Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download
Views: 6249
License: OTHER
Kernel: Python 3
from __future__ import division, print_function %matplotlib inline

Quantifying spinal cord regeneration in zebrafish

We want to quantify the amount of fluorescent cells in a wounded zebrafish embryo spinal column:

Zebrafish spinal cord

The key steps are:

  • estimating the position and width of the cord

  • estimating the average fluorescence along the length of the cord

from matplotlib import pyplot as plt, cm from skimage import io image = io.imread('images/zebrafish-spinal-cord.png')

SciPy to estimate coordinates

First, we get just the top and bottom rows of pixels, and use a 1D gaussian filter to smooth the signal.

from scipy import ndimage as nd top, bottom = image[[0, -1], :] fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, figsize=(8, 3)) top_smooth = nd.gaussian_filter1d(top, sigma=20) ax0.plot(top, color='blue', lw=2) ax0.plot(top_smooth, color='orange', lw=2) ax0.set_title('top') bottom_smooth = nd.gaussian_filter1d(bottom, sigma=20) ax1.plot(bottom, color='blue', lw=2) ax1.plot(bottom_smooth, color='orange', lw=2) ax1.set_title('bottom')
<matplotlib.text.Text at 0x1096a3090>
Image in a Jupyter notebook

With smooth curves, we can get the mode (the position of the center) and width of the signal.

top_mode = top_smooth.argmax() top_max = top_smooth[top_mode] top_width = (top_smooth > float(top_max) / 2).sum() bottom_mode = bottom_smooth.argmax() bottom_max = bottom_smooth[bottom_mode] bottom_width = (bottom_smooth > float(bottom_max) / 2).sum() width = max(bottom_width, top_width) print(top_mode, top_width, bottom_mode, bottom_width)
(421, 181, 739, 142)

scikit-image to trace the profile

Now, use measure.profile_line to trace from (0, top_mode) to (-1, bottom_mode).

from skimage import measure trace = measure.profile_line(image, (0, top_mode), (image.shape[0] - 1, bottom_mode), linewidth=width, mode='reflect')

Finally, plot the trace.

plt.plot(trace, color='black', lw=2) plt.xlabel('position along embryo') plt.ylabel('mean fluorescence intensity')
<matplotlib.text.Text at 0x10a9fa0d0>
Image in a Jupyter notebook

From this trace, we can compute various summary statistics (e.g. min/max, gap width, slope, etc), and plot these over time as the wound recovers.