Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

SageMath notebooks associated to the Black Hole Lectures (https://luth.obspm.fr/~luthier/gourgoulhon/bh16)

Project: BHLectures
Views: 20113
Kernel: SageMath 9.5.beta7

Curvature tensor in the Oppenheimer-Snyder interior

This Jupyter/SageMath notebook is relative to the lectures Geometry and physics of black holes.

The computations make use of tools developed through the SageManifolds project.

version()
'SageMath version 9.5.beta7, Release Date: 2021-11-18'
%display latex

Interior spacetime for Oppenheimer-Snyder collapse from rest

M = Manifold(4, 'M', structure='Lorentzian')

Chart of conformal coordinates:

CC.<et,ch,th,ph> = M.chart(r"et:(0,pi):\eta ch:(0,pi/2):\chi th:(0,pi):\theta ph:(0,2*pi):periodic:\varphi") CC
(M,(η,χ,θ,φ))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(M,({\eta}, {\chi}, {\theta}, {\varphi})\right)
CC.coord_range()
η: (0,π);χ: (0,12π);θ: (0,π);φ: [0,2π](periodic)\renewcommand{\Bold}[1]{\mathbf{#1}}{\eta} :\ \left( 0 , \pi \right) ;\quad {\chi} :\ \left( 0 , \frac{1}{2} \, \pi \right) ;\quad {\theta} :\ \left( 0 , \pi \right) ;\quad {\varphi} :\ \left[ 0 , 2 \, \pi \right] \mbox{(periodic)}
g = M.metric() a0 = var('a0', domain='real') cf = a0^2/4*(1 + cos(et))^2 g[0,0] = - cf g[1,1] = cf g[2,2] = cf*sin(ch)^2 g[3,3] = cf*sin(ch)^2*sin(th)^2 g.display()
g=14a02(cos(η)+1)2dηdη+14a02(cos(η)+1)2dχdχ+14a02(cos(η)+1)2sin(χ)2dθdθ+14a02(cos(η)+1)2sin(χ)2sin(θ)2dφdφ\renewcommand{\Bold}[1]{\mathbf{#1}}g = -\frac{1}{4} \, a_{0}^{2} {\left(\cos\left({\eta}\right) + 1\right)}^{2} \mathrm{d} {\eta}\otimes \mathrm{d} {\eta} + \frac{1}{4} \, a_{0}^{2} {\left(\cos\left({\eta}\right) + 1\right)}^{2} \mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + \frac{1}{4} \, a_{0}^{2} {\left(\cos\left({\eta}\right) + 1\right)}^{2} \sin\left({\chi}\right)^{2} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{1}{4} \, a_{0}^{2} {\left(\cos\left({\eta}\right) + 1\right)}^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \mathrm{d} {\varphi}\otimes \mathrm{d} {\varphi}

