2}\right)} \sin\left({\theta}\right)^{2}}{r^{2}} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Electromagnetic field

To form the electromagnetic field 2-form FF, we shall need the 1-forms dv\mathrm{d}v, dr\mathrm{d}r, dθ\mathrm{d}\theta, and dϕ\mathrm{d}\phi. We get them from the coframe associated to the coordinate chart X:

X.coframe()

(M,(dv,dr,dθ,dϕ))\displaystyle \left(M, \left(\mathrm{d} v,\mathrm{d} r,\mathrm{d} {\theta},\mathrm{d} {\phi}\right)\right)

dv, dr, dth, dph = X.coframe()[:]
dv.display()

dv=dv\displaystyle \mathrm{d} v = \mathrm{d} v

print(dv)
1-form dv on the 4-dimensional Lorentzian manifold M

We can then write the electromagnetic field in terms of wedge products as:

F = 1/sqrt(4*pi) * (- q/r^2*dv.wedge(dr) + p*sin(th)*dth.wedge(dph) ) F.set_name('F') F.display()

F=q2πr2dvdr+psin(θ)2πdθdϕ\displaystyle F = -\frac{q}{2 \, \sqrt{\pi} r^{2}} \mathrm{d} v\wedge \mathrm{d} r + \frac{p \sin\left({\theta}\right)}{2 \, \sqrt{\pi}} \mathrm{d} {\theta}\wedge \mathrm{d} {\phi}

print(F)
2-form F on the 4-dimensional Lorentzian manifold M
F[:]

(0q2πr200q2πr2000000psin(θ)2π00psin(θ)2π0)\displaystyle \left(\begin{array}{rrrr} 0 & -\frac{q}{2 \, \sqrt{\pi} r^{2}} & 0 & 0 \\ \frac{q}{2 \, \sqrt{\pi} r^{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{p \sin\left({\theta}\right)}{2 \, \sqrt{\pi}} \\ 0 & 0 & -\frac{p \sin\left({\theta}\right)}{2 \, \sqrt{\pi}} & 0 \end{array}\right)

star_F = F.hodge_dual(g) star_F.display()

F=p2πr2dvdr+qsin(θ)2πdθdϕ\displaystyle \star F = \frac{p}{2 \, \sqrt{\pi} r^{2}} \mathrm{d} v\wedge \mathrm{d} r + \frac{q \sin\left({\theta}\right)}{2 \, \sqrt{\pi}} \mathrm{d} {\theta}\wedge \mathrm{d} {\phi}

star_F[:]

(0p2πr200p2πr2000000qsin(θ)2π00qsin(θ)2π0)\displaystyle \left(\begin{array}{rrrr} 0 & \frac{p}{2 \, \sqrt{\pi} r^{2}} & 0 & 0 \\ -\frac{p}{2 \, \sqrt{\pi} r^{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{q \sin\left({\theta}\right)}{2 \, \sqrt{\pi}} \\ 0 & 0 & -\frac{q \sin\left({\theta}\right)}{2 \, \sqrt{\pi}} & 0 \end{array}\right)

Maxwell equations

Let us check that FF obeys the source-free Maxwell equations:

diff(F).display()

dF=0\displaystyle \mathrm{d}F = 0

diff(star_F).display()

dF=0\displaystyle \mathrm{d}\star F = 0

An equivalent check is the vanishing of the divergences aF ba\nabla_a F^a_{\ \, b} and aF ba\nabla_a \star F^a_{\ \, b} :

nabla = g.connection()
div_F = nabla(F.up(g, 0)).trace(0, 2) div_F.display()

0\displaystyle 0

div_star_F = nabla(star_F.up(g, 0)).trace(0, 2) div_star_F.display()

0\displaystyle 0

Energy-momentum tensor of the electromagnetic field

To evaluate the energy-momentum tensor, we need the scalar FabFabF_{ab}F^{ab}, which we compute as follows:

Fuu = F.up(g) F2 = F['_ab']*Fuu['^ab'] print(F2)
Scalar field on the 4-dimensional Lorentzian manifold M
F2.display()

MR(v,r,θ,ϕ)p2q22πr4\displaystyle \begin{array}{llcl} & M & \longrightarrow & \mathbb{R} \\ & \left(v, r, {\theta}, {\phi}\right) & \longmapsto & \frac{p^{2} - q^{2}}{2 \, \pi r^{4}} \end{array}

