Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

Github repo cloud-examples: https://github.com/sagemath/cloud-examples

Views: 8060
License: MIT
%auto typeset_mode(True, display=False)

3+1 Simon-Mars tensor in Kerr spacetime

This worksheet demonstrates a few capabilities of SageManifolds (version 0.7) in computations regarding 3+1 slicing of Kerr spacetime. In particular, it implements the computation of the 3+1 decomposition of the Simon-Mars tensor as given in the article arXiv:1412.6542.

The worksheet is released under the GNU General Public License version 2.

(c) Claire Somé, Eric Gourgoulhon (2015)

The worksheet file in Sage notebook format is here.

Spacelike hypersurface

We consider some hypersurface Σ\Sigma of a spacelike foliation (Σt)tR(\Sigma_t)_{t\in\mathbb{R}} of Kerr spacetime; we declare Σt\Sigma_t as a 3-dimensional manifold:

Sig = Manifold(3, 'Sigma', r'\Sigma', start_index=1)

The two Kerr parameters:

var('m, a') assume(m>0) assume(a>0)
(mm, aa)

Riemannian metric on Σ\Sigma

The variables introduced so far satisfy the following assumptions:

Without any loss of generality (for m0m\not =0), we may set m=1m=1:

m=1 assume(a<1)
#a=1 # extreme Kerr

On the hypersurface Σ\Sigma, we are using coordinates (r,y,ϕ)(r,y,\phi) that are related to the standard Boyer-Lindquist coordinates (r,θ,ϕ)(r,\theta,\phi) by y=cosθy=\cos\theta:

X.<r,y,ph> = Sig.chart(r'r:(1+sqrt(1-a^2),+oo) y:(-1,1) ph:(0,2*pi):\phi') print X ; X
chart (Sigma, (r, y, ph))
(Σ,(r,y,ϕ))\left(\Sigma,(r, y, {\phi})\right)

Riemannian metric on Σ\Sigma

The variables introduced so far obey the following assumptions:

assumptions()
[m>0m > 0, a>0a > 0, a<1a < 1, r is real\text{\texttt{r{ }is{ }real}}, y is real\text{\texttt{y{ }is{ }real}}, y>(1)y > \left(-1\right), y<1y < 1, ph is real\text{\texttt{ph{ }is{ }real}}, ϕ>0{\phi} > 0, ϕ<2π{\phi} < 2 \, \pi]

Some shortcut notations:

rho2 = r^2 + a^2*y^2 Del = r^2 -2*m*r + a^2 AA2 = rho2*(r^2 + a^2) + 2*a^2*m*r*(1-y^2) BB2 = r^2 + a^2 + 2*a^2*m*r*(1-y^2)/rho2

The metric hh induced by the spacetime metric gg on Σ\Sigma:

gam = Sig.riemann_metric('gam', latex_name=r'\gamma') gam[1,1] = rho2/Del gam[2,2] = rho2/(1-y^2) gam[3,3] = BB2*(1-y^2) gam.display()
γ=(a2y2+r2a2+r22r)drdr+(a2y2+r2y21)dydy+((a4+a2r22a2r)y4a2r2r42a2r(a4r44a2r)y2a2y2+r2)dϕdϕ\gamma = \left( \frac{a^{2} y^{2} + r^{2}}{a^{2} + r^{2} - 2 \, r} \right) \mathrm{d} r\otimes \mathrm{d} r + \left( -\frac{a^{2} y^{2} + r^{2}}{y^{2} - 1} \right) \mathrm{d} y\otimes \mathrm{d} y + \left( -\frac{{\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{4} - a^{2} r^{2} - r^{4} - 2 \, a^{2} r - {\left(a^{4} - r^{4} - 4 \, a^{2} r\right)} y^{2}}{a^{2} y^{2} + r^{2}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

A matrix view of the components w.r.t. coordinates (r,y,ϕ)(r,y,\phi):

gam[:]
(a2y2+r2a2+r22r000a2y2+r2y21000(a4+a2r22a2r)y4a2r2r42a2r(a4r44a2r)y2a2y2+r2)\left(\begin{array}{rrr} \frac{a^{2} y^{2} + r^{2}}{a^{2} + r^{2} - 2 \, r} & 0 & 0 \\ 0 & -\frac{a^{2} y^{2} + r^{2}}{y^{2} - 1} & 0 \\ 0 & 0 & -\frac{{\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{4} - a^{2} r^{2} - r^{4} - 2 \, a^{2} r - {\left(a^{4} - r^{4} - 4 \, a^{2} r\right)} y^{2}}{a^{2} y^{2} + r^{2}} \end{array}\right)

Lapse function and shift vector

N = Sig.scalar_field(sqrt(Del / BB2), name='N') print N N.display()
scalar field 'N' on the 3-dimensional manifold 'Sigma'
N:ΣR(r,y,ϕ)a2+r22r2(y21)a2ra2y2+r2a2r2\begin{array}{llcl} N:& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & \sqrt{-\frac{a^{2} + r^{2} - 2 \, r}{\frac{2 \, {\left(y^{2} - 1\right)} a^{2} r}{a^{2} y^{2} + r^{2}} - a^{2} - r^{2}}} \end{array}
b = Sig.vector_field('beta', latex_name=r'\beta') b[3] = -2*m*r*a/AA2 # unset components are zero b.display()
β=(2ara2r2+r4+2a2r+(a4+a2r22a2r)y2)ϕ\beta = \left( -\frac{2 \, a r}{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \right) \frac{\partial}{\partial {\phi} }

Extrinsic curvature of Σ\Sigma

We use the formula Kij=12NLβγij K_{ij} = \frac{1}{2N} \mathcal{L}_{\beta} \gamma_{ij} which is valid for any stationary spacetime:

