Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download
Views: 1794
Image: ubuntu2004
1
<exercise>
2
<statement>
3
Let <m>T:\mathbb{R}^<xsl:value-of select="columns"/> \to \mathbb{R}^<xsl:value-of select="rows"/></m> be the linear transformation given by
4
<me>T\left( <xsl:value-of select="varvector"/> \right) = <xsl:value-of select="Tvar"/>.</me>
5
<ol>
6
<li>Explain how to find the image of <m>T</m> and the kernel of <m>T</m>.</li>
7
<li>Explain how to find a basis of the image of <m>T</m> and a basis of the kernel of <m>T</m>.</li>
8
<li>Explain how to find the rank and nullity of <m>T</m>, and why the rank-nullity theorem holds for <m>T</m>.</li>
9
</ol>
10
</statement>
11
<answer>
12
<p><me>\operatorname{RREF}<xsl:value-of select="matrix"/>=<xsl:value-of select="rref"/></me></p>
13
<ol>
14
<li>
15
<me>\operatorname{Im}\ T = \operatorname{span}\ <xsl:value-of select="imagebasis"/></me>
16
<me>\operatorname{ker}\ T = <xsl:value-of select="kernel"/></me>
17
</li>
18
<li>
19
A basis of <m>\operatorname{Im}\ T</m> is <m><xsl:value-of select="imagebasis"/></m>.
20
A basis of <m>\operatorname{ker}\ T</m> is <m><xsl:value-of select="kernelbasis"/></m>
21
</li>
22
<li>
23
The rank of <m>T</m> is <m><xsl:value-of select="rank"/></m>, the nullity of <m>T</m> is <m><xsl:value-of select="nullity"/></m>,
24
and the dimension of the domain of <m>T</m> is <m><xsl:value-of select="columns"/></m>. The rank-nullity theorem asserts that
25
<m><xsl:value-of select="rank"/>+<xsl:value-of select="nullity"/>=<xsl:value-of select="columns"/></m>, which we see to be true.
26
</li>
27
</ol>
28
</answer>
29
</exercise>
30