F2.expr()

p2q22πr4\displaystyle \frac{p^{2} - q^{2}}{2 \, \pi r^{4}}

The type-(1,1) tensor F baF^a_{\ \, b}:

Fud = F.up(g, 0) Fud.apply_map(factor) Fud[:]

(q2πr2000(p2+q22mr+r2)q2πr4q2πr200000psin(θ)2πr200p2πr2sin(θ)0)\displaystyle \left(\begin{array}{rrrr} \frac{q}{2 \, \sqrt{\pi} r^{2}} & 0 & 0 & 0 \\ \frac{{\left(p^{2} + q^{2} - 2 \, m r + r^{2}\right)} q}{2 \, \sqrt{\pi} r^{4}} & -\frac{q}{2 \, \sqrt{\pi} r^{2}} & 0 & 0 \\ 0 & 0 & 0 & \frac{p \sin\left({\theta}\right)}{2 \, \sqrt{\pi} r^{2}} \\ 0 & 0 & -\frac{p}{2 \, \sqrt{\pi} r^{2} \sin\left({\theta}\right)} & 0 \end{array}\right)

The energy-momentum tensor of the electromagnetic field:

T = F['_k.']*Fud['^k_.'] - 1/4*F2 * g T.apply_map(factor) T.display()

(p2+q22mr+r2)(p2+q2)8πr6dvdv+(p2+q28πr4)dvdr+(p2+q28πr4)drdv+(p2+q28πr2)dθdθ+(p2+q2)sin(θ)28πr2dϕdϕ\displaystyle \frac{{\left(p^{2} + q^{2} - 2 \, m r + r^{2}\right)} {\left(p^{2} + q^{2}\right)}}{8 \, \pi r^{6}} \mathrm{d} v\otimes \mathrm{d} v + \left( -\frac{p^{2} + q^{2}}{8 \, \pi r^{4}} \right) \mathrm{d} v\otimes \mathrm{d} r + \left( -\frac{p^{2} + q^{2}}{8 \, \pi r^{4}} \right) \mathrm{d} r\otimes \mathrm{d} v + \left( \frac{p^{2} + q^{2}}{8 \, \pi r^{2}} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{{\left(p^{2} + q^{2}\right)} \sin\left({\theta}\right)^{2}}{8 \, \pi r^{2}} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

T[:]

((p2+q22mr+r2)(p2+q2)8πr6p2+q28πr400p2+q28πr400000p2+q28πr20000(p2+q2)sin(θ)28πr2)\displaystyle \left(\begin{array}{rrrr} \frac{{\left(p^{2} + q^{2} - 2 \, m r + r^{2}\right)} {\left(p^{2} + q^{2}\right)}}{8 \, \pi r^{6}} & -\frac{p^{2} + q^{2}}{8 \, \pi r^{4}} & 0 & 0 \\ -\frac{p^{2} + q^{2}}{8 \, \pi r^{4}} & 0 & 0 & 0 \\ 0 & 0 & \frac{p^{2} + q^{2}}{8 \, \pi r^{2}} & 0 \\ 0 & 0 & 0 & \frac{{\left(p^{2} + q^{2}\right)} \sin\left({\theta}\right)^{2}}{8 \, \pi r^{2}} \end{array}\right)

Check of the Einstein equation

G == 8*pi*T

True\displaystyle \mathrm{True}

Pseudo-electric field EE and pseudo-magnetic field BB

The stationary Killing vector field ξ\xi:

xi = M.vector_field(1, 0, 0, 0, name='xi', latex_name=r'\xi') xi.display()

ξ=v\displaystyle \xi = \frac{\partial}{\partial v }

ξ\xi is null on H\mathscr{H}:

g(xi,xi)(pH)

0\displaystyle 0

The pseudo-electric field 1-form is defined by E:=F(.,ξ)E := F(.,\xi). It would be the electric field measured by the observer of 4-velocity ξ\xi if ξ\xi would be a unit timelike vector, which it is not, except for r+r\to +\infty.