K = gam.lie_der(b) / (2*N) K.set_name('K') print K ; K.display()
field of symmetric bilinear forms 'K' on the 3-dimensional manifold 'Sigma'
K=((a3r2+3ar4+(a5a3r2)y4(a5+3ar4)y2)a2r2+r4+2a2r+(a4+a2r22a2r)y2(a2r4+r6+2a2r3+(a6+a4r22a4r)y4+2(a4r2+a2r4+a4ra2r3)y2)a2y2+r2a2+r22r)drdϕ+(2a2r2+r4+2a2r+(a4+a2r22a2r)y2((a5r+a3r32a3r2)y3(a5r+a3r32a3r2)y)(a2r4+r6+2a2r3+(a6+a4r22a4r)y4+2(a4r2+a2r4+a4ra2r3)y2)a2y2+r2a2+r22r)dydϕ+((a3r2+3ar4+(a5a3r2)y4(a5+3ar4)y2)a2r2+r4+2a2r+(a4+a2r22a2r)y2(a2r4+r6+2a2r3+(a6+a4r22a4r)y4+2(a4r2+a2r4+a4ra2r3)y2)a2y2+r2a2+r22r)dϕdr+(2a2r2+r4+2a2r+(a4+a2r22a2r)y2((a5r+a3r32a3r2)y3(a5r+a3r32a3r2)y)(a2r4+r6+2a2r3+(a6+a4r22a4r)y4+2(a4r2+a2r4+a4ra2r3)y2)a2y2+r2a2+r22r)dϕdyK = \left( \frac{{\left(a^{3} r^{2} + 3 \, a r^{4} + {\left(a^{5} - a^{3} r^{2}\right)} y^{4} - {\left(a^{5} + 3 \, a r^{4}\right)} y^{2}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}}}{{\left(a^{2} r^{4} + r^{6} + 2 \, a^{2} r^{3} + {\left(a^{6} + a^{4} r^{2} - 2 \, a^{4} r\right)} y^{4} + 2 \, {\left(a^{4} r^{2} + a^{2} r^{4} + a^{4} r - a^{2} r^{3}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} r\otimes \mathrm{d} {\phi} + \left( -\frac{2 \, \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left({\left(a^{5} r + a^{3} r^{3} - 2 \, a^{3} r^{2}\right)} y^{3} - {\left(a^{5} r + a^{3} r^{3} - 2 \, a^{3} r^{2}\right)} y\right)}}{{\left(a^{2} r^{4} + r^{6} + 2 \, a^{2} r^{3} + {\left(a^{6} + a^{4} r^{2} - 2 \, a^{4} r\right)} y^{4} + 2 \, {\left(a^{4} r^{2} + a^{2} r^{4} + a^{4} r - a^{2} r^{3}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} y\otimes \mathrm{d} {\phi} + \left( \frac{{\left(a^{3} r^{2} + 3 \, a r^{4} + {\left(a^{5} - a^{3} r^{2}\right)} y^{4} - {\left(a^{5} + 3 \, a r^{4}\right)} y^{2}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}}}{{\left(a^{2} r^{4} + r^{6} + 2 \, a^{2} r^{3} + {\left(a^{6} + a^{4} r^{2} - 2 \, a^{4} r\right)} y^{4} + 2 \, {\left(a^{4} r^{2} + a^{2} r^{4} + a^{4} r - a^{2} r^{3}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} r + \left( -\frac{2 \, \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left({\left(a^{5} r + a^{3} r^{3} - 2 \, a^{3} r^{2}\right)} y^{3} - {\left(a^{5} r + a^{3} r^{3} - 2 \, a^{3} r^{2}\right)} y\right)}}{{\left(a^{2} r^{4} + r^{6} + 2 \, a^{2} r^{3} + {\left(a^{6} + a^{4} r^{2} - 2 \, a^{4} r\right)} y^{4} + 2 \, {\left(a^{4} r^{2} + a^{2} r^{4} + a^{4} r - a^{2} r^{3}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} y

Check (comparison with known formulas):

Krp = a*m*(1-y^2)*(3*r^4+a^2*r^2+a^2*(r^2-a^2)*y^2) / rho2^2/sqrt(Del*BB2) Krp
((a2r2)a2y2a2r23r4)(y21)a(a2y2+r2)2(2(y21)a2ra2y2+r2a2r2)(a2+r22r)\frac{{\left({\left(a^{2} - r^{2}\right)} a^{2} y^{2} - a^{2} r^{2} - 3 \, r^{4}\right)} {\left(y^{2} - 1\right)} a}{{\left(a^{2} y^{2} + r^{2}\right)}^{2} \sqrt{-{\left(\frac{2 \, {\left(y^{2} - 1\right)} a^{2} r}{a^{2} y^{2} + r^{2}} - a^{2} - r^{2}\right)} {\left(a^{2} + r^{2} - 2 \, r\right)}}}
K[1,3] - Krp
00
Kyp = 2*m*r*a^3*(1-y^2)*y*sqrt(Del)/rho2^2/sqrt(BB2) Kyp
2a2+r22r(y21)a3ry(a2y2+r2)22(y21)a2ra2y2+r2+a2+r2-\frac{2 \, \sqrt{a^{2} + r^{2} - 2 \, r} {\left(y^{2} - 1\right)} a^{3} r y}{{\left(a^{2} y^{2} + r^{2}\right)}^{2} \sqrt{-\frac{2 \, {\left(y^{2} - 1\right)} a^{2} r}{a^{2} y^{2} + r^{2}} + a^{2} + r^{2}}}
K[2,3] - Kyp
00

For now on, we use the expressions Krp and Kyp above for KrϕK_{r\phi} and KryK_{ry}, respectively:

K1 = Sig.sym_bilin_form_field('K') K1[1,3] = Krp K1[2,3] = Kyp K = K1 K.display()
K=((a3r2+3ar4+(a5a3r2)y4(a5+3ar4)y2)a2y2+r2(a4y4+2a2r2y2+r4)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2+r22r)drdϕ+(2(a3ry3a3ry)a2y2+r2a2+r22r(a4y4+2a2r2y2+r4)a2r2+r4+2a2r+(a4+a2r22a2r)y2)dydϕ+((a3r2+3ar4+(a5a3r2)y4(a5+3ar4)y2)a2y2+r2(a4y4+2a2r2y2+r4)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2+r22r)dϕdr+(2(a3ry3a3ry)a2y2+r2a2+r22r(a4y4+2a2r2y2+r4)a2r2+r4+2a2r+(a4+a2r22a2r)y2)dϕdyK = \left( \frac{{\left(a^{3} r^{2} + 3 \, a r^{4} + {\left(a^{5} - a^{3} r^{2}\right)} y^{4} - {\left(a^{5} + 3 \, a r^{4}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}}}{{\left(a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} r\otimes \mathrm{d} {\phi} + \left( -\frac{2 \, {\left(a^{3} r y^{3} - a^{3} r y\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}}} \right) \mathrm{d} y\otimes \mathrm{d} {\phi} + \left( \frac{{\left(a^{3} r^{2} + 3 \, a r^{4} + {\left(a^{5} - a^{3} r^{2}\right)} y^{4} - {\left(a^{5} + 3 \, a r^{4}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}}}{{\left(a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} r + \left( -\frac{2 \, {\left(a^{3} r y^{3} - a^{3} r y\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}}} \right) \mathrm{d} {\phi}\otimes \mathrm{d} y

The type-(1,1) tensor KK^\sharp of components K ji=γikKkjK^i_{\ \, j} = \gamma^{ik} K_{kj}:

Ku = K.up(gam, 0) print Ku ; Ku.display()
tensor field of type (1,1) on the 3-dimensional manifold 'Sigma'
((a3r2+3ar4+(a5a3r2)y4(a5+3ar4)y2)a2+r22r(a4y4+2a2r2y2+r4)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2y2+r2)rdϕ+(2(a3ry52a3ry3+a3ry)a2+r22r(a4y4+2a2r2y2+r4)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2y2+r2)ydϕ+((a3r2+3ar4(a5a3r2)y2)a2y2+r2(a2r4+r6+2a2r3+(a6+a4r22a4r)y4+2(a4r2+a2r4+a4ra2r3)y2)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2+r22r)ϕdr+(2a2y2+r2a2+r22ra3ry(a2r4+r6+2a2r3+(a6+a4r22a4r)y4+2(a4r2+a2r4+a4ra2r3)y2)a2r2+r4+2a2r+(a4+a2r22a2r)y2)ϕdy\left( \frac{{\left(a^{3} r^{2} + 3 \, a r^{4} + {\left(a^{5} - a^{3} r^{2}\right)} y^{4} - {\left(a^{5} + 3 \, a r^{4}\right)} y^{2}\right)} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} y^{2} + r^{2}}} \right) \frac{\partial}{\partial r }\otimes \mathrm{d} {\phi} + \left( \frac{2 \, {\left(a^{3} r y^{5} - 2 \, a^{3} r y^{3} + a^{3} r y\right)} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} y^{2} + r^{2}}} \right) \frac{\partial}{\partial y }\otimes \mathrm{d} {\phi} + \left( \frac{{\left(a^{3} r^{2} + 3 \, a r^{4} - {\left(a^{5} - a^{3} r^{2}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}}}{{\left(a^{2} r^{4} + r^{6} + 2 \, a^{2} r^{3} + {\left(a^{6} + a^{4} r^{2} - 2 \, a^{4} r\right)} y^{4} + 2 \, {\left(a^{4} r^{2} + a^{2} r^{4} + a^{4} r - a^{2} r^{3}\right)} y^{2}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} r + \left( \frac{2 \, \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r} a^{3} r y}{{\left(a^{2} r^{4} + r^{6} + 2 \, a^{2} r^{3} + {\left(a^{6} + a^{4} r^{2} - 2 \, a^{4} r\right)} y^{4} + 2 \, {\left(a^{4} r^{2} + a^{2} r^{4} + a^{4} r - a^{2} r^{3}\right)} y^{2}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}}} \right) \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} y

We may check that the hypersurface Σ\Sigma is maximal, i.e. that K kk=0K^k_{\ \, k} = 0:

trK = Ku.trace() print trK
scalar field on the 3-dimensional manifold 'Sigma'

Connection and curvature

Let us call DD the Levi-Civita connection associated with γ\gamma:

D = gam.connection(name='D') print D ; D
Levi-Civita connection 'D' associated with the Riemannian metric 'gam' on the 3-dimensional manifold 'Sigma'
DD

The Ricci tensor associated with γ\gamma:

