Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

Github repo cloud-examples: https://github.com/sagemath/cloud-examples

Views: 8060
License: MIT
%auto typeset_mode(True, display=False)

3+1 Einstein equations in the δ=2\delta=2 Tomimatsu-Sato spacetime

This worksheet is based on SageManifolds (version 0.7) and regards the 3+1 slicing of the δ=2\delta=2 Tomimatsu-Sato spacetime.

It is released under the GNU General Public License version 2.

(c) Claire Somé, Eric Gourgoulhon (2015)

The worksheet file in Sage notebook format is here.

Tomimatsu-Sato spacetime

The Tomimatsu-Sato solution is an exact stationary and axisymmetric  solution of the vaccum Einstein equation, which is asymptotically flat and has a non-zero angular momentum. It has been found in 1972 by A. Tomimatsu and H. Sato [Phys. Rev. Lett. 29, 1344 (1972)], as a solution of the Ernst equation. It is actually the member δ=2\delta=2 of a larger family of solutions parametrized by a positive integer δ\delta and exhibited by Tomimatsu and Sato in 1973 [Prog. Theor. Phys. 50, 95 (1973)], the member δ=1\delta=1 being nothing but the Kerr metric. We refer to [Manko, Prog. Theor. Phys. 127, 1057 (2012)] for a discussion of the properties of this solution. 

Spacelike hypersurface

We consider some hypersurface Σ\Sigma of a spacelike foliation (Σt)tR(\Sigma_t)_{t\in\mathbb{R}} of δ=2\delta=2 Tomimatsu-Sato spacetime; we declare Σt\Sigma_t as a 3-dimensional manifold:

Sig = Manifold(3, 'Sigma', r'\Sigma', start_index=1)

On Σ\Sigma, we consider the prolate spheroidal coordinates (x,y,ϕ)(x,y,\phi), with x(1,+)x\in(1,+\infty), y(1,1)y\in(-1,1) and ϕ(0,2π)\phi\in(0,2\pi) :

X.<r,y,ph> = Sig.chart(r'x:(1,+oo) y:(-1,1) ph:(0,2*pi):\phi') print X ; X
chart (Sigma, (x, y, ph))
(Σ,(x,y,ϕ))\left(\Sigma,(x, y, {\phi})\right)

Riemannian metric on Σ\Sigma

The Tomimatsu-Sato metric depens on three parameters: the integer δ\delta, the real number p[0,1]p\in[0,1], and the total mass mm:

var('d, p, m') assume(m>0) assumptions()
(dd, pp, mm)
[x is real\text{\texttt{x{ }is{ }real}}, x>1x > 1, y is real\text{\texttt{y{ }is{ }real}}, y>(1)y > \left(-1\right), y<1y < 1, ph is real\text{\texttt{ph{ }is{ }real}}, ϕ>0{\phi} > 0, ϕ<2π{\phi} < 2 \, \pi, m>0m > 0]

We set δ=2\delta=2 and choose a specific value for p=1/5p=1/5:

d = 2 p = 1/5

Furthermore, without any loss of generality, we may set m=1m=1 (this simply fixes some length scale):

m = 1

The parameter qq is related to pp by p2+q2=1p^2+q^2=1:

q = sqrt(1-p^2)

Some shortcut notations:

AA2 = (p^2*(x^2-1)^2+q^2*(1-y^2)^2)^2-4*p^2*q^2*(x^2-1)*(1-y^2)*(x^2-y^2)^2 BB2 = (p^2*x^4+2*p*x^3-2*p*x+q^2*y^4-1)^2+4*q^2*y^2*(p*x^3-p*x*y^2-y^2+1)^2 CC2 = p^3*x*(1-x^2)*(2*(x^4-1)+(x^2+3)*(1-y^2))+p^2*(x^2-1)*((x^2-1)*(1-y^2)-4*x^2*(x^2-y^2))+q^2*(1-y^2)^3*(p*x+1)