E = F.contract(xi) E.set_name('E') E.display()

E=q2πr2dr\displaystyle E = \frac{q}{2 \, \sqrt{\pi} r^{2}} \mathrm{d} r

EE is a closed 1-form:

diff(E).display()

dE=0\displaystyle \mathrm{d}E = 0

EE is actually an exact 1-form:

Phi = M.scalar_field(1/sqrt(4*pi) * q/r, name='Phi', latex_name=r'\Phi') Phi.display()

Φ:MR(v,r,θ,ϕ)q2πr\displaystyle \begin{array}{llcl} \Phi:& M & \longrightarrow & \mathbb{R} \\ & \left(v, r, {\theta}, {\phi}\right) & \longmapsto & \frac{q}{2 \, \sqrt{\pi} r} \end{array}

E == - diff(Phi)

True\displaystyle \mathrm{True}

The vector field E\vec{E} associated to EE by metric duality:

vE = E.up(g) vE.set_name('vE', latex_name = r'\vec{E}') vE.display()

E=q2πr2v+(p2q+q32mqr+qr22πr4)r\displaystyle \vec{E} = \frac{q}{2 \, \sqrt{\pi} r^{2}} \frac{\partial}{\partial v } + \left( \frac{p^{2} q + q^{3} - 2 \, m q r + q r^{2}}{2 \, \sqrt{\pi} r^{4}} \right) \frac{\partial}{\partial r }

We note that E\vec{E} is collinear to ξ\xi on the event horizon H\mathscr{H}:

vE.at(pH).display()

E=q2(2πm2p2q2m+π(2m2p2q2))v\displaystyle \vec{E} = \frac{q}{2 \, {\left(2 \, \sqrt{\pi} \sqrt{m^{2} - p^{2} - q^{2}} m + \sqrt{\pi} {\left(2 \, m^{2} - p^{2} - q^{2}\right)}\right)}} \frac{\partial}{\partial v }

g(vE,vE)(pH)

0\displaystyle 0

The pseudo-magnetic field 1-form is defined by B:=F(ξ,.)B := \star F(\xi,.); as for EE it fails to be a genuine magnetic field because ξ\xi is not a unit timelike vector.

B = xi.contract(star_F) B.set_name('B') B.display()

B=p2πr2dr\displaystyle B = \frac{p}{2 \, \sqrt{\pi} r^{2}} \mathrm{d} r

We note that BB is collinear to EE and that it is a closed 1-form as well:

diff(B).display()

dB=0\displaystyle \mathrm{d}B = 0

As EE, BB is actually an exact 1-form:

Psi = M.scalar_field(1/sqrt(4*pi) * p/r, name='Psi', latex_name=r'\Psi') Psi.display()

Ψ:MR(v,r,θ,ϕ)p2πr\displaystyle \begin{array}{llcl} \Psi:& M & \longrightarrow & \mathbb{R} \\ & \left(v, r, {\theta}, {\phi}\right) & \longmapsto & \frac{p}{2 \, \sqrt{\pi} r} \end{array}

B == - diff(Psi)

True\displaystyle \mathrm{True}

The vector field B\vec{B} associated to BB by metric duality:

vB = B.up(g) vB.set_name('vB', latex_name = r'\vec{B}') vB.display()

B=p2πr2v+(p3+pq22mpr+pr22πr4)r\displaystyle \vec{B} = \frac{p}{2 \, \sqrt{\pi} r^{2}} \frac{\partial}{\partial v } + \left( \frac{p^{3} + p q^{2} - 2 \, m p r + p r^{2}}{2 \, \sqrt{\pi} r^{4}} \right) \frac{\partial}{\partial r }

vB.at(pH).display()

B=p2(2πm2p2q2m+π(2m2p2q2))v\displaystyle \vec{B} = \frac{p}{2 \, {\left(2 \, \sqrt{\pi} \sqrt{m^{2} - p^{2} - q^{2}} m + \sqrt{\pi} {\left(2 \, m^{2} - p^{2} - q^{2}\right)}\right)}} \frac{\partial}{\partial v }

Electromagnetic potential AA

Since FF obeys the source-free Maxwell equation dF=0\mathrm{d}F = 0, we may introduce locally a 1-form AA such that F=dAF = \mathrm{d}A. However, unless p=0p=0, AA cannot be a globally regular 1-form, as we shall discuss below.