Ric = gam.ricci() print Ric ; Ric
field of symmetric bilinear forms 'Ric(gam)' on the 3-dimensional manifold 'Sigma'
Ric(γ)\mathrm{Ric}\left(\gamma\right)
Ric[1,1]
8a4r7+7a2r9+2r11+5a6r4+2a4r67a2r8+(3a10r+3a6r5+a1014a8r211a6r4+6(a8+2a6)r3)y6+(3a64a4)r5(9a10r+4a4r7+a1030a8r235a6r416a4r6+(17a6+4a4)r5+2(11a8+12a6)r3)y4(16a4r7+5a2r9+16a8r2+29a6r4+18a4r67a2r8+(17a68a4)r5+6(a82a6)r3)y23a2r12+r14+6a4r92r13+4a6r6+(3a48a2)r10+(a64a4)r8+(a14+a8r66a12r6a8r5+3(a10+4a8)r44(3a10+2a8)r3+3(a12+4a10)r2)y8+4(a62a4)r7+4(a6r8+a12r5a6r7+(3a8+8a6)r6(9a8+4a6)r5+(3a10+4a8)r4(3a104a8)r3+(a124a10)r2)y6+2(3a4r1012a4r9+2a10r2+16a6r5+(9a6+14a4)r82(9a6+2a4)r7+3(3a82a6)r6+3(a106a8)r4+2(3a102a8)r3)y4+4(a2r123a4r93a2r11+2a8r4+(3a4+2a2)r10+3(a62a4)r8+(3a6+4a4)r7+(a86a6)r6+(3a84a6)r5)y2-\frac{8 \, a^{4} r^{7} + 7 \, a^{2} r^{9} + 2 \, r^{11} + 5 \, a^{6} r^{4} + 2 \, a^{4} r^{6} - 7 \, a^{2} r^{8} + {\left(3 \, a^{10} r + 3 \, a^{6} r^{5} + a^{10} - 14 \, a^{8} r^{2} - 11 \, a^{6} r^{4} + 6 \, {\left(a^{8} + 2 \, a^{6}\right)} r^{3}\right)} y^{6} + {\left(3 \, a^{6} - 4 \, a^{4}\right)} r^{5} - {\left(9 \, a^{10} r + 4 \, a^{4} r^{7} + a^{10} - 30 \, a^{8} r^{2} - 35 \, a^{6} r^{4} - 16 \, a^{4} r^{6} + {\left(17 \, a^{6} + 4 \, a^{4}\right)} r^{5} + 2 \, {\left(11 \, a^{8} + 12 \, a^{6}\right)} r^{3}\right)} y^{4} - {\left(16 \, a^{4} r^{7} + 5 \, a^{2} r^{9} + 16 \, a^{8} r^{2} + 29 \, a^{6} r^{4} + 18 \, a^{4} r^{6} - 7 \, a^{2} r^{8} + {\left(17 \, a^{6} - 8 \, a^{4}\right)} r^{5} + 6 \, {\left(a^{8} - 2 \, a^{6}\right)} r^{3}\right)} y^{2}}{3 \, a^{2} r^{12} + r^{14} + 6 \, a^{4} r^{9} - 2 \, r^{13} + 4 \, a^{6} r^{6} + {\left(3 \, a^{4} - 8 \, a^{2}\right)} r^{10} + {\left(a^{6} - 4 \, a^{4}\right)} r^{8} + {\left(a^{14} + a^{8} r^{6} - 6 \, a^{12} r - 6 \, a^{8} r^{5} + 3 \, {\left(a^{10} + 4 \, a^{8}\right)} r^{4} - 4 \, {\left(3 \, a^{10} + 2 \, a^{8}\right)} r^{3} + 3 \, {\left(a^{12} + 4 \, a^{10}\right)} r^{2}\right)} y^{8} + 4 \, {\left(a^{6} - 2 \, a^{4}\right)} r^{7} + 4 \, {\left(a^{6} r^{8} + a^{12} r - 5 \, a^{6} r^{7} + {\left(3 \, a^{8} + 8 \, a^{6}\right)} r^{6} - {\left(9 \, a^{8} + 4 \, a^{6}\right)} r^{5} + {\left(3 \, a^{10} + 4 \, a^{8}\right)} r^{4} - {\left(3 \, a^{10} - 4 \, a^{8}\right)} r^{3} + {\left(a^{12} - 4 \, a^{10}\right)} r^{2}\right)} y^{6} + 2 \, {\left(3 \, a^{4} r^{10} - 12 \, a^{4} r^{9} + 2 \, a^{10} r^{2} + 16 \, a^{6} r^{5} + {\left(9 \, a^{6} + 14 \, a^{4}\right)} r^{8} - 2 \, {\left(9 \, a^{6} + 2 \, a^{4}\right)} r^{7} + 3 \, {\left(3 \, a^{8} - 2 \, a^{6}\right)} r^{6} + 3 \, {\left(a^{10} - 6 \, a^{8}\right)} r^{4} + 2 \, {\left(3 \, a^{10} - 2 \, a^{8}\right)} r^{3}\right)} y^{4} + 4 \, {\left(a^{2} r^{12} - 3 \, a^{4} r^{9} - 3 \, a^{2} r^{11} + 2 \, a^{8} r^{4} + {\left(3 \, a^{4} + 2 \, a^{2}\right)} r^{10} + 3 \, {\left(a^{6} - 2 \, a^{4}\right)} r^{8} + {\left(3 \, a^{6} + 4 \, a^{4}\right)} r^{7} + {\left(a^{8} - 6 \, a^{6}\right)} r^{6} + {\left(3 \, a^{8} - 4 \, a^{6}\right)} r^{5}\right)} y^{2}}
Ric[1,2]
(3a10+6a8r2+3a6r44a8r8a6r3)y52(3a8r2+6a6r4+3a4r62a8r12a6r36a4r5)y3(9a6r4+18a4r6+9a2r8+16a6r3+12a4r5)ya4r8+2a2r10+r12+4a4r7+4a2r9+4a4r6+(a12+a8r44a10r4a8r3+2(a10+2a8)r2)y8+4(a6r6+a10r2a8r33a6r5+2(a8+a6)r4+(a102a8)r2)y6+2(3a4r8+6a8r36a4r7+2a8r2+2(3a6+a4)r6+(3a88a6)r4)y4+4(2a4r8+a2r10+3a6r5+2a4r7a2r9+2a6r4+(a62a4)r6)y2\frac{{\left(3 \, a^{10} + 6 \, a^{8} r^{2} + 3 \, a^{6} r^{4} - 4 \, a^{8} r - 8 \, a^{6} r^{3}\right)} y^{5} - 2 \, {\left(3 \, a^{8} r^{2} + 6 \, a^{6} r^{4} + 3 \, a^{4} r^{6} - 2 \, a^{8} r - 12 \, a^{6} r^{3} - 6 \, a^{4} r^{5}\right)} y^{3} - {\left(9 \, a^{6} r^{4} + 18 \, a^{4} r^{6} + 9 \, a^{2} r^{8} + 16 \, a^{6} r^{3} + 12 \, a^{4} r^{5}\right)} y}{a^{4} r^{8} + 2 \, a^{2} r^{10} + r^{12} + 4 \, a^{4} r^{7} + 4 \, a^{2} r^{9} + 4 \, a^{4} r^{6} + {\left(a^{12} + a^{8} r^{4} - 4 \, a^{10} r - 4 \, a^{8} r^{3} + 2 \, {\left(a^{10} + 2 \, a^{8}\right)} r^{2}\right)} y^{8} + 4 \, {\left(a^{6} r^{6} + a^{10} r - 2 \, a^{8} r^{3} - 3 \, a^{6} r^{5} + 2 \, {\left(a^{8} + a^{6}\right)} r^{4} + {\left(a^{10} - 2 \, a^{8}\right)} r^{2}\right)} y^{6} + 2 \, {\left(3 \, a^{4} r^{8} + 6 \, a^{8} r^{3} - 6 \, a^{4} r^{7} + 2 \, a^{8} r^{2} + 2 \, {\left(3 \, a^{6} + a^{4}\right)} r^{6} + {\left(3 \, a^{8} - 8 \, a^{6}\right)} r^{4}\right)} y^{4} + 4 \, {\left(2 \, a^{4} r^{8} + a^{2} r^{10} + 3 \, a^{6} r^{5} + 2 \, a^{4} r^{7} - a^{2} r^{9} + 2 \, a^{6} r^{4} + {\left(a^{6} - 2 \, a^{4}\right)} r^{6}\right)} y^{2}}
