Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

Github repo cloud-examples: https://github.com/sagemath/cloud-examples

Views: 8060
License: MIT
%auto typeset_mode(True, display=False)

de Sitter spacetime

This worksheet demonstrates a few capabilities of SageManifolds (version 0.8) in computations regarding de Sitter spacetime.

It is released under the GNU General Public License version 3.

(c) Eric Gourgoulhon, Michal Bejger (2015)

The corresponding worksheet file can be downloaded from here


Spacetime manifold

We declare the de Sitter spacetime as a 4-dimensional differentiable manifold:

M = Manifold(4, 'M', r'\mathcal{M}') print M ; M
4-dimensional manifold 'M'
M\mathcal{M}

We consider hyperspherical coordinates (τ,χ,θ,ϕ)(\tau,\chi,\theta,\phi) on M\mathcal{M}. Allowing for the standard coordinate singularities at χ=0\chi=0, χ=π\chi=\pi, θ=0\theta=0 or θ=π\theta=\pi, these coordinates cover the entire spacetime manifold (which is topologically R×S3\mathbb{R}\times\mathbb{S}^3). If we restrict ourselves to regular coordinates (i.e. to consider only mathematically well defined charts), the hyperspherical coordinates cover only an open part of M\mathcal{M}, which we call M0\mathcal{M}_0, on which χ\chi spans the open interval (0,π)(0,\pi), θ\theta the open interval (0,π)(0,\pi) and ϕ\phi the open interval (0,2π)(0,2\pi). Therefore, we declare:

M0 = M.open_subset('M_0', r'\mathcal{M}_0') X_hyp.<ta,ch,th,ph> = M0.chart(r'ta:\tau ch:(0,pi):\chi th:(0,pi):\theta ph:(0,2*pi):\phi') print X_hyp ; X_hyp
chart (M_0, (ta, ch, th, ph))
(M0,(τ,χ,θ,ϕ))\left(\mathcal{M}_0,({\tau}, {\chi}, {\theta}, {\phi})\right)

R5\mathbb{R}^5 as an ambient space

The de Sitter metric can be defined as that induced by the embedding of M\mathcal{M} into a 5-dimensional Minkowski space, i.e. R5\mathbb{R}^5 equipped with a flat Lorentzian metric. We therefore introduce R5\mathbb{R}^5 as a 5-dimensional manifold covered by canonical coordinates:

R5 = Manifold(5, 'R5', r'\mathbb{R}^5') X5.<T,W,X,Y,Z> = R5.chart() print X5 ; X5
chart (R5, (T, W, X, Y, Z))
(R5,(T,W,X,Y,Z))\left(\mathbb{R}^5,(T, W, X, Y, Z)\right)

The embedding of M\mathcal{M} into R5\mathbb{R}^5 is defined as a differential mapping Φ\Phi from M\mathcal{M} to R5\mathbb{R}^5, by providing its expression in terms of M\mathcal{M}'s default chart (which is X_hyp = (M0,(τ,χ,θ,ϕ))(\mathcal{M}_0,(\tau,\chi,\theta,\phi)) ) and R5\mathbb{R}^5's default chart (which is X5 = (R5,(T,W,X,Y,Z))(\mathbb{R}^5,(T,W,X,Y,Z)) ):

var('b') Phi = M.diff_mapping(R5, [sinh(b*ta)/b, cosh(b*ta)/b * cos(ch), cosh(b*ta)/b * sin(ch)*sin(th)*cos(ph), cosh(b*ta)/b * sin(ch)*sin(th)*sin(ph), cosh(b*ta)/b * sin(ch)*cos(th)], name='Phi', latex_name=r'\Phi') print Phi ; Phi.display()
bb
differentiable mapping 'Phi' from the 4-dimensional manifold 'M' to the 5-dimensional manifold 'R5'
Φ:MR5on M0:(τ,χ,θ,ϕ)(T,W,X,Y,Z)=(sinh(bτ)b,cos(χ)cosh(bτ)b,cos(ϕ)cosh(bτ)sin(χ)sin(θ)b,cosh(bτ)sin(χ)sin(ϕ)sin(θ)b,cos(θ)cosh(bτ)sin(χ)b)\begin{array}{llcl} \Phi:& \mathcal{M} & \longrightarrow & \mathbb{R}^5 \\ \mbox{on}\ \mathcal{M}_0 : & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & \left(T, W, X, Y, Z\right) = \left(\frac{\sinh\left(b {\tau}\right)}{b}, \frac{\cos\left({\chi}\right) \cosh\left(b {\tau}\right)}{b}, \frac{\cos\left({\phi}\right) \cosh\left(b {\tau}\right) \sin\left({\chi}\right) \sin\left({\theta}\right)}{b}, \frac{\cosh\left(b {\tau}\right) \sin\left({\chi}\right) \sin\left({\phi}\right) \sin\left({\theta}\right)}{b}, \frac{\cos\left({\theta}\right) \cosh\left(b {\tau}\right) \sin\left({\chi}\right)}{b}\right) \end{array}