A = - 1/sqrt(4*pi) * (q/r * dv + p*cos(th)*dph ) A.set_name('A') A.display()

A=q2πrdvpcos(θ)2πdϕ\displaystyle A = -\frac{q}{2 \, \sqrt{\pi} r} \mathrm{d} v -\frac{p \cos\left({\theta}\right)}{2 \, \sqrt{\pi}} \mathrm{d} {\phi}

diff(A).display()

dA=q2πr2dvdr+psin(θ)2πdθdϕ\displaystyle \mathrm{d}A = -\frac{q}{2 \, \sqrt{\pi} r^{2}} \mathrm{d} v\wedge \mathrm{d} r + \frac{p \sin\left({\theta}\right)}{2 \, \sqrt{\pi}} \mathrm{d} {\theta}\wedge \mathrm{d} {\phi}

F == diff(A)

True\displaystyle \mathrm{True}

We have actually Φ=A,ξ\Phi = - \langle A, \xi \rangle:

Phi == - A(xi)

True\displaystyle \mathrm{True}

The 1-form Ω=ΦF+12ξ(AF) \Omega = \Phi F + \frac{1}{2} \, \underline{\xi} \wedge (A\cdot F) which appears in the proof of the generalized Smarr formula without magnetic monopole:

AF = A['_b']*Fud['^b_a'] AF.display()

q24πr3dv+p2cos(θ)4πr2sin(θ)dθ\displaystyle -\frac{q^{2}}{4 \, \pi r^{3}} \mathrm{d} v + \frac{p^{2} \cos\left({\theta}\right)}{4 \, \pi r^{2} \sin\left({\theta}\right)} \mathrm{d} {\theta}

xif = xi.down(g) xif.display()

(2mrp2+q2r21)dv+dr\displaystyle \left( \frac{2 \, m}{r} - \frac{p^{2} + q^{2}}{r^{2}} - 1 \right) \mathrm{d} v +\mathrm{d} r

Omega = Phi*F + 1/2*xif.wedge(AF) Omega.set_name('Omega', latex_name=r'\Omega') Omega.apply_map(factor) Omega.display()

Ω=q28πr3dvdr(p2+q22mr+r2)p2cos(θ)8πr4sin(θ)dvdθ+p2cos(θ)8πr2sin(θ)drdθ+pqsin(θ)4πrdθdϕ\displaystyle \Omega = -\frac{q^{2}}{8 \, \pi r^{3}} \mathrm{d} v\wedge \mathrm{d} r -\frac{{\left(p^{2} + q^{2} - 2 \, m r + r^{2}\right)} p^{2} \cos\left({\theta}\right)}{8 \, \pi r^{4} \sin\left({\theta}\right)} \mathrm{d} v\wedge \mathrm{d} {\theta} + \frac{p^{2} \cos\left({\theta}\right)}{8 \, \pi r^{2} \sin\left({\theta}\right)} \mathrm{d} r\wedge \mathrm{d} {\theta} + \frac{p q \sin\left({\theta}\right)}{4 \, \pi r} \mathrm{d} {\theta}\wedge \mathrm{d} {\phi}

div_Omega = nabla(Omega).up(g, 2).trace(0, 2) div_Omega.apply_map(factor) div_Omega.display()

(p2+q22mr+r2)(p2+q2)8πr6dv+(p2+q28πr4)dr\displaystyle \frac{{\left(p^{2} + q^{2} - 2 \, m r + r^{2}\right)} {\left(p^{2} + q^{2}\right)}}{8 \, \pi r^{6}} \mathrm{d} v + \left( -\frac{p^{2} + q^{2}}{8 \, \pi r^{4}} \right) \mathrm{d} r

T.contract(xi) == div_Omega

True\displaystyle \mathrm{True}

Regularity of the fields FF, AA, Ω\Omega, Φ\Phi and Ψ\Psi

To assess the regularity of the fields on the axis θ=0\theta=0 or π\pi, we introduce a Cartesian-like coordinate system:

Y.<v,x,y,z> = M.chart() Y

(M,(v,x,y,z))\displaystyle \left(M,(v, x, y, z)\right)

X_to_Y = X.transition_map(Y, (v, r*sin(th)*cos(ph), r*sin(th)*sin(ph), r*cos(th))) X_to_Y.display()

{v=vx=rcos(ϕ)sin(θ)y=rsin(ϕ)sin(θ)z=rcos(θ)\displaystyle \left\{\begin{array}{lcl} v & = & v \\ x & = & r \cos\left({\phi}\right) \sin\left({\theta}\right) \\ y & = & r \sin\left({\phi}\right) \sin\left({\theta}\right) \\ z & = & r \cos\left({\theta}\right) \end{array}\right.