Ricci tensor

Ric = g.ricci() Ric.display_comp()
Ric(g)ηηηη=3cos(η)+1Ric(g)χχχχ=3cos(η)+1Ric(g)θθθθ=3((cos(η)sin(χ)2+5sin(χ)2)sin(η)4+16cos(η)sin(χ)24(3cos(η)sin(χ)2+5sin(χ)2)sin(η)2+16sin(χ)2)sin(η)66(cos(η)+3)sin(η)4+16(2cos(η)+3)sin(η)232cos(η)32Ric(g)φφφφ=3((cos(η)sin(χ)2+5sin(χ)2)sin(η)4+16cos(η)sin(χ)24(3cos(η)sin(χ)2+5sin(χ)2)sin(η)2+16sin(χ)2)sin(θ)2sin(η)66(cos(η)+3)sin(η)4+16(2cos(η)+3)sin(η)232cos(η)32\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} \mathrm{Ric}\left(g\right)_{ \, {\eta} \, {\eta} }^{ \phantom{\, {\eta}}\phantom{\, {\eta}} } & = & \frac{3}{\cos\left({\eta}\right) + 1} \\ \mathrm{Ric}\left(g\right)_{ \, {\chi} \, {\chi} }^{ \phantom{\, {\chi}}\phantom{\, {\chi}} } & = & \frac{3}{\cos\left({\eta}\right) + 1} \\ \mathrm{Ric}\left(g\right)_{ \, {\theta} \, {\theta} }^{ \phantom{\, {\theta}}\phantom{\, {\theta}} } & = & -\frac{3 \, {\left({\left(\cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + 5 \, \sin\left({\chi}\right)^{2}\right)} \sin\left({\eta}\right)^{4} + 16 \, \cos\left({\eta}\right) \sin\left({\chi}\right)^{2} - 4 \, {\left(3 \, \cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + 5 \, \sin\left({\chi}\right)^{2}\right)} \sin\left({\eta}\right)^{2} + 16 \, \sin\left({\chi}\right)^{2}\right)}}{\sin\left({\eta}\right)^{6} - 6 \, {\left(\cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{4} + 16 \, {\left(2 \, \cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{2} - 32 \, \cos\left({\eta}\right) - 32} \\ \mathrm{Ric}\left(g\right)_{ \, {\varphi} \, {\varphi} }^{ \phantom{\, {\varphi}}\phantom{\, {\varphi}} } & = & -\frac{3 \, {\left({\left(\cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + 5 \, \sin\left({\chi}\right)^{2}\right)} \sin\left({\eta}\right)^{4} + 16 \, \cos\left({\eta}\right) \sin\left({\chi}\right)^{2} - 4 \, {\left(3 \, \cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + 5 \, \sin\left({\chi}\right)^{2}\right)} \sin\left({\eta}\right)^{2} + 16 \, \sin\left({\chi}\right)^{2}\right)} \sin\left({\theta}\right)^{2}}{\sin\left({\eta}\right)^{6} - 6 \, {\left(\cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{4} + 16 \, {\left(2 \, \cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{2} - 32 \, \cos\left({\eta}\right) - 32} \end{array}

Some trigonometric simplifications are in order:

Ric.apply_map(lambda x: x.subs({sin(et): sqrt(1 - cos(et)^2)}).factor()) Ric.display_comp()
Ric(g)ηηηη=3cos(η)+1Ric(g)χχχχ=3cos(η)+1Ric(g)θθθθ=3sin(χ)2cos(η)+1Ric(g)φφφφ=3sin(χ)2sin(θ)2cos(η)+1\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} \mathrm{Ric}\left(g\right)_{ \, {\eta} \, {\eta} }^{ \phantom{\, {\eta}}\phantom{\, {\eta}} } & = & \frac{3}{\cos\left({\eta}\right) + 1} \\ \mathrm{Ric}\left(g\right)_{ \, {\chi} \, {\chi} }^{ \phantom{\, {\chi}}\phantom{\, {\chi}} } & = & \frac{3}{\cos\left({\eta}\right) + 1} \\ \mathrm{Ric}\left(g\right)_{ \, {\theta} \, {\theta} }^{ \phantom{\, {\theta}}\phantom{\, {\theta}} } & = & \frac{3 \, \sin\left({\chi}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Ric}\left(g\right)_{ \, {\varphi} \, {\varphi} }^{ \phantom{\, {\varphi}}\phantom{\, {\varphi}} } & = & \frac{3 \, \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2}}{\cos\left({\eta}\right) + 1} \end{array}
g.ricci_scalar().display()
r(g):MR(η,χ,θ,φ)244a02cos(η)(a02cos(η)+3a02)sin(η)2+4a02\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{llcl} \mathrm{r}\left(g\right):& M & \longrightarrow & \mathbb{R} \\ & \left({\eta}, {\chi}, {\theta}, {\varphi}\right) & \longmapsto & \frac{24}{4 \, a_{0}^{2} \cos\left({\eta}\right) - {\left(a_{0}^{2} \cos\left({\eta}\right) + 3 \, a_{0}^{2}\right)} \sin\left({\eta}\right)^{2} + 4 \, a_{0}^{2}} \end{array}
R = g.ricci_scalar().expr().factor() R
24(cos(η)sin(η)2+3sin(η)24cos(η)4)a02\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{24}{{\left(\cos\left({\eta}\right) \sin\left({\eta}\right)^{2} + 3 \, \sin\left({\eta}\right)^{2} - 4 \, \cos\left({\eta}\right) - 4\right)} a_{0}^{2}}
R = R.subs({sin(et): sqrt(1 - cos(et)^2)}) R.factor()
24a02(cos(η)+1)3\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{24}{a_{0}^{2} {\left(\cos\left({\eta}\right) + 1\right)}^{3}}