Ric[1,3]
00
Ric[2,2]
7a4r7+5a2r9+r11+6a6r4+4a4r62a2r8+2(3a10r+3a6r510a8r210a6r4+2(3a8+4a6)r3)y6+(3a68a4)r5(9a10ra4r734a8r236a6r42a4r6+(7a6+8a4)r5+(17a8+32a6)r3)y42(7a4r7+2a2r9+7a8r2+11a6r4+3a4r6a2r8+8(a6a4)r5+(3a88a6)r3)y2a4r8+2a2r10+r12+4a4r7+4a2r9(a12+a8r44a10r4a8r3+2(a10+2a8)r2)y10+4a4r6+(a124a6r68a10r+4a8r3+12a6r5(7a8+8a6)r42(a106a8)r2)y82(3a4r82a10r+10a8r3+6a6r56a4r7+2(2a6+a4)r6(a8+12a6)r42(a103a8)r2)y62(a4r8+2a2r106a8r3+6a6r5+10a4r72a2r92a8r22(2a6+3a4)r63(a84a6)r4)y4+(7a4r8+2a2r10r12+12a6r5+4a4r78a2r9+8a6r4+4(a63a4)r6)y2\frac{7 \, a^{4} r^{7} + 5 \, a^{2} r^{9} + r^{11} + 6 \, a^{6} r^{4} + 4 \, a^{4} r^{6} - 2 \, a^{2} r^{8} + 2 \, {\left(3 \, a^{10} r + 3 \, a^{6} r^{5} - 10 \, a^{8} r^{2} - 10 \, a^{6} r^{4} + 2 \, {\left(3 \, a^{8} + 4 \, a^{6}\right)} r^{3}\right)} y^{6} + {\left(3 \, a^{6} - 8 \, a^{4}\right)} r^{5} - {\left(9 \, a^{10} r - a^{4} r^{7} - 34 \, a^{8} r^{2} - 36 \, a^{6} r^{4} - 2 \, a^{4} r^{6} + {\left(7 \, a^{6} + 8 \, a^{4}\right)} r^{5} + {\left(17 \, a^{8} + 32 \, a^{6}\right)} r^{3}\right)} y^{4} - 2 \, {\left(7 \, a^{4} r^{7} + 2 \, a^{2} r^{9} + 7 \, a^{8} r^{2} + 11 \, a^{6} r^{4} + 3 \, a^{4} r^{6} - a^{2} r^{8} + 8 \, {\left(a^{6} - a^{4}\right)} r^{5} + {\left(3 \, a^{8} - 8 \, a^{6}\right)} r^{3}\right)} y^{2}}{a^{4} r^{8} + 2 \, a^{2} r^{10} + r^{12} + 4 \, a^{4} r^{7} + 4 \, a^{2} r^{9} - {\left(a^{12} + a^{8} r^{4} - 4 \, a^{10} r - 4 \, a^{8} r^{3} + 2 \, {\left(a^{10} + 2 \, a^{8}\right)} r^{2}\right)} y^{10} + 4 \, a^{4} r^{6} + {\left(a^{12} - 4 \, a^{6} r^{6} - 8 \, a^{10} r + 4 \, a^{8} r^{3} + 12 \, a^{6} r^{5} - {\left(7 \, a^{8} + 8 \, a^{6}\right)} r^{4} - 2 \, {\left(a^{10} - 6 \, a^{8}\right)} r^{2}\right)} y^{8} - 2 \, {\left(3 \, a^{4} r^{8} - 2 \, a^{10} r + 10 \, a^{8} r^{3} + 6 \, a^{6} r^{5} - 6 \, a^{4} r^{7} + 2 \, {\left(2 \, a^{6} + a^{4}\right)} r^{6} - {\left(a^{8} + 12 \, a^{6}\right)} r^{4} - 2 \, {\left(a^{10} - 3 \, a^{8}\right)} r^{2}\right)} y^{6} - 2 \, {\left(a^{4} r^{8} + 2 \, a^{2} r^{10} - 6 \, a^{8} r^{3} + 6 \, a^{6} r^{5} + 10 \, a^{4} r^{7} - 2 \, a^{2} r^{9} - 2 \, a^{8} r^{2} - 2 \, {\left(2 \, a^{6} + 3 \, a^{4}\right)} r^{6} - 3 \, {\left(a^{8} - 4 \, a^{6}\right)} r^{4}\right)} y^{4} + {\left(7 \, a^{4} r^{8} + 2 \, a^{2} r^{10} - r^{12} + 12 \, a^{6} r^{5} + 4 \, a^{4} r^{7} - 8 \, a^{2} r^{9} + 8 \, a^{6} r^{4} + 4 \, {\left(a^{6} - 3 \, a^{4}\right)} r^{6}\right)} y^{2}}
Ric[2,3]
00
Ric[3,3]
a4r7+2a2r9+r11+a6r4+10a4r6+13a2r8+4a4r5+(3a10r+3a6r5+a1018a8r215a6r4+2(3a8+10a6)r3)y8(3a10r5a4r7+2a1038a8r222a6r4+2a4r6(7a64a4)r5+(a8+60a6)r3)y6(3a4r7a2r9a10+22a8r22a6r414a4r613a2r8+3(3a64a4)r5+5(a812a6)r3)y4(3a4r7+3a2r9+r112a8r2+10a6r4+22a4r6+26a2r8+20a6r3+(a6+12a4)r5)y2a2r10+r12+2a2r9+(a12+a10r22a10r)y10+(5a10r2+5a8r4+2a10r8a8r3)y8+2(5a8r4+5a6r6+4a8r36a6r5)y6+2(5a6r6+5a4r8+6a6r54a4r7)y4+(5a4r8+5a2r10+8a4r72a2r9)y2\frac{a^{4} r^{7} + 2 \, a^{2} r^{9} + r^{11} + a^{6} r^{4} + 10 \, a^{4} r^{6} + 13 \, a^{2} r^{8} + 4 \, a^{4} r^{5} + {\left(3 \, a^{10} r + 3 \, a^{6} r^{5} + a^{10} - 18 \, a^{8} r^{2} - 15 \, a^{6} r^{4} + 2 \, {\left(3 \, a^{8} + 10 \, a^{6}\right)} r^{3}\right)} y^{8} - {\left(3 \, a^{10} r - 5 \, a^{4} r^{7} + 2 \, a^{10} - 38 \, a^{8} r^{2} - 22 \, a^{6} r^{4} + 2 \, a^{4} r^{6} - {\left(7 \, a^{6} - 4 \, a^{4}\right)} r^{5} + {\left(a^{8} + 60 \, a^{6}\right)} r^{3}\right)} y^{6} - {\left(3 \, a^{4} r^{7} - a^{2} r^{9} - a^{10} + 22 \, a^{8} r^{2} - 2 \, a^{6} r^{4} - 14 \, a^{4} r^{6} - 13 \, a^{2} r^{8} + 3 \, {\left(3 \, a^{6} - 4 \, a^{4}\right)} r^{5} + 5 \, {\left(a^{8} - 12 \, a^{6}\right)} r^{3}\right)} y^{4} - {\left(3 \, a^{4} r^{7} + 3 \, a^{2} r^{9} + r^{11} - 2 \, a^{8} r^{2} + 10 \, a^{6} r^{4} + 22 \, a^{4} r^{6} + 26 \, a^{2} r^{8} + 20 \, a^{6} r^{3} + {\left(a^{6} + 12 \, a^{4}\right)} r^{5}\right)} y^{2}}{a^{2} r^{10} + r^{12} + 2 \, a^{2} r^{9} + {\left(a^{12} + a^{10} r^{2} - 2 \, a^{10} r\right)} y^{10} + {\left(5 \, a^{10} r^{2} + 5 \, a^{8} r^{4} + 2 \, a^{10} r - 8 \, a^{8} r^{3}\right)} y^{8} + 2 \, {\left(5 \, a^{8} r^{4} + 5 \, a^{6} r^{6} + 4 \, a^{8} r^{3} - 6 \, a^{6} r^{5}\right)} y^{6} + 2 \, {\left(5 \, a^{6} r^{6} + 5 \, a^{4} r^{8} + 6 \, a^{6} r^{5} - 4 \, a^{4} r^{7}\right)} y^{4} + {\left(5 \, a^{4} r^{8} + 5 \, a^{2} r^{10} + 8 \, a^{4} r^{7} - 2 \, a^{2} r^{9}\right)} y^{2}}