X_to_Y.set_inverse(v, sqrt(x^2 + y^2 + z^2), atan2(sqrt(x^2+y^2),z), atan2(y, x))
Check of the inverse coordinate transformation: v == v *passed* r == r *passed* th == arctan2(r*sin(th), r*cos(th)) **failed** ph == arctan2(r*sin(ph)*sin(th), r*cos(ph)*sin(th)) **failed** v == v *passed* x == x *passed* y == y *passed* z == z *passed* NB: a failed report can reflect a mere lack of simplification.
X_to_Y.inverse().display()

{v=vr=x2+y2+z2θ=arctan(x2+y2,z)ϕ=arctan(y,x)\displaystyle \left\{\begin{array}{lcl} v & = & v \\ r & = & \sqrt{x^{2} + y^{2} + z^{2}} \\ {\theta} & = & \arctan\left(\sqrt{x^{2} + y^{2}}, z\right) \\ {\phi} & = & \arctan\left(y, x\right) \end{array}\right.

FF is perfectly regular in all the region r>0r>0:

F.display(Y)

F=qx2π(x2+y2+z2)32dvdxqy2π(x2+y2+z2)32dvdyqz2π(x2+y2+z2)32dvdz+(x2+y2+z2pz2π(x4+2x2y2+y4+z4+2(x2+y2)z2))dxdypy2π(x2+y2+z2)32dxdz+px2π(x2+y2+z2)32dydz\displaystyle F = -\frac{q x}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} v\wedge \mathrm{d} x -\frac{q y}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} v\wedge \mathrm{d} y -\frac{q z}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} v\wedge \mathrm{d} z + \left( \frac{\sqrt{x^{2} + y^{2} + z^{2}} p z}{2 \, \sqrt{\pi} {\left(x^{4} + 2 \, x^{2} y^{2} + y^{4} + z^{4} + 2 \, {\left(x^{2} + y^{2}\right)} z^{2}\right)}} \right) \mathrm{d} x\wedge \mathrm{d} y -\frac{p y}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} x\wedge \mathrm{d} z + \frac{p x}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} y\wedge \mathrm{d} z

F.apply_map(factor, frame=Y.frame(), chart=Y, keep_other_components=True) F.display(Y)

F=qx2π(x2+y2+z2)32dvdxqy2π(x2+y2+z2)32dvdyqz2π(x2+y2+z2)32dvdz+pz2π(x2+y2+z2)32dxdypy2π(x2+y2+z2)32dxdz+px2π(x2+y2+z2)32dydz\displaystyle F = -\frac{q x}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} v\wedge \mathrm{d} x -\frac{q y}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} v\wedge \mathrm{d} y -\frac{q z}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} v\wedge \mathrm{d} z + \frac{p z}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} x\wedge \mathrm{d} y -\frac{p y}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} x\wedge \mathrm{d} z + \frac{p x}{2 \, \sqrt{\pi} {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{3}{2}}} \mathrm{d} y\wedge \mathrm{d} z

while AA is singular on the axis θ=0\theta=0 or π\pi     \iff x2+y2=0x^2 + y^2 = 0 if p0p\neq 0:

A.display(Y)

A=(q2πx2+y2+z2)dv+(pyz2πx2+y2+z2(x2+y2))dx+(pxz2πx2+y2+z2(x2+y2))dy\displaystyle A = \left( -\frac{q}{2 \, \sqrt{\pi} \sqrt{x^{2} + y^{2} + z^{2}}} \right) \mathrm{d} v + \left( \frac{p y z}{2 \, \sqrt{\pi} \sqrt{x^{2} + y^{2} + z^{2}} {\left(x^{2} + y^{2}\right)}} \right) \mathrm{d} x + \left( -\frac{p x z}{2 \, \sqrt{\pi} \sqrt{x^{2} + y^{2} + z^{2}} {\left(x^{2} + y^{2}\right)}} \right) \mathrm{d} y

Ω\Omega is singular there as well:

Omega.apply_map(factor, frame=Y.frame(), chart=Y, keep_other_components=True) Omega.display(Y)