The constant bb is a scale parameter. Considering de Sitter metric as a solution of vacuum Einstein equation with positive cosmological constant Λ\Lambda, one has b=Λ/3b = \sqrt{\Lambda/3}

Let us evaluate the image of a point via the mapping Φ\Phi:

p = M.point((ta, ch, th, ph), name='p') ; print p
point 'p' on 4-dimensional manifold 'M'
p.coord()
(τ{\tau}, χ{\chi}, θ{\theta}, ϕ{\phi})
q = Phi(p) ; print q
point 'Phi(p)' on 5-dimensional manifold 'R5'
q.coord()
(sinh(bτ)b\frac{\sinh\left(b {\tau}\right)}{b}, cos(χ)cosh(bτ)b\frac{\cos\left({\chi}\right) \cosh\left(b {\tau}\right)}{b}, cos(ϕ)cosh(bτ)sin(χ)sin(θ)b\frac{\cos\left({\phi}\right) \cosh\left(b {\tau}\right) \sin\left({\chi}\right) \sin\left({\theta}\right)}{b}, cosh(bτ)sin(χ)sin(ϕ)sin(θ)b\frac{\cosh\left(b {\tau}\right) \sin\left({\chi}\right) \sin\left({\phi}\right) \sin\left({\theta}\right)}{b}, cos(θ)cosh(bτ)sin(χ)b\frac{\cos\left({\theta}\right) \cosh\left(b {\tau}\right) \sin\left({\chi}\right)}{b})

The image of M\mathcal{M} by Φ\Phi is a hyperboloid of one sheet, of equation T2+W2+X2+Y2+Z2=b2-T^2+W^2+X^2+Y^2+Z^2=b^{-2}. Indeed:

(Tq,Wq,Xq,Yq,Zq) = q.coord() s = -Tq^2 + Wq^2 + Xq^2 + Yq^2 + Zq^2 s.simplify_full()
1b2\frac{1}{b^{2}}

We may use the embedding Φ\Phi to draw the coordinate grid (τ,χ)(\tau,\chi) in terms of the coordinates (W,X,T)(W,X,T) for θ=π/2\theta=\pi/2 and ϕ=0\phi=0 (red) and θ=π/2\theta=\pi/2 and ϕ=π\phi=\pi (green) (the brown lines are the lines τ=const\tau={\rm const}):

graph1 = X_hyp.plot(X5, mapping=Phi, ambient_coords=(W,X,T), fixed_coords={th:pi/2, ph:0}, nb_values=9, color={ta:'red', ch:'brown'}, thickness=2, max_value=2, parameters={b:1}, label_axes=False) graph2 = X_hyp.plot(X5, mapping=Phi, ambient_coords=(W,X,T), fixed_coords={th:pi/2, ph:pi}, nb_values=9, color={ta:'green', ch:'brown'}, thickness=2, max_value=2, parameters={b:1}, label_axes=False) show(set_axes_labels(graph1+graph2,'W','X','T'), aspect_ratio=1)
3D rendering not yet implemented