The Riemannian metric γ\gamma induced by the spacetime metric gg on Σ\Sigma:

gam = Sig.riemann_metric('gam', latex_name=r'\gamma') gam[1,1] = m^2*BB2/(p^2*d^2*(x^2-1)*(x^2-y^2)^3) gam[2,2] = m^2*BB2/(p^2*d^2*(y^2-1)*(-x^2+y^2)^3) gam[3,3] = - m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2) gam.display()
γ=(x8+576y8+20x7+96(x2+10x+25)y6+100x620x548(3x4+10x3+30x+125)y4250x4500x3+96(x6+10x3+25)y2+100x2+500x+625100(x8(x21)y6x6+3(x4x2)y43(x6x4)y2))dxdx+(x8+576y8+20x7+96(x2+10x+25)y6+100x620x548(3x4+10x3+30x+125)y4250x4500x3+96(x6+10x3+25)y2+100x2+500x+625100(y8(3x2+1)y6+x6+3(x4+x2)y4(x6+3x4)y2))dydy+(576(x21)y10x1040x9+96(x4+20x3+168x2+980x+2431)y8699x87920x748(3x6+20x5x4+80x3+1273x2+7900x+19525)y639450x6+960x5+48(2x8+x6+60x53x4+1675x2+11940x+29525)y4+39450x4+6000x3+(x10+40x9+603x8+7920x7+39546x62880x539450x44080x345675x2385000x953425)y2+9675x2+97000x+240625100(x8+576y8+20x7+96(x2+10x+25)y6+100x620x548(3x4+10x3+30x+125)y4250x4500x3+96(x6+10x3+25)y2+100x2+500x+625))dϕdϕ\gamma = \left( \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(x^{8} - {\left(x^{2} - 1\right)} y^{6} - x^{6} + 3 \, {\left(x^{4} - x^{2}\right)} y^{4} - 3 \, {\left(x^{6} - x^{4}\right)} y^{2}\right)}} \right) \mathrm{d} x\otimes \mathrm{d} x + \left( \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(y^{8} - {\left(3 \, x^{2} + 1\right)} y^{6} + x^{6} + 3 \, {\left(x^{4} + x^{2}\right)} y^{4} - {\left(x^{6} + 3 \, x^{4}\right)} y^{2}\right)}} \right) \mathrm{d} y\otimes \mathrm{d} y + \left( -\frac{576 \, {\left(x^{2} - 1\right)} y^{10} - x^{10} - 40 \, x^{9} + 96 \, {\left(x^{4} + 20 \, x^{3} + 168 \, x^{2} + 980 \, x + 2431\right)} y^{8} - 699 \, x^{8} - 7920 \, x^{7} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - x^{4} + 80 \, x^{3} + 1273 \, x^{2} + 7900 \, x + 19525\right)} y^{6} - 39450 \, x^{6} + 960 \, x^{5} + 48 \, {\left(2 \, x^{8} + x^{6} + 60 \, x^{5} - 3 \, x^{4} + 1675 \, x^{2} + 11940 \, x + 29525\right)} y^{4} + 39450 \, x^{4} + 6000 \, x^{3} + {\left(x^{10} + 40 \, x^{9} + 603 \, x^{8} + 7920 \, x^{7} + 39546 \, x^{6} - 2880 \, x^{5} - 39450 \, x^{4} - 4080 \, x^{3} - 45675 \, x^{2} - 385000 \, x - 953425\right)} y^{2} + 9675 \, x^{2} + 97000 \, x + 240625}{100 \, {\left(x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625\right)}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

A matrix view of the components w.r.t. coordinates (x,y,ϕ)(x,y,\phi):