The scalar curvature R=γijRijR = \gamma^{ij} R_{ij}:

R = gam.ricci_scalar(name='R') print R R.display()
scalar field 'R' on the 3-dimensional manifold 'Sigma'
r(γ):ΣR(r,y,ϕ)2(a6r4+6a4r6+9a2r8(a106a8r23a6r4+8a6r3)y6+(a108a8r23a6r46a4r6+16a6r3)y4+(2a8r2a6r49a2r88a6r3)y2)a4r10+2a2r12+r14+4a4r9+4a2r11+4a4r8+(a14+a10r44a12r4a10r3+2(a12+2a10)r2)y10+(5a8r6+4a12r12a10r316a8r5+2(5a10+6a8)r4+(5a128a10)r2)y8+2(5a6r8+8a10r34a8r512a6r7+2a10r2+2(5a8+3a6)r6+(5a1012a8)r4)y6+2(5a4r10+12a8r5+4a6r78a4r9+6a8r4+2(5a6+a4)r8+(5a812a6)r6)y4+(10a4r10+5a2r12+16a6r7+12a4r94a2r11+12a6r6+(5a68a4)r8)y2\begin{array}{llcl} \mathrm{r}\left(\gamma\right):& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & \frac{2 \, {\left(a^{6} r^{4} + 6 \, a^{4} r^{6} + 9 \, a^{2} r^{8} - {\left(a^{10} - 6 \, a^{8} r^{2} - 3 \, a^{6} r^{4} + 8 \, a^{6} r^{3}\right)} y^{6} + {\left(a^{10} - 8 \, a^{8} r^{2} - 3 \, a^{6} r^{4} - 6 \, a^{4} r^{6} + 16 \, a^{6} r^{3}\right)} y^{4} + {\left(2 \, a^{8} r^{2} - a^{6} r^{4} - 9 \, a^{2} r^{8} - 8 \, a^{6} r^{3}\right)} y^{2}\right)}}{a^{4} r^{10} + 2 \, a^{2} r^{12} + r^{14} + 4 \, a^{4} r^{9} + 4 \, a^{2} r^{11} + 4 \, a^{4} r^{8} + {\left(a^{14} + a^{10} r^{4} - 4 \, a^{12} r - 4 \, a^{10} r^{3} + 2 \, {\left(a^{12} + 2 \, a^{10}\right)} r^{2}\right)} y^{10} + {\left(5 \, a^{8} r^{6} + 4 \, a^{12} r - 12 \, a^{10} r^{3} - 16 \, a^{8} r^{5} + 2 \, {\left(5 \, a^{10} + 6 \, a^{8}\right)} r^{4} + {\left(5 \, a^{12} - 8 \, a^{10}\right)} r^{2}\right)} y^{8} + 2 \, {\left(5 \, a^{6} r^{8} + 8 \, a^{10} r^{3} - 4 \, a^{8} r^{5} - 12 \, a^{6} r^{7} + 2 \, a^{10} r^{2} + 2 \, {\left(5 \, a^{8} + 3 \, a^{6}\right)} r^{6} + {\left(5 \, a^{10} - 12 \, a^{8}\right)} r^{4}\right)} y^{6} + 2 \, {\left(5 \, a^{4} r^{10} + 12 \, a^{8} r^{5} + 4 \, a^{6} r^{7} - 8 \, a^{4} r^{9} + 6 \, a^{8} r^{4} + 2 \, {\left(5 \, a^{6} + a^{4}\right)} r^{8} + {\left(5 \, a^{8} - 12 \, a^{6}\right)} r^{6}\right)} y^{4} + {\left(10 \, a^{4} r^{10} + 5 \, a^{2} r^{12} + 16 \, a^{6} r^{7} + 12 \, a^{4} r^{9} - 4 \, a^{2} r^{11} + 12 \, a^{6} r^{6} + {\left(5 \, a^{6} - 8 \, a^{4}\right)} r^{8}\right)} y^{2}} \end{array}

Test: 3+1 Einstein equations

Let us check that the vacuum 3+1 Einstein equations are satisfied.

We start by the contraint equations:

Hamiltonian constraint

Let us first evaluate the term KijKijK_{ij} K^{ij}:

Kuu = Ku.up(gam, 1) trKK = K['_ij']*Kuu['^ij'] print trKK ; trKK.display()
scalar field on the 3-dimensional manifold 'Sigma'
ΣR(r,y,ϕ)2(a6r4+6a4r6+9a2r8(a106a8r23a6r4+8a6r3)y6+(a108a8r23a6r46a4r6+16a6r3)y4+(2a8r2a6r49a2r88a6r3)y2)a4r10+2a2r12+r14+4a4r9+4a2r11+4a4r8+(a14+a10r44a12r4a10r3+2(a12+2a10)r2)y10+(5a8r6+4a12r12a10r316a8r5+2(5a10+6a8)r4+(5a128a10)r2)y8+2(5a6r8+8a10r34a8r512a6r7+2a10r2+2(5a8+3a6)r6+(5a1012a8)r4)y6+2(5a4r10+12a8r5+4a6r78a4r9+6a8r4+2(5a6+a4)r8+(5a812a6)r6)y4+(10a4r10+5a2r12+16a6r7+12a4r94a2r11+12a6r6+(5a68a4)r8)y2\begin{array}{llcl} & \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & \frac{2 \, {\left(a^{6} r^{4} + 6 \, a^{4} r^{6} + 9 \, a^{2} r^{8} - {\left(a^{10} - 6 \, a^{8} r^{2} - 3 \, a^{6} r^{4} + 8 \, a^{6} r^{3}\right)} y^{6} + {\left(a^{10} - 8 \, a^{8} r^{2} - 3 \, a^{6} r^{4} - 6 \, a^{4} r^{6} + 16 \, a^{6} r^{3}\right)} y^{4} + {\left(2 \, a^{8} r^{2} - a^{6} r^{4} - 9 \, a^{2} r^{8} - 8 \, a^{6} r^{3}\right)} y^{2}\right)}}{a^{4} r^{10} + 2 \, a^{2} r^{12} + r^{14} + 4 \, a^{4} r^{9} + 4 \, a^{2} r^{11} + 4 \, a^{4} r^{8} + {\left(a^{14} + a^{10} r^{4} - 4 \, a^{12} r - 4 \, a^{10} r^{3} + 2 \, {\left(a^{12} + 2 \, a^{10}\right)} r^{2}\right)} y^{10} + {\left(5 \, a^{8} r^{6} + 4 \, a^{12} r - 12 \, a^{10} r^{3} - 16 \, a^{8} r^{5} + 2 \, {\left(5 \, a^{10} + 6 \, a^{8}\right)} r^{4} + {\left(5 \, a^{12} - 8 \, a^{10}\right)} r^{2}\right)} y^{8} + 2 \, {\left(5 \, a^{6} r^{8} + 8 \, a^{10} r^{3} - 4 \, a^{8} r^{5} - 12 \, a^{6} r^{7} + 2 \, a^{10} r^{2} + 2 \, {\left(5 \, a^{8} + 3 \, a^{6}\right)} r^{6} + {\left(5 \, a^{10} - 12 \, a^{8}\right)} r^{4}\right)} y^{6} + 2 \, {\left(5 \, a^{4} r^{10} + 12 \, a^{8} r^{5} + 4 \, a^{6} r^{7} - 8 \, a^{4} r^{9} + 6 \, a^{8} r^{4} + 2 \, {\left(5 \, a^{6} + a^{4}\right)} r^{8} + {\left(5 \, a^{8} - 12 \, a^{6}\right)} r^{6}\right)} y^{4} + {\left(10 \, a^{4} r^{10} + 5 \, a^{2} r^{12} + 16 \, a^{6} r^{7} + 12 \, a^{4} r^{9} - 4 \, a^{2} r^{11} + 12 \, a^{6} r^{6} + {\left(5 \, a^{6} - 8 \, a^{4}\right)} r^{8}\right)} y^{2}} \end{array}