Spacetime metric

First, we introduce on R5\mathbb{R}^5 the Minkowski metric hh:

h = R5.lorentz_metric('h') h[0,0], h[1,1], h[2,2], h[3,3], h[4,4] = -1, 1, 1, 1, 1 h.display()
h=dTdT+dWdW+dXdX+dYdY+dZdZh = -\mathrm{d} T\otimes \mathrm{d} T+\mathrm{d} W\otimes \mathrm{d} W+\mathrm{d} X\otimes \mathrm{d} X+\mathrm{d} Y\otimes \mathrm{d} Y+\mathrm{d} Z\otimes \mathrm{d} Z

As mentioned above, the de Sitter metric gg on M\mathcal{M} is that induced by hh, i.e.gg is the pullback of hh by the mapping Φ\Phi:

g = M.metric('g') g.set( Phi.pullback(h) )

The expression of gg in terms of M\mathcal{M}'s default frame is found to be

g.display()
g=dτdτ+cosh(bτ)2b2dχdχ+cosh(bτ)2sin(χ)2b2dθdθ+cosh(bτ)2sin(χ)2sin(θ)2b2dϕdϕg = -\mathrm{d} {\tau}\otimes \mathrm{d} {\tau} + \frac{\cosh\left(b {\tau}\right)^{2}}{b^{2}} \mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + \frac{\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2}}{b^{2}} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2}}{b^{2}} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}
g[:]
(10000cosh(bτ)2b20000cosh(bτ)2sin(χ)2b20000cosh(bτ)2sin(χ)2sin(θ)2b2)\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & \frac{\cosh\left(b {\tau}\right)^{2}}{b^{2}} & 0 & 0 \\ 0 & 0 & \frac{\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2}}{b^{2}} & 0 \\ 0 & 0 & 0 & \frac{\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2}}{b^{2}} \end{array}\right)