gam[:]
(x8+576y8+20x7+96(x2+10x+25)y6+100x620x548(3x4+10x3+30x+125)y4250x4500x3+96(x6+10x3+25)y2+100x2+500x+625100(x8(x21)y6x6+3(x4x2)y43(x6x4)y2)000x8+576y8+20x7+96(x2+10x+25)y6+100x620x548(3x4+10x3+30x+125)y4250x4500x3+96(x6+10x3+25)y2+100x2+500x+625100(y8(3x2+1)y6+x6+3(x4+x2)y4(x6+3x4)y2)000576(x21)y10x1040x9+96(x4+20x3+168x2+980x+2431)y8699x87920x748(3x6+20x5x4+80x3+1273x2+7900x+19525)y639450x6+960x5+48(2x8+x6+60x53x4+1675x2+11940x+29525)y4+39450x4+6000x3+(x10+40x9+603x8+7920x7+39546x62880x539450x44080x345675x2385000x953425)y2+9675x2+97000x+240625100(x8+576y8+20x7+96(x2+10x+25)y6+100x620x548(3x4+10x3+30x+125)y4250x4500x3+96(x6+10x3+25)y2+100x2+500x+625))\left(\begin{array}{rrr} \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(x^{8} - {\left(x^{2} - 1\right)} y^{6} - x^{6} + 3 \, {\left(x^{4} - x^{2}\right)} y^{4} - 3 \, {\left(x^{6} - x^{4}\right)} y^{2}\right)}} & 0 & 0 \\ 0 & \frac{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625}{100 \, {\left(y^{8} - {\left(3 \, x^{2} + 1\right)} y^{6} + x^{6} + 3 \, {\left(x^{4} + x^{2}\right)} y^{4} - {\left(x^{6} + 3 \, x^{4}\right)} y^{2}\right)}} & 0 \\ 0 & 0 & -\frac{576 \, {\left(x^{2} - 1\right)} y^{10} - x^{10} - 40 \, x^{9} + 96 \, {\left(x^{4} + 20 \, x^{3} + 168 \, x^{2} + 980 \, x + 2431\right)} y^{8} - 699 \, x^{8} - 7920 \, x^{7} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - x^{4} + 80 \, x^{3} + 1273 \, x^{2} + 7900 \, x + 19525\right)} y^{6} - 39450 \, x^{6} + 960 \, x^{5} + 48 \, {\left(2 \, x^{8} + x^{6} + 60 \, x^{5} - 3 \, x^{4} + 1675 \, x^{2} + 11940 \, x + 29525\right)} y^{4} + 39450 \, x^{4} + 6000 \, x^{3} + {\left(x^{10} + 40 \, x^{9} + 603 \, x^{8} + 7920 \, x^{7} + 39546 \, x^{6} - 2880 \, x^{5} - 39450 \, x^{4} - 4080 \, x^{3} - 45675 \, x^{2} - 385000 \, x - 953425\right)} y^{2} + 9675 \, x^{2} + 97000 \, x + 240625}{100 \, {\left(x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625\right)}} \end{array}\right)