Einstein tensor

G = Ric - R/2*g G.set_name('G') G.display()
G=(6cos(η)+1)dηdη\renewcommand{\Bold}[1]{\mathbf{#1}}G = \left( \frac{6}{\cos\left({\eta}\right) + 1} \right) \mathrm{d} {\eta}\otimes \mathrm{d} {\eta}

Energy momentum tensor

The fluid 4-velocity:

u = M.vector_field(2/(a0*(1+cos(et))), 0, 0, 0, name='u') u.display()
u=2a0(cos(η)+1)η\renewcommand{\Bold}[1]{\mathbf{#1}}u = \frac{2}{a_{0} {\left(\cos\left({\eta}\right) + 1\right)}} \frac{\partial}{\partial {\eta} }

Check that uu is a unit vector:

g(u,u).expr()
1\renewcommand{\Bold}[1]{\mathbf{#1}}-1
uf = u.down(g) uf.display()
(12a0cos(η)12a0)dη\renewcommand{\Bold}[1]{\mathbf{#1}}\left( -\frac{1}{2} \, a_{0} \cos\left({\eta}\right) - \frac{1}{2} \, a_{0} \right) \mathrm{d} {\eta}
rho = 3/(pi*a0^2*(1 + cos(et))^3) T = rho*uf*uf T.set_name('T') T.display()
T=34(π+πcos(η))dηdη\renewcommand{\Bold}[1]{\mathbf{#1}}T = \frac{3}{4 \, {\left(\pi + \pi \cos\left({\eta}\right)\right)}} \mathrm{d} {\eta}\otimes \mathrm{d} {\eta}

Check of Einstein equation

G == 8*pi*T
True\renewcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True}