Curvature

The Riemann tensor of gg is

Riem = g.riemann() print Riem Riem.display()
tensor field 'Riem(g)' of type (1,3) on the 4-dimensional manifold 'M'
Riem(g)=cosh(bτ)2τdχdτdχcosh(bτ)2τdχdχdτ+cosh(bτ)2sin(χ)2τdθdτdθcosh(bτ)2sin(χ)2τdθdθdτ+cosh(bτ)2sin(χ)2sin(θ)2τdϕdτdϕcosh(bτ)2sin(χ)2sin(θ)2τdϕdϕdτ+b2χdτdτdχb2χdτdχdτ+cosh(bτ)2sin(χ)2χdθdχdθcosh(bτ)2sin(χ)2χdθdθdχ+cosh(bτ)2sin(χ)2sin(θ)2χdϕdχdϕcosh(bτ)2sin(χ)2sin(θ)2χdϕdϕdχ+b2θdτdτdθb2θdτdθdτ+(sin(χ)2sinh(bτ)2cos(χ)2+1sin(χ)2)θdχdχdθ+cosh(bτ)2θdχdθdχ+cosh(bτ)2sin(χ)2sin(θ)2θdϕdθdϕcosh(bτ)2sin(χ)2sin(θ)2θdϕdϕdθ+b2ϕdτdτdϕb2ϕdτdϕdτ+(sin(χ)2sinh(bτ)2cos(χ)2+1sin(χ)2)ϕdχdχdϕ+cosh(bτ)2ϕdχdϕdχcosh(bτ)2sin(χ)2ϕdθdθdϕ+cosh(bτ)2sin(χ)2ϕdθdϕdθ\mathrm{Riem}\left(g\right) = \cosh\left(b {\tau}\right)^{2} \frac{\partial}{\partial {\tau} }\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\chi} -\cosh\left(b {\tau}\right)^{2} \frac{\partial}{\partial {\tau} }\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\tau} + \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \frac{\partial}{\partial {\tau} }\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\theta} -\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \frac{\partial}{\partial {\tau} }\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\tau} + \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \frac{\partial}{\partial {\tau} }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\phi} -\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \frac{\partial}{\partial {\tau} }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\tau} + b^{2} \frac{\partial}{\partial {\chi} }\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\chi} -b^{2} \frac{\partial}{\partial {\chi} }\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\tau} + \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \frac{\partial}{\partial {\chi} }\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\theta} -\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \frac{\partial}{\partial {\chi} }\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\chi} + \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \frac{\partial}{\partial {\chi} }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\phi} -\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \frac{\partial}{\partial {\chi} }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\chi} + b^{2} \frac{\partial}{\partial {\theta} }\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\theta} -b^{2} \frac{\partial}{\partial {\theta} }\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\tau} + \left( -\frac{\sin\left({\chi}\right)^{2} \sinh\left(b {\tau}\right)^{2} - \cos\left({\chi}\right)^{2} + 1}{\sin\left({\chi}\right)^{2}} \right) \frac{\partial}{\partial {\theta} }\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\theta} + \cosh\left(b {\tau}\right)^{2} \frac{\partial}{\partial {\theta} }\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\chi} + \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \frac{\partial}{\partial {\theta} }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\phi} -\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \frac{\partial}{\partial {\theta} }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\theta} + b^{2} \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\phi} -b^{2} \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} {\tau}\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\tau} + \left( -\frac{\sin\left({\chi}\right)^{2} \sinh\left(b {\tau}\right)^{2} - \cos\left({\chi}\right)^{2} + 1}{\sin\left({\chi}\right)^{2}} \right) \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\phi} + \cosh\left(b {\tau}\right)^{2} \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} {\chi}\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\chi} -\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\phi} + \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} {\theta}\otimes \mathrm{d} {\phi}\otimes \mathrm{d} {\theta}
Riem.display_comp(only_nonredundant=True)
Riem(g)τχτχτχτχ=cosh(bτ)2Riem(g)τθτθτθτθ=cosh(bτ)2sin(χ)2Riem(g)τϕτϕτϕτϕ=cosh(bτ)2sin(χ)2sin(θ)2Riem(g)χττχχττχ=b2Riem(g)χθχθχθχθ=cosh(bτ)2sin(χ)2Riem(g)χϕχϕχϕχϕ=cosh(bτ)2sin(χ)2sin(θ)2Riem(g)θττθθττθ=b2Riem(g)θχχθθχχθ=sin(χ)2sinh(bτ)2cos(χ)2+1sin(χ)2Riem(g)θϕθϕθϕθϕ=cosh(bτ)2sin(χ)2sin(θ)2Riem(g)ϕττϕϕττϕ=b2Riem(g)ϕχχϕϕχχϕ=sin(χ)2sinh(bτ)2cos(χ)2+1sin(χ)2Riem(g)ϕθθϕϕθθϕ=cosh(bτ)2sin(χ)2\begin{array}{lcl} \mathrm{Riem}\left(g\right)_{ \phantom{\, {\tau} } \, {\chi} \, {\tau} \, {\chi} }^{ \, {\tau} \phantom{\, {\chi} } \phantom{\, {\tau} } \phantom{\, {\chi} } } & = & \cosh\left(b {\tau}\right)^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\tau} } \, {\theta} \, {\tau} \, {\theta} }^{ \, {\tau} \phantom{\, {\theta} } \phantom{\, {\tau} } \phantom{\, {\theta} } } & = & \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\tau} } \, {\phi} \, {\tau} \, {\phi} }^{ \, {\tau} \phantom{\, {\phi} } \phantom{\, {\tau} } \phantom{\, {\phi} } } & = & \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi} } \, {\tau} \, {\tau} \, {\chi} }^{ \, {\chi} \phantom{\, {\tau} } \phantom{\, {\tau} } \phantom{\, {\chi} } } & = & b^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi} } \, {\theta} \, {\chi} \, {\theta} }^{ \, {\chi} \phantom{\, {\theta} } \phantom{\, {\chi} } \phantom{\, {\theta} } } & = & \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\chi} } \, {\phi} \, {\chi} \, {\phi} }^{ \, {\chi} \phantom{\, {\phi} } \phantom{\, {\chi} } \phantom{\, {\phi} } } & = & \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta} } \, {\tau} \, {\tau} \, {\theta} }^{ \, {\theta} \phantom{\, {\tau} } \phantom{\, {\tau} } \phantom{\, {\theta} } } & = & b^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta} } \, {\chi} \, {\chi} \, {\theta} }^{ \, {\theta} \phantom{\, {\chi} } \phantom{\, {\chi} } \phantom{\, {\theta} } } & = & -\frac{\sin\left({\chi}\right)^{2} \sinh\left(b {\tau}\right)^{2} - \cos\left({\chi}\right)^{2} + 1}{\sin\left({\chi}\right)^{2}} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\theta} } \, {\phi} \, {\theta} \, {\phi} }^{ \, {\theta} \phantom{\, {\phi} } \phantom{\, {\theta} } \phantom{\, {\phi} } } & = & \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\phi} } \, {\tau} \, {\tau} \, {\phi} }^{ \, {\phi} \phantom{\, {\tau} } \phantom{\, {\tau} } \phantom{\, {\phi} } } & = & b^{2} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\phi} } \, {\chi} \, {\chi} \, {\phi} }^{ \, {\phi} \phantom{\, {\chi} } \phantom{\, {\chi} } \phantom{\, {\phi} } } & = & -\frac{\sin\left({\chi}\right)^{2} \sinh\left(b {\tau}\right)^{2} - \cos\left({\chi}\right)^{2} + 1}{\sin\left({\chi}\right)^{2}} \\ \mathrm{Riem}\left(g\right)_{ \phantom{\, {\phi} } \, {\theta} \, {\theta} \, {\phi} }^{ \, {\phi} \phantom{\, {\theta} } \phantom{\, {\theta} } \phantom{\, {\phi} } } & = & -\cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \end{array}