Lapse function and shift vector

N2 = AA2/BB2 - 2*m*q*CC2*(y^2-1)/BB2*(2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2)))) N2.simplify_full()
x10+20x9+576(x21)y8+99x840x7+96(x4+10x3+24x210x25)y6350x6480x548(3x6+10x53x4+20x3+125x230x125)y4+350x4+1000x3+96(x8x6+10x510x3+25x225)y2+525x2500x625x10+40x9+576(x21)y8+699x8+7920x7+96(x4+20x3+174x2+980x+2425)y6+39450x6960x548(3x6+20x53x4+40x3+925x2+5940x+14675)y439450x46000x3+96(x8x6+20x520x3+375x2+3000x+7425)y29675x297000x240625\frac{x^{10} + 20 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 99 \, x^{8} - 40 \, x^{7} + 96 \, {\left(x^{4} + 10 \, x^{3} + 24 \, x^{2} - 10 \, x - 25\right)} y^{6} - 350 \, x^{6} - 480 \, x^{5} - 48 \, {\left(3 \, x^{6} + 10 \, x^{5} - 3 \, x^{4} + 20 \, x^{3} + 125 \, x^{2} - 30 \, x - 125\right)} y^{4} + 350 \, x^{4} + 1000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 10 \, x^{5} - 10 \, x^{3} + 25 \, x^{2} - 25\right)} y^{2} + 525 \, x^{2} - 500 \, x - 625}{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625}
N = Sig.scalar_field(sqrt(N2.simplify_full()), name='N') print N N.display()
scalar field 'N' on the 3-dimensional manifold 'Sigma'
N:ΣR(x,y,ϕ)x10+20x9+576(x21)y8+99x840x7+96(x4+10x3+24x210x25)y6350x6480x548(3x6+10x53x4+20x3+125x230x125)y4+350x4+1000x3+96(x8x6+10x510x3+25x225)y2+525x2500x625x10+40x9+576(x21)y8+699x8+7920x7+96(x4+20x3+174x2+980x+2425)y6+39450x6960x548(3x6+20x53x4+40x3+925x2+5940x+14675)y439450x46000x3+96(x8x6+20x520x3+375x2+3000x+7425)y29675x297000x240625\begin{array}{llcl} N:& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(x, y, {\phi}\right) & \longmapsto & \sqrt{\frac{x^{10} + 20 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 99 \, x^{8} - 40 \, x^{7} + 96 \, {\left(x^{4} + 10 \, x^{3} + 24 \, x^{2} - 10 \, x - 25\right)} y^{6} - 350 \, x^{6} - 480 \, x^{5} - 48 \, {\left(3 \, x^{6} + 10 \, x^{5} - 3 \, x^{4} + 20 \, x^{3} + 125 \, x^{2} - 30 \, x - 125\right)} y^{4} + 350 \, x^{4} + 1000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 10 \, x^{5} - 10 \, x^{3} + 25 \, x^{2} - 25\right)} y^{2} + 525 \, x^{2} - 500 \, x - 625}{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625}} \end{array}
b3 = 2*m*q*CC2*(y^2-1)/(BB2*(m^2*(y^2-1)*(p^2*BB2^2*(x^2-1)+4*q^2*d^2*CC2^2*(y^2-1))/(AA2*BB2*d^2))) b = Sig.vector_field('beta', latex_name=r'\beta') b[3] = b3.simplify_full() # unset components are zero b.display()
β=(400(232x7+2032x6+24(32x+532)y632x52532x472(32x+532)y4+1032x2(32x5+1532x4+232x31032x27532x36532)y22532x12532)x10+40x9+576(x21)y8+699x8+7920x7+96(x4+20x3+174x2+980x+2425)y6+39450x6960x548(3x6+20x53x4+40x3+925x2+5940x+14675)y439450x46000x3+96(x8x6+20x520x3+375x2+3000x+7425)y29675x297000x240625)ϕ\beta = \left( -\frac{400 \, {\left(2 \, \sqrt{3} \sqrt{2} x^{7} + 20 \, \sqrt{3} \sqrt{2} x^{6} + 24 \, {\left(\sqrt{3} \sqrt{2} x + 5 \, \sqrt{3} \sqrt{2}\right)} y^{6} - \sqrt{3} \sqrt{2} x^{5} - 25 \, \sqrt{3} \sqrt{2} x^{4} - 72 \, {\left(\sqrt{3} \sqrt{2} x + 5 \, \sqrt{3} \sqrt{2}\right)} y^{4} + 10 \, \sqrt{3} \sqrt{2} x^{2} - {\left(\sqrt{3} \sqrt{2} x^{5} + 15 \, \sqrt{3} \sqrt{2} x^{4} + 2 \, \sqrt{3} \sqrt{2} x^{3} - 10 \, \sqrt{3} \sqrt{2} x^{2} - 75 \, \sqrt{3} \sqrt{2} x - 365 \, \sqrt{3} \sqrt{2}\right)} y^{2} - 25 \, \sqrt{3} \sqrt{2} x - 125 \, \sqrt{3} \sqrt{2}\right)}}{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625} \right) \frac{\partial}{\partial {\phi} }

Extrinsic curvature of Σ\Sigma

We use the formula Kij=12NLβγij, K_{ij} = \frac{1}{2N} \mathcal{L}_{\beta} \gamma_{ij}, which is valid for any stationary spacetime:

K = gam.lie_der(b) / (2*N) K.set_name('K') print K
field of symmetric bilinear forms 'K' on the 3-dimensional manifold 'Sigma'

The component K13=KxϕK_{13} = K_{x\phi}:

K[1,3]
2(632x1613824(32x2+1032x+32)y16+24032x15+379332x146912(32x4+2032x3+15032x2+50032x+81732)y14+2765032x13+7240332x12+576(2732x6+31032x5+103332x4+106032x3+1049332x2+4487032x+6950332)y128182032x1137497532x1096(10932x8+52032x7+150432x6+1936032x5+9277032x4+15796032x3+14826432x2+73192032x+125642532)y1031381032x9+66997532x8+24(932x10+25032x9+687332x8+4092032x7+6340232x6+14622032x5+104742632x4+224940032x3+87652532x2+430881032x+840192532)y8+161700032x7+99967532x6+96(2032x1117932x105032x9289732x82840032x75744632x6902032x523765032x473106032x326717532x2103725032x211132532)y6227725032x5497937532x4(18732x14+359032x13520732x127354032x1145463732x10115015032x9+19940132x8105900032x7781117532x6+289961032x5+167507532x43283450032x32468157532x26968425032x12282312532)y4403750032x3+346187532x26(32x16+4032x15+60132x14+401032x13+1293532x12106032x11+1044932x10+13959032x9+5782532x8+14696032x7+78147532x670225032x5210807532x434850032x3+238187532x2+545625032x+694125032)y2+723125032x+610937532)x10+40x9+576(x21)y8+699x8+7920x7+96(x4+20x3+174x2+980x+2425)y6+39450x6960x548(3x6+20x53x4+40x3+925x2+5940x+14675)y439450x46000x3+96(x8x6+20x520x3+375x2+3000x+7425)y29675x297000x240625(x18+60x17+331776(x21)y16+1599x16+25880x15+110592(x4+15x3+99x2+485x+1200)y14+266700x14+1555560x139216(17x6+60x5417x43040x313425x231020x16975)y12+3533300x124005000x11+9216(9x860x7509x62430x59525x424260x371775x2227250x290600)y1017787450x1018420000x9+5760(7x10+90x9+473x8+2460x7+10050x6+15200x5+53790x4+120900x3+198455x2+741350x+1103625)y8+15656250x8+31485000x7192(143x12+675x111043x107575x952650x8224850x7156150x6+1001250x5+3726075x4+6217375x3+4145625x2+19413125x+33330000)y6+3527500x6+12975000x5+96(93x14105x131693x1213470x1199575x10222675x9149025x81024500x72270025x6+2366625x5+9545625x4+11931250x3+451875x2+11346875x+28273125)y4+80032500x4+102025000x3+192(x16+30x15+399x14+3955x13+19950x12+3765x11+19850x10+197000x9+47025x8+77000x7+646875x6598125x52642500x42896875x3+1117500x2+1581250x687500)y278609375x2180937500x150390625)x8+576y8+20x7+96(x2+10x+25)y6+100x620x548(3x4+10x3+30x+125)y4250x4500x3+96(x6+10x3+25)y2+100x2+500x+625x+1x1\frac{2 \, {\left(6 \, \sqrt{3} \sqrt{2} x^{16} - 13824 \, {\left(\sqrt{3} \sqrt{2} x^{2} + 10 \, \sqrt{3} \sqrt{2} x + \sqrt{3} \sqrt{2}\right)} y^{16} + 240 \, \sqrt{3} \sqrt{2} x^{15} + 3793 \, \sqrt{3} \sqrt{2} x^{14} - 6912 \, {\left(\sqrt{3} \sqrt{2} x^{4} + 20 \, \sqrt{3} \sqrt{2} x^{3} + 150 \, \sqrt{3} \sqrt{2} x^{2} + 500 \, \sqrt{3} \sqrt{2} x + 817 \, \sqrt{3} \sqrt{2}\right)} y^{14} + 27650 \, \sqrt{3} \sqrt{2} x^{13} + 72403 \, \sqrt{3} \sqrt{2} x^{12} + 576 \, {\left(27 \, \sqrt{3} \sqrt{2} x^{6} + 310 \, \sqrt{3} \sqrt{2} x^{5} + 1033 \, \sqrt{3} \sqrt{2} x^{4} + 1060 \, \sqrt{3} \sqrt{2} x^{3} + 10493 \, \sqrt{3} \sqrt{2} x^{2} + 44870 \, \sqrt{3} \sqrt{2} x + 69503 \, \sqrt{3} \sqrt{2}\right)} y^{12} - 81820 \, \sqrt{3} \sqrt{2} x^{11} - 374975 \, \sqrt{3} \sqrt{2} x^{10} - 96 \, {\left(109 \, \sqrt{3} \sqrt{2} x^{8} + 520 \, \sqrt{3} \sqrt{2} x^{7} + 1504 \, \sqrt{3} \sqrt{2} x^{6} + 19360 \, \sqrt{3} \sqrt{2} x^{5} + 92770 \, \sqrt{3} \sqrt{2} x^{4} + 157960 \, \sqrt{3} \sqrt{2} x^{3} + 148264 \, \sqrt{3} \sqrt{2} x^{2} + 731920 \, \sqrt{3} \sqrt{2} x + 1256425 \, \sqrt{3} \sqrt{2}\right)} y^{10} - 313810 \, \sqrt{3} \sqrt{2} x^{9} + 669975 \, \sqrt{3} \sqrt{2} x^{8} + 24 \, {\left(9 \, \sqrt{3} \sqrt{2} x^{10} + 250 \, \sqrt{3} \sqrt{2} x^{9} + 6873 \, \sqrt{3} \sqrt{2} x^{8} + 40920 \, \sqrt{3} \sqrt{2} x^{7} + 63402 \, \sqrt{3} \sqrt{2} x^{6} + 146220 \, \sqrt{3} \sqrt{2} x^{5} + 1047426 \, \sqrt{3} \sqrt{2} x^{4} + 2249400 \, \sqrt{3} \sqrt{2} x^{3} + 876525 \, \sqrt{3} \sqrt{2} x^{2} + 4308810 \, \sqrt{3} \sqrt{2} x + 8401925 \, \sqrt{3} \sqrt{2}\right)} y^{8} + 1617000 \, \sqrt{3} \sqrt{2} x^{7} + 999675 \, \sqrt{3} \sqrt{2} x^{6} + 96 \, {\left(20 \, \sqrt{3} \sqrt{2} x^{11} - 179 \, \sqrt{3} \sqrt{2} x^{10} - 50 \, \sqrt{3} \sqrt{2} x^{9} - 2897 \, \sqrt{3} \sqrt{2} x^{8} - 28400 \, \sqrt{3} \sqrt{2} x^{7} - 57446 \, \sqrt{3} \sqrt{2} x^{6} - 9020 \, \sqrt{3} \sqrt{2} x^{5} - 237650 \, \sqrt{3} \sqrt{2} x^{4} - 731060 \, \sqrt{3} \sqrt{2} x^{3} - 267175 \, \sqrt{3} \sqrt{2} x^{2} - 1037250 \, \sqrt{3} \sqrt{2} x - 2111325 \, \sqrt{3} \sqrt{2}\right)} y^{6} - 2277250 \, \sqrt{3} \sqrt{2} x^{5} - 4979375 \, \sqrt{3} \sqrt{2} x^{4} - {\left(187 \, \sqrt{3} \sqrt{2} x^{14} + 3590 \, \sqrt{3} \sqrt{2} x^{13} - 5207 \, \sqrt{3} \sqrt{2} x^{12} - 73540 \, \sqrt{3} \sqrt{2} x^{11} - 454637 \, \sqrt{3} \sqrt{2} x^{10} - 1150150 \, \sqrt{3} \sqrt{2} x^{9} + 199401 \, \sqrt{3} \sqrt{2} x^{8} - 1059000 \, \sqrt{3} \sqrt{2} x^{7} - 7811175 \, \sqrt{3} \sqrt{2} x^{6} + 2899610 \, \sqrt{3} \sqrt{2} x^{5} + 1675075 \, \sqrt{3} \sqrt{2} x^{4} - 32834500 \, \sqrt{3} \sqrt{2} x^{3} - 24681575 \, \sqrt{3} \sqrt{2} x^{2} - 69684250 \, \sqrt{3} \sqrt{2} x - 122823125 \, \sqrt{3} \sqrt{2}\right)} y^{4} - 4037500 \, \sqrt{3} \sqrt{2} x^{3} + 3461875 \, \sqrt{3} \sqrt{2} x^{2} - 6 \, {\left(\sqrt{3} \sqrt{2} x^{16} + 40 \, \sqrt{3} \sqrt{2} x^{15} + 601 \, \sqrt{3} \sqrt{2} x^{14} + 4010 \, \sqrt{3} \sqrt{2} x^{13} + 12935 \, \sqrt{3} \sqrt{2} x^{12} - 1060 \, \sqrt{3} \sqrt{2} x^{11} + 10449 \, \sqrt{3} \sqrt{2} x^{10} + 139590 \, \sqrt{3} \sqrt{2} x^{9} + 57825 \, \sqrt{3} \sqrt{2} x^{8} + 146960 \, \sqrt{3} \sqrt{2} x^{7} + 781475 \, \sqrt{3} \sqrt{2} x^{6} - 702250 \, \sqrt{3} \sqrt{2} x^{5} - 2108075 \, \sqrt{3} \sqrt{2} x^{4} - 348500 \, \sqrt{3} \sqrt{2} x^{3} + 2381875 \, \sqrt{3} \sqrt{2} x^{2} + 5456250 \, \sqrt{3} \sqrt{2} x + 6941250 \, \sqrt{3} \sqrt{2}\right)} y^{2} + 7231250 \, \sqrt{3} \sqrt{2} x + 6109375 \, \sqrt{3} \sqrt{2}\right)} \sqrt{x^{10} + 40 \, x^{9} + 576 \, {\left(x^{2} - 1\right)} y^{8} + 699 \, x^{8} + 7920 \, x^{7} + 96 \, {\left(x^{4} + 20 \, x^{3} + 174 \, x^{2} + 980 \, x + 2425\right)} y^{6} + 39450 \, x^{6} - 960 \, x^{5} - 48 \, {\left(3 \, x^{6} + 20 \, x^{5} - 3 \, x^{4} + 40 \, x^{3} + 925 \, x^{2} + 5940 \, x + 14675\right)} y^{4} - 39450 \, x^{4} - 6000 \, x^{3} + 96 \, {\left(x^{8} - x^{6} + 20 \, x^{5} - 20 \, x^{3} + 375 \, x^{2} + 3000 \, x + 7425\right)} y^{2} - 9675 \, x^{2} - 97000 \, x - 240625}}{{\left(x^{18} + 60 \, x^{17} + 331776 \, {\left(x^{2} - 1\right)} y^{16} + 1599 \, x^{16} + 25880 \, x^{15} + 110592 \, {\left(x^{4} + 15 \, x^{3} + 99 \, x^{2} + 485 \, x + 1200\right)} y^{14} + 266700 \, x^{14} + 1555560 \, x^{13} - 9216 \, {\left(17 \, x^{6} + 60 \, x^{5} - 417 \, x^{4} - 3040 \, x^{3} - 13425 \, x^{2} - 31020 \, x - 16975\right)} y^{12} + 3533300 \, x^{12} - 4005000 \, x^{11} + 9216 \, {\left(9 \, x^{8} - 60 \, x^{7} - 509 \, x^{6} - 2430 \, x^{5} - 9525 \, x^{4} - 24260 \, x^{3} - 71775 \, x^{2} - 227250 \, x - 290600\right)} y^{10} - 17787450 \, x^{10} - 18420000 \, x^{9} + 5760 \, {\left(7 \, x^{10} + 90 \, x^{9} + 473 \, x^{8} + 2460 \, x^{7} + 10050 \, x^{6} + 15200 \, x^{5} + 53790 \, x^{4} + 120900 \, x^{3} + 198455 \, x^{2} + 741350 \, x + 1103625\right)} y^{8} + 15656250 \, x^{8} + 31485000 \, x^{7} - 192 \, {\left(143 \, x^{12} + 675 \, x^{11} - 1043 \, x^{10} - 7575 \, x^{9} - 52650 \, x^{8} - 224850 \, x^{7} - 156150 \, x^{6} + 1001250 \, x^{5} + 3726075 \, x^{4} + 6217375 \, x^{3} + 4145625 \, x^{2} + 19413125 \, x + 33330000\right)} y^{6} + 3527500 \, x^{6} + 12975000 \, x^{5} + 96 \, {\left(93 \, x^{14} - 105 \, x^{13} - 1693 \, x^{12} - 13470 \, x^{11} - 99575 \, x^{10} - 222675 \, x^{9} - 149025 \, x^{8} - 1024500 \, x^{7} - 2270025 \, x^{6} + 2366625 \, x^{5} + 9545625 \, x^{4} + 11931250 \, x^{3} + 451875 \, x^{2} + 11346875 \, x + 28273125\right)} y^{4} + 80032500 \, x^{4} + 102025000 \, x^{3} + 192 \, {\left(x^{16} + 30 \, x^{15} + 399 \, x^{14} + 3955 \, x^{13} + 19950 \, x^{12} + 3765 \, x^{11} + 19850 \, x^{10} + 197000 \, x^{9} + 47025 \, x^{8} + 77000 \, x^{7} + 646875 \, x^{6} - 598125 \, x^{5} - 2642500 \, x^{4} - 2896875 \, x^{3} + 1117500 \, x^{2} + 1581250 \, x - 687500\right)} y^{2} - 78609375 \, x^{2} - 180937500 \, x - 150390625\right)} \sqrt{x^{8} + 576 \, y^{8} + 20 \, x^{7} + 96 \, {\left(x^{2} + 10 \, x + 25\right)} y^{6} + 100 \, x^{6} - 20 \, x^{5} - 48 \, {\left(3 \, x^{4} + 10 \, x^{3} + 30 \, x + 125\right)} y^{4} - 250 \, x^{4} - 500 \, x^{3} + 96 \, {\left(x^{6} + 10 \, x^{3} + 25\right)} y^{2} + 100 \, x^{2} + 500 \, x + 625} \sqrt{x + 1} \sqrt{x - 1}}