Riemann tensor

Riem = g.riemann() Riem.display_comp(only_nonredundant=True)
Riem(g)ηχηχηχηχ=1cos(η)+1Riem(g)ηθηθηθηθ=cos(η)2sin(χ)2+2cos(η)sin(χ)2+sin(χ)2(cos(η)+3)sin(η)24cos(η)4Riem(g)ηφηφηφηφ=(cos(η)2sin(χ)2+2cos(η)sin(χ)2+sin(χ)2)sin(θ)2(cos(η)+3)sin(η)24cos(η)4Riem(g)χηηχχηηχ=1cos(η)+1Riem(g)χθχθχθχθ=2sin(χ)2cos(η)+1Riem(g)χφχφχφχφ=2sin(χ)2sin(θ)2cos(η)+1Riem(g)θηηθθηηθ=cos(η)5+5cos(η)4+10cos(η)3+10cos(η)2+5cos(η)+1sin(η)66(cos(η)+3)sin(η)4+16(2cos(η)+3)sin(η)232cos(η)32Riem(g)θχχθθχχθ=2(cos(η)+1)sin(η)22cos(η)2Riem(g)θφθφθφθφ=2(cos(η)sin(χ)2+sin(χ)2)sin(θ)2sin(η)22cos(η)2Riem(g)φηηφφηηφ=cos(η)5+5cos(η)4+10cos(η)3+10cos(η)2+5cos(η)+1sin(η)66(cos(η)+3)sin(η)4+16(2cos(η)+3)sin(η)232cos(η)32Riem(g)φχχφφχχφ=2(cos(η)+1)sin(η)22cos(η)2Riem(g)φθθφφθθφ=2(cos(η)sin(χ)2+sin(χ)2)sin(η)22cos(η)2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} \mathrm{Riem}\left(g\right)_{ \phantom{\, {\eta}} \, {\chi} \, {\eta} \, {\chi} }^{ \, {\eta} \phantom{\, {\chi}} \phantom{\, {\eta}} \phantom{\, {\chi}} } & = & -\frac{1}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\eta}} \, {\theta} \, {\eta} \, {\theta} }^{ \, {\eta} \phantom{\, {\theta}} \phantom{\, {\eta}} \phantom{\, {\theta}} } & = & \frac{\cos\left({\eta}\right)^{2} \sin\left({\chi}\right)^{2} + 2 \, \cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + \sin\left({\chi}\right)^{2}}{{\left(\cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{2} - 4 \, \cos\left({\eta}\right) - 4} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\eta}} \, {\varphi} \, {\eta} \, {\varphi} }^{ \, {\eta} \phantom{\, {\varphi}} \phantom{\, {\eta}} \phantom{\, {\varphi}} } & = & \frac{{\left(\cos\left({\eta}\right)^{2} \sin\left({\chi}\right)^{2} + 2 \, \cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + \sin\left({\chi}\right)^{2}\right)} \sin\left({\theta}\right)^{2}}{{\left(\cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{2} - 4 \, \cos\left({\eta}\right) - 4} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi}} \, {\eta} \, {\eta} \, {\chi} }^{ \, {\chi} \phantom{\, {\eta}} \phantom{\, {\eta}} \phantom{\, {\chi}} } & = & -\frac{1}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi}} \, {\theta} \, {\chi} \, {\theta} }^{ \, {\chi} \phantom{\, {\theta}} \phantom{\, {\chi}} \phantom{\, {\theta}} } & = & \frac{2 \, \sin\left({\chi}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi}} \, {\varphi} \, {\chi} \, {\varphi} }^{ \, {\chi} \phantom{\, {\varphi}} \phantom{\, {\chi}} \phantom{\, {\varphi}} } & = & \frac{2 \, \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta}} \, {\eta} \, {\eta} \, {\theta} }^{ \, {\theta} \phantom{\, {\eta}} \phantom{\, {\eta}} \phantom{\, {\theta}} } & = & \frac{\cos\left({\eta}\right)^{5} + 5 \, \cos\left({\eta}\right)^{4} + 10 \, \cos\left({\eta}\right)^{3} + 10 \, \cos\left({\eta}\right)^{2} + 5 \, \cos\left({\eta}\right) + 1}{\sin\left({\eta}\right)^{6} - 6 \, {\left(\cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{4} + 16 \, {\left(2 \, \cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{2} - 32 \, \cos\left({\eta}\right) - 32} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta}} \, {\chi} \, {\chi} \, {\theta} }^{ \, {\theta} \phantom{\, {\chi}} \phantom{\, {\chi}} \phantom{\, {\theta}} } & = & \frac{2 \, {\left(\cos\left({\eta}\right) + 1\right)}}{\sin\left({\eta}\right)^{2} - 2 \, \cos\left({\eta}\right) - 2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta}} \, {\varphi} \, {\theta} \, {\varphi} }^{ \, {\theta} \phantom{\, {\varphi}} \phantom{\, {\theta}} \phantom{\, {\varphi}} } & = & -\frac{2 \, {\left(\cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + \sin\left({\chi}\right)^{2}\right)} \sin\left({\theta}\right)^{2}}{\sin\left({\eta}\right)^{2} - 2 \, \cos\left({\eta}\right) - 2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\varphi}} \, {\eta} \, {\eta} \, {\varphi} }^{ \, {\varphi} \phantom{\, {\eta}} \phantom{\, {\eta}} \phantom{\, {\varphi}} } & = & \frac{\cos\left({\eta}\right)^{5} + 5 \, \cos\left({\eta}\right)^{4} + 10 \, \cos\left({\eta}\right)^{3} + 10 \, \cos\left({\eta}\right)^{2} + 5 \, \cos\left({\eta}\right) + 1}{\sin\left({\eta}\right)^{6} - 6 \, {\left(\cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{4} + 16 \, {\left(2 \, \cos\left({\eta}\right) + 3\right)} \sin\left({\eta}\right)^{2} - 32 \, \cos\left({\eta}\right) - 32} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\varphi}} \, {\chi} \, {\chi} \, {\varphi} }^{ \, {\varphi} \phantom{\, {\chi}} \phantom{\, {\chi}} \phantom{\, {\varphi}} } & = & \frac{2 \, {\left(\cos\left({\eta}\right) + 1\right)}}{\sin\left({\eta}\right)^{2} - 2 \, \cos\left({\eta}\right) - 2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\varphi}} \, {\theta} \, {\theta} \, {\varphi} }^{ \, {\varphi} \phantom{\, {\theta}} \phantom{\, {\theta}} \phantom{\, {\varphi}} } & = & \frac{2 \, {\left(\cos\left({\eta}\right) \sin\left({\chi}\right)^{2} + \sin\left({\chi}\right)^{2}\right)}}{\sin\left({\eta}\right)^{2} - 2 \, \cos\left({\eta}\right) - 2} \end{array}
Riem.apply_map(lambda x: x.subs({sin(et): sqrt(1 - cos(et)^2)}).factor()) Riem.display_comp(only_nonredundant=True)
Riem(g)ηχηχηχηχ=1cos(η)+1Riem(g)ηθηθηθηθ=sin(χ)2cos(η)+1Riem(g)ηφηφηφηφ=sin(χ)2sin(θ)2cos(η)+1Riem(g)χηηχχηηχ=1cos(η)+1Riem(g)χθχθχθχθ=2sin(χ)2cos(η)+1Riem(g)χφχφχφχφ=2sin(χ)2sin(θ)2cos(η)+1Riem(g)θηηθθηηθ=1cos(η)+1Riem(g)θχχθθχχθ=2cos(η)+1Riem(g)θφθφθφθφ=2sin(χ)2sin(θ)2cos(η)+1Riem(g)φηηφφηηφ=1cos(η)+1Riem(g)φχχφφχχφ=2cos(η)+1Riem(g)φθθφφθθφ=2sin(χ)2cos(η)+1\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} \mathrm{Riem}\left(g\right)_{ \phantom{\, {\eta}} \, {\chi} \, {\eta} \, {\chi} }^{ \, {\eta} \phantom{\, {\chi}} \phantom{\, {\eta}} \phantom{\, {\chi}} } & = & -\frac{1}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\eta}} \, {\theta} \, {\eta} \, {\theta} }^{ \, {\eta} \phantom{\, {\theta}} \phantom{\, {\eta}} \phantom{\, {\theta}} } & = & -\frac{\sin\left({\chi}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\eta}} \, {\varphi} \, {\eta} \, {\varphi} }^{ \, {\eta} \phantom{\, {\varphi}} \phantom{\, {\eta}} \phantom{\, {\varphi}} } & = & -\frac{\sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi}} \, {\eta} \, {\eta} \, {\chi} }^{ \, {\chi} \phantom{\, {\eta}} \phantom{\, {\eta}} \phantom{\, {\chi}} } & = & -\frac{1}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi}} \, {\theta} \, {\chi} \, {\theta} }^{ \, {\chi} \phantom{\, {\theta}} \phantom{\, {\chi}} \phantom{\, {\theta}} } & = & \frac{2 \, \sin\left({\chi}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi}} \, {\varphi} \, {\chi} \, {\varphi} }^{ \, {\chi} \phantom{\, {\varphi}} \phantom{\, {\chi}} \phantom{\, {\varphi}} } & = & \frac{2 \, \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta}} \, {\eta} \, {\eta} \, {\theta} }^{ \, {\theta} \phantom{\, {\eta}} \phantom{\, {\eta}} \phantom{\, {\theta}} } & = & -\frac{1}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta}} \, {\chi} \, {\chi} \, {\theta} }^{ \, {\theta} \phantom{\, {\chi}} \phantom{\, {\chi}} \phantom{\, {\theta}} } & = & -\frac{2}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta}} \, {\varphi} \, {\theta} \, {\varphi} }^{ \, {\theta} \phantom{\, {\varphi}} \phantom{\, {\theta}} \phantom{\, {\varphi}} } & = & \frac{2 \, \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2}}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\varphi}} \, {\eta} \, {\eta} \, {\varphi} }^{ \, {\varphi} \phantom{\, {\eta}} \phantom{\, {\eta}} \phantom{\, {\varphi}} } & = & -\frac{1}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\varphi}} \, {\chi} \, {\chi} \, {\varphi} }^{ \, {\varphi} \phantom{\, {\chi}} \phantom{\, {\chi}} \phantom{\, {\varphi}} } & = & -\frac{2}{\cos\left({\eta}\right) + 1} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\varphi}} \, {\theta} \, {\theta} \, {\varphi} }^{ \, {\varphi} \phantom{\, {\theta}} \phantom{\, {\theta}} \phantom{\, {\varphi}} } & = & -\frac{2 \, \sin\left({\chi}\right)^{2}}{\cos\left({\eta}\right) + 1} \end{array}