The Ricci tensor:

Ric = g.ricci() print Ric Ric.display()
field of symmetric bilinear forms 'Ric(g)' on the 4-dimensional manifold 'M'
Ric(g)=3b2dτdτ+3cosh(bτ)2dχdχ+3cosh(bτ)2sin(χ)2dθdθ+3cosh(bτ)2sin(χ)2sin(θ)2dϕdϕ\mathrm{Ric}\left(g\right) = -3 \, b^{2} \mathrm{d} {\tau}\otimes \mathrm{d} {\tau} + 3 \, \cosh\left(b {\tau}\right)^{2} \mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + 3 \, \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + 3 \, \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}
Ric[:]
(3b200003cosh(bτ)200003cosh(bτ)2sin(χ)200003cosh(bτ)2sin(χ)2sin(θ)2)\left(\begin{array}{rrrr} -3 \, b^{2} & 0 & 0 & 0 \\ 0 & 3 \, \cosh\left(b {\tau}\right)^{2} & 0 & 0 \\ 0 & 0 & 3 \, \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} & 0 \\ 0 & 0 & 0 & 3 \, \cosh\left(b {\tau}\right)^{2} \sin\left({\chi}\right)^{2} \sin\left({\theta}\right)^{2} \end{array}\right)

The Ricci scalar:

R = g.ricci_scalar() print R R.display()
scalar field 'r(g)' on the 4-dimensional manifold 'M'
r(g):MRon M0:(τ,χ,θ,ϕ)12b2\begin{array}{llcl} \mathrm{r}\left(g\right):& \mathcal{M} & \longrightarrow & \mathbb{R} \\ \mbox{on}\ \mathcal{M}_0 : & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & 12 \, b^{2} \end{array}

We recover the fact that de Sitter spacetime has a constant curvature. It is indeed a maximally symmetric space. In particular, the Riemann tensor is expressible as

R jlki=Rn(n1)(δ kigjlδ ligjk) R^i_{\ \, jlk} = \frac{R}{n(n-1)} \left( \delta^i_{\ \, k} g_{jl} - \delta^i_{\ \, l} g_{jk} \right)

where nn is the dimension of M\mathcal{M}: n=4n=4 in the present case. Let us check this formula here, under the form R jlki=R6gj[kδ l]iR^i_{\ \, jlk} = -\frac{R}{6} g_{j[k} \delta^i_{\ \, l]}:

delta = M.tangent_identity_field() Riem == - (R/6)*(g*delta).antisymmetrize(2,3) # 2,3 = last positions of the type-(1,3) tensor g*delta
True\mathrm{True}

We may also check that de Sitter metric is a solution of the vacuum Einstein equation with (positive) cosmological constant:

Lambda = 3*b^2 Ric - 1/2*R*g + Lambda*g == 0
True\mathrm{True}