The type-(1,1) tensor KK^\sharp of components K ji=γikKkjK^i_{\ \, j} = \gamma^{ik} K_{kj}:

Ku = K.up(gam, 0) print Ku
tensor field of type (1,1) on the 3-dimensional manifold 'Sigma'

We may check that the hypersurface Σ\Sigma is maximal, i.e. that K kk=0K^k_{\ \, k} = 0:

trK = Ku.trace() print trK
scalar field on the 3-dimensional manifold 'Sigma'

Connection and curvature

Let us call DD the Levi-Civita connection associated with γ\gamma:

D = gam.connection(name='D') print D
Levi-Civita connection 'D' associated with the Riemannian metric 'gam' on the 3-dimensional manifold 'Sigma'

The Ricci tensor associated with γ\gamma:

Ric = gam.ricci() print Ric
field of symmetric bilinear forms 'Ric(gam)' on the 3-dimensional manifold 'Sigma'

The scalar curvature R=γijRijR = \gamma^{ij} R_{ij}:

R = gam.ricci_scalar(name='R') print R
scalar field 'R' on the 3-dimensional manifold 'Sigma'

3+1 Einstein equations

Let us check that the vacuum 3+1 Einstein equations are satisfied.

We start by the constraint equations:

Hamiltonian constraint

Let us first evaluate the term KijKijK_{ij} K^{ij}:

The vacuum Hamiltonian constraint equation is R+K2KijKij=0R + K^2 -K_{ij} K^{ij} = 0

Ham = R + trK^2 - trKK print Ham ; Ham.display()
a052a2f-06d2-45a2-89c6-bf636d976684i︠ %html <p>Hence the Hamiltonian constraint is satisfied.</p> <h3>Momentum constraint</h3> <p>In vaccum, the momentum constraint is \[ D_j K^j_{\ \, i} - D_i K = 0 \]</p>
mom = D(Ku).trace(0,2) - D(trK) print mom mom.display()
1166208-11ab-4fcd-950d-093b3c394055i︠ %html <p>Hence the momentum constraint is satisfied.</p> <h3>Dynamical Einstein equations</h3> <p>Let us first evaluate the symmetric bilinear form $k_{ij} := K_{ik} K^k_{\ \, j}$:</p>
KK = K['_ik']*Ku['^k_j'] print KK
tensor field of type (0,2) on the 3-dimensional manifold 'Sigma'
KK1 = KK.symmetrize() KK == KK1
True\mathrm{True}
KK = KK1 print KK
field of symmetric bilinear forms on the 3-dimensional manifold 'Sigma'

In vacuum and for stationary spacetimes, the dynamical Einstein equations are LβKijDiDjN+N(Rij+KKij2KikK jk)=0 \mathcal{L}_\beta K_{ij} - D_i D_j N + N \left( R_{ij} + K K_{ij} - 2 K_{ik} K^k_{\ \, j}\right) = 0

Hence the dynamical Einstein equations are satisfied.

Finally we have checked that all the 3+1 Einstein equations are satisfied by the δ=2\delta=2 Tomimatsu-Sato solution.