Kretschmann scalar

K = Riem.down(g)['_{abcd}'] * Riem.up(g)['^{abcd}'] K.display()
MR(η,χ,θ,φ)960(cos(η)+1)(a04cos(η)+7a04)sin(η)664a04cos(η)8(3a04cos(η)+7a04)sin(η)464a04+16(5a04cos(η)+7a04)sin(η)2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{llcl} & M & \longrightarrow & \mathbb{R} \\ & \left({\eta}, {\chi}, {\theta}, {\varphi}\right) & \longmapsto & -\frac{960 \, {\left(\cos\left({\eta}\right) + 1\right)}}{{\left(a_{0}^{4} \cos\left({\eta}\right) + 7 \, a_{0}^{4}\right)} \sin\left({\eta}\right)^{6} - 64 \, a_{0}^{4} \cos\left({\eta}\right) - 8 \, {\left(3 \, a_{0}^{4} \cos\left({\eta}\right) + 7 \, a_{0}^{4}\right)} \sin\left({\eta}\right)^{4} - 64 \, a_{0}^{4} + 16 \, {\left(5 \, a_{0}^{4} \cos\left({\eta}\right) + 7 \, a_{0}^{4}\right)} \sin\left({\eta}\right)^{2}} \end{array}
K = K.expr().factor() K
960(cos(η)+1)(cos(η)sin(η)6+7sin(η)624cos(η)sin(η)456sin(η)4+80cos(η)sin(η)2+112sin(η)264cos(η)64)a04\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{960 \, {\left(\cos\left({\eta}\right) + 1\right)}}{{\left(\cos\left({\eta}\right) \sin\left({\eta}\right)^{6} + 7 \, \sin\left({\eta}\right)^{6} - 24 \, \cos\left({\eta}\right) \sin\left({\eta}\right)^{4} - 56 \, \sin\left({\eta}\right)^{4} + 80 \, \cos\left({\eta}\right) \sin\left({\eta}\right)^{2} + 112 \, \sin\left({\eta}\right)^{2} - 64 \, \cos\left({\eta}\right) - 64\right)} a_{0}^{4}}
K = K.subs({sin(et): sqrt(1 - cos(et)^2)}).factor() K
960a04(cos(η)+1)6\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{960}{a_{0}^{4} {\left(\cos\left({\eta}\right) + 1\right)}^{6}}

Ricci squared

Ric2 = Ric['_{ab}'] * Ric.up(g)['^{ab}'] Ric2.display()
MR(η,χ,θ,φ)576a04sin(η)632a04cos(η)6(a04cos(η)+3a04)sin(η)432a04+16(2a04cos(η)+3a04)sin(η)2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{llcl} & M & \longrightarrow & \mathbb{R} \\ & \left({\eta}, {\chi}, {\theta}, {\varphi}\right) & \longmapsto & -\frac{576}{a_{0}^{4} \sin\left({\eta}\right)^{6} - 32 \, a_{0}^{4} \cos\left({\eta}\right) - 6 \, {\left(a_{0}^{4} \cos\left({\eta}\right) + 3 \, a_{0}^{4}\right)} \sin\left({\eta}\right)^{4} - 32 \, a_{0}^{4} + 16 \, {\left(2 \, a_{0}^{4} \cos\left({\eta}\right) + 3 \, a_{0}^{4}\right)} \sin\left({\eta}\right)^{2}} \end{array}
S = Ric2.expr().factor() S
576(sin(η)66cos(η)sin(η)418sin(η)4+32cos(η)sin(η)2+48sin(η)232cos(η)32)a04\renewcommand{\Bold}[1]{\mathbf{#1}}-\frac{576}{{\left(\sin\left({\eta}\right)^{6} - 6 \, \cos\left({\eta}\right) \sin\left({\eta}\right)^{4} - 18 \, \sin\left({\eta}\right)^{4} + 32 \, \cos\left({\eta}\right) \sin\left({\eta}\right)^{2} + 48 \, \sin\left({\eta}\right)^{2} - 32 \, \cos\left({\eta}\right) - 32\right)} a_{0}^{4}}
S = S.subs({sin(et): sqrt(1 - cos(et)^2)}) S.factor()
576a04(cos(η)+1)6\renewcommand{\Bold}[1]{\mathbf{#1}}\frac{576}{a_{0}^{4} {\left(\cos\left({\eta}\right) + 1\right)}^{6}}