The vacuum Hamiltonian constraint equation is R+K2KijKij=0R + K^2 -K_{ij} K^{ij} = 0

Ham = R + trK^2 - trKK print Ham ; Ham.display()
scalar field 'zero' on the 3-dimensional manifold 'Sigma'
0:ΣR(r,y,ϕ)0\begin{array}{llcl} 0:& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & 0 \end{array}

Momentum constraint

In vaccum, the momentum constraint is DjK ijDiK=0 D_j K^j_{\ \, i} - D_i K = 0

mom = D(Ku).trace(0,2) - D(trK) print mom mom.display()
1-form on the 3-dimensional manifold 'Sigma'
00

Dynamical Einstein equations

Let us first evaluate the symmetric bilinear form kij:=KikK jkk_{ij} := K_{ik} K^k_{\ \, j}:

KK = K['_ik']*Ku['^k_j'] print KK
tensor field of type (0,2) on the 3-dimensional manifold 'Sigma'
KK1 = KK.symmetrize() KK == KK1
True\mathrm{True}
KK = KK1 print KK
field of symmetric bilinear forms on the 3-dimensional manifold 'Sigma'
KK[1,1]
a6r4+6a4r6+9a2r8(a102a8r2+a6r4)y6+(a10+5a6r46a4r6)y4(2a8r2+5a6r4+9a2r8)y23a2r12+r14+6a4r92r13+4a6r6+(3a48a2)r10+(a64a4)r8+(a14+a8r66a12r6a8r5+3(a10+4a8)r44(3a10+2a8)r3+3(a12+4a10)r2)y8+4(a62a4)r7+4(a6r8+a12r5a6r7+(3a8+8a6)r6(9a8+4a6)r5+(3a10+4a8)r4(3a104a8)r3+(a124a10)r2)y6+2(3a4r1012a4r9+2a10r2+16a6r5+(9a6+14a4)r82(9a6+2a4)r7+3(3a82a6)r6+3(a106a8)r4+2(3a102a8)r3)y4+4(a2r123a4r93a2r11+2a8r4+(3a4+2a2)r10+3(a62a4)r8+(3a6+4a4)r7+(a86a6)r6+(3a84a6)r5)y2\frac{a^{6} r^{4} + 6 \, a^{4} r^{6} + 9 \, a^{2} r^{8} - {\left(a^{10} - 2 \, a^{8} r^{2} + a^{6} r^{4}\right)} y^{6} + {\left(a^{10} + 5 \, a^{6} r^{4} - 6 \, a^{4} r^{6}\right)} y^{4} - {\left(2 \, a^{8} r^{2} + 5 \, a^{6} r^{4} + 9 \, a^{2} r^{8}\right)} y^{2}}{3 \, a^{2} r^{12} + r^{14} + 6 \, a^{4} r^{9} - 2 \, r^{13} + 4 \, a^{6} r^{6} + {\left(3 \, a^{4} - 8 \, a^{2}\right)} r^{10} + {\left(a^{6} - 4 \, a^{4}\right)} r^{8} + {\left(a^{14} + a^{8} r^{6} - 6 \, a^{12} r - 6 \, a^{8} r^{5} + 3 \, {\left(a^{10} + 4 \, a^{8}\right)} r^{4} - 4 \, {\left(3 \, a^{10} + 2 \, a^{8}\right)} r^{3} + 3 \, {\left(a^{12} + 4 \, a^{10}\right)} r^{2}\right)} y^{8} + 4 \, {\left(a^{6} - 2 \, a^{4}\right)} r^{7} + 4 \, {\left(a^{6} r^{8} + a^{12} r - 5 \, a^{6} r^{7} + {\left(3 \, a^{8} + 8 \, a^{6}\right)} r^{6} - {\left(9 \, a^{8} + 4 \, a^{6}\right)} r^{5} + {\left(3 \, a^{10} + 4 \, a^{8}\right)} r^{4} - {\left(3 \, a^{10} - 4 \, a^{8}\right)} r^{3} + {\left(a^{12} - 4 \, a^{10}\right)} r^{2}\right)} y^{6} + 2 \, {\left(3 \, a^{4} r^{10} - 12 \, a^{4} r^{9} + 2 \, a^{10} r^{2} + 16 \, a^{6} r^{5} + {\left(9 \, a^{6} + 14 \, a^{4}\right)} r^{8} - 2 \, {\left(9 \, a^{6} + 2 \, a^{4}\right)} r^{7} + 3 \, {\left(3 \, a^{8} - 2 \, a^{6}\right)} r^{6} + 3 \, {\left(a^{10} - 6 \, a^{8}\right)} r^{4} + 2 \, {\left(3 \, a^{10} - 2 \, a^{8}\right)} r^{3}\right)} y^{4} + 4 \, {\left(a^{2} r^{12} - 3 \, a^{4} r^{9} - 3 \, a^{2} r^{11} + 2 \, a^{8} r^{4} + {\left(3 \, a^{4} + 2 \, a^{2}\right)} r^{10} + 3 \, {\left(a^{6} - 2 \, a^{4}\right)} r^{8} + {\left(3 \, a^{6} + 4 \, a^{4}\right)} r^{7} + {\left(a^{8} - 6 \, a^{6}\right)} r^{6} + {\left(3 \, a^{8} - 4 \, a^{6}\right)} r^{5}\right)} y^{2}}
KK[1,2]