Ω=(q2x4+2q2x2y2+q2y4+p4z2+p2q2z2+p2x2z2+q2x2z2+p2y2z2+q2y2z2+p2z42x2+y2+z2mp2z2)x8π(x2+y2+z2)3(x2+y2)dvdx(q2x4+2q2x2y2+q2y4+p4z2+p2q2z2+p2x2z2+q2x2z2+p2y2z2+q2y2z2+p2z42x2+y2+z2mp2z2)y8π(x2+y2+z2)3(x2+y2)dvdy+(p4+p2q2+p2x2q2x2+p2y2q2y2+p2z2q2z22x2+y2+z2mp2)z8π(x2+y2+z2)3dvdz+pqz4π(x2+y2+z2)2dxdy(px3z+pxy2z+pxz3+2x2+y2+z2qx2y+2x2+y2+z2qy3)p8π(x2+y2+z2)52(x2+y2)dxdz(px2yz+py3z+pyz32x2+y2+z2qx32x2+y2+z2qxy2)p8π(x2+y2+z2)52(x2+y2)dydz\displaystyle \Omega = -\frac{{\left(q^{2} x^{4} + 2 \, q^{2} x^{2} y^{2} + q^{2} y^{4} + p^{4} z^{2} + p^{2} q^{2} z^{2} + p^{2} x^{2} z^{2} + q^{2} x^{2} z^{2} + p^{2} y^{2} z^{2} + q^{2} y^{2} z^{2} + p^{2} z^{4} - 2 \, \sqrt{x^{2} + y^{2} + z^{2}} m p^{2} z^{2}\right)} x}{8 \, \pi {\left(x^{2} + y^{2} + z^{2}\right)}^{3} {\left(x^{2} + y^{2}\right)}} \mathrm{d} v\wedge \mathrm{d} x -\frac{{\left(q^{2} x^{4} + 2 \, q^{2} x^{2} y^{2} + q^{2} y^{4} + p^{4} z^{2} + p^{2} q^{2} z^{2} + p^{2} x^{2} z^{2} + q^{2} x^{2} z^{2} + p^{2} y^{2} z^{2} + q^{2} y^{2} z^{2} + p^{2} z^{4} - 2 \, \sqrt{x^{2} + y^{2} + z^{2}} m p^{2} z^{2}\right)} y}{8 \, \pi {\left(x^{2} + y^{2} + z^{2}\right)}^{3} {\left(x^{2} + y^{2}\right)}} \mathrm{d} v\wedge \mathrm{d} y + \frac{{\left(p^{4} + p^{2} q^{2} + p^{2} x^{2} - q^{2} x^{2} + p^{2} y^{2} - q^{2} y^{2} + p^{2} z^{2} - q^{2} z^{2} - 2 \, \sqrt{x^{2} + y^{2} + z^{2}} m p^{2}\right)} z}{8 \, \pi {\left(x^{2} + y^{2} + z^{2}\right)}^{3}} \mathrm{d} v\wedge \mathrm{d} z + \frac{p q z}{4 \, \pi {\left(x^{2} + y^{2} + z^{2}\right)}^{2}} \mathrm{d} x\wedge \mathrm{d} y -\frac{{\left(p x^{3} z + p x y^{2} z + p x z^{3} + 2 \, \sqrt{x^{2} + y^{2} + z^{2}} q x^{2} y + 2 \, \sqrt{x^{2} + y^{2} + z^{2}} q y^{3}\right)} p}{8 \, \pi {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{5}{2}} {\left(x^{2} + y^{2}\right)}} \mathrm{d} x\wedge \mathrm{d} z -\frac{{\left(p x^{2} y z + p y^{3} z + p y z^{3} - 2 \, \sqrt{x^{2} + y^{2} + z^{2}} q x^{3} - 2 \, \sqrt{x^{2} + y^{2} + z^{2}} q x y^{2}\right)} p}{8 \, \pi {\left(x^{2} + y^{2} + z^{2}\right)}^{\frac{5}{2}} {\left(x^{2} + y^{2}\right)}} \mathrm{d} y\wedge \mathrm{d} z

The scalar potentials Φ\Phi and Ψ\Psi are regular in all the region r>0r>0:

Phi.expr(Y)

q2πx2+y2+z2\displaystyle \frac{q}{2 \, \sqrt{\pi} \sqrt{x^{2} + y^{2} + z^{2}}}

Psi.expr(Y)

p2πx2+y2+z2\displaystyle \frac{p}{2 \, \sqrt{\pi} \sqrt{x^{2} + y^{2} + z^{2}}}