2((a8ra6r3)y5(a8r+3a4r5)y3+(a6r3+3a4r5)y)a4r8+2a2r10+r12+4a4r7+4a2r9+4a4r6+(a12+a8r44a10r4a8r3+2(a10+2a8)r2)y8+4(a6r6+a10r2a8r33a6r5+2(a8+a6)r4+(a102a8)r2)y6+2(3a4r8+6a8r36a4r7+2a8r2+2(3a6+a4)r6+(3a88a6)r4)y4+4(2a4r8+a2r10+3a6r5+2a4r7a2r9+2a6r4+(a62a4)r6)y2\frac{2 \, {\left({\left(a^{8} r - a^{6} r^{3}\right)} y^{5} - {\left(a^{8} r + 3 \, a^{4} r^{5}\right)} y^{3} + {\left(a^{6} r^{3} + 3 \, a^{4} r^{5}\right)} y\right)}}{a^{4} r^{8} + 2 \, a^{2} r^{10} + r^{12} + 4 \, a^{4} r^{7} + 4 \, a^{2} r^{9} + 4 \, a^{4} r^{6} + {\left(a^{12} + a^{8} r^{4} - 4 \, a^{10} r - 4 \, a^{8} r^{3} + 2 \, {\left(a^{10} + 2 \, a^{8}\right)} r^{2}\right)} y^{8} + 4 \, {\left(a^{6} r^{6} + a^{10} r - 2 \, a^{8} r^{3} - 3 \, a^{6} r^{5} + 2 \, {\left(a^{8} + a^{6}\right)} r^{4} + {\left(a^{10} - 2 \, a^{8}\right)} r^{2}\right)} y^{6} + 2 \, {\left(3 \, a^{4} r^{8} + 6 \, a^{8} r^{3} - 6 \, a^{4} r^{7} + 2 \, a^{8} r^{2} + 2 \, {\left(3 \, a^{6} + a^{4}\right)} r^{6} + {\left(3 \, a^{8} - 8 \, a^{6}\right)} r^{4}\right)} y^{4} + 4 \, {\left(2 \, a^{4} r^{8} + a^{2} r^{10} + 3 \, a^{6} r^{5} + 2 \, a^{4} r^{7} - a^{2} r^{9} + 2 \, a^{6} r^{4} + {\left(a^{6} - 2 \, a^{4}\right)} r^{6}\right)} y^{2}}
KK[1,3]
00
KK[2,2]
4((a8r2+a6r42a6r3)y4(a8r2+a6r42a6r3)y2)a4r8+2a2r10+r12+4a4r7+4a2r9+4a4r6+(a12+a8r44a10r4a8r3+2(a10+2a8)r2)y8+4(a6r6+a10r2a8r33a6r5+2(a8+a6)r4+(a102a8)r2)y6+2(3a4r8+6a8r36a4r7+2a8r2+2(3a6+a4)r6+(3a88a6)r4)y4+4(2a4r8+a2r10+3a6r5+2a4r7a2r9+2a6r4+(a62a4)r6)y2-\frac{4 \, {\left({\left(a^{8} r^{2} + a^{6} r^{4} - 2 \, a^{6} r^{3}\right)} y^{4} - {\left(a^{8} r^{2} + a^{6} r^{4} - 2 \, a^{6} r^{3}\right)} y^{2}\right)}}{a^{4} r^{8} + 2 \, a^{2} r^{10} + r^{12} + 4 \, a^{4} r^{7} + 4 \, a^{2} r^{9} + 4 \, a^{4} r^{6} + {\left(a^{12} + a^{8} r^{4} - 4 \, a^{10} r - 4 \, a^{8} r^{3} + 2 \, {\left(a^{10} + 2 \, a^{8}\right)} r^{2}\right)} y^{8} + 4 \, {\left(a^{6} r^{6} + a^{10} r - 2 \, a^{8} r^{3} - 3 \, a^{6} r^{5} + 2 \, {\left(a^{8} + a^{6}\right)} r^{4} + {\left(a^{10} - 2 \, a^{8}\right)} r^{2}\right)} y^{6} + 2 \, {\left(3 \, a^{4} r^{8} + 6 \, a^{8} r^{3} - 6 \, a^{4} r^{7} + 2 \, a^{8} r^{2} + 2 \, {\left(3 \, a^{6} + a^{4}\right)} r^{6} + {\left(3 \, a^{8} - 8 \, a^{6}\right)} r^{4}\right)} y^{4} + 4 \, {\left(2 \, a^{4} r^{8} + a^{2} r^{10} + 3 \, a^{6} r^{5} + 2 \, a^{4} r^{7} - a^{2} r^{9} + 2 \, a^{6} r^{4} + {\left(a^{6} - 2 \, a^{4}\right)} r^{6}\right)} y^{2}}
KK[2,3]
00
KK[3,3]
a6r4+6a4r6+9a2r8+(a106a8r23a6r4+8a6r3)y82(a107a8r23a6r43a4r6+12a6r3)y6+(a1010a8r22a6r46a4r6+9a2r8+24a6r3)y4+2(a8r2a6r43a4r69a2r84a6r3)y2a2r10+r12+2a2r9+(a12+a10r22a10r)y10+(5a10r2+5a8r4+2a10r8a8r3)y8+2(5a8r4+5a6r6+4a8r36a6r5)y6+2(5a6r6+5a4r8+6a6r54a4r7)y4+(5a4r8+5a2r10+8a4r72a2r9)y2\frac{a^{6} r^{4} + 6 \, a^{4} r^{6} + 9 \, a^{2} r^{8} + {\left(a^{10} - 6 \, a^{8} r^{2} - 3 \, a^{6} r^{4} + 8 \, a^{6} r^{3}\right)} y^{8} - 2 \, {\left(a^{10} - 7 \, a^{8} r^{2} - 3 \, a^{6} r^{4} - 3 \, a^{4} r^{6} + 12 \, a^{6} r^{3}\right)} y^{6} + {\left(a^{10} - 10 \, a^{8} r^{2} - 2 \, a^{6} r^{4} - 6 \, a^{4} r^{6} + 9 \, a^{2} r^{8} + 24 \, a^{6} r^{3}\right)} y^{4} + 2 \, {\left(a^{8} r^{2} - a^{6} r^{4} - 3 \, a^{4} r^{6} - 9 \, a^{2} r^{8} - 4 \, a^{6} r^{3}\right)} y^{2}}{a^{2} r^{10} + r^{12} + 2 \, a^{2} r^{9} + {\left(a^{12} + a^{10} r^{2} - 2 \, a^{10} r\right)} y^{10} + {\left(5 \, a^{10} r^{2} + 5 \, a^{8} r^{4} + 2 \, a^{10} r - 8 \, a^{8} r^{3}\right)} y^{8} + 2 \, {\left(5 \, a^{8} r^{4} + 5 \, a^{6} r^{6} + 4 \, a^{8} r^{3} - 6 \, a^{6} r^{5}\right)} y^{6} + 2 \, {\left(5 \, a^{6} r^{6} + 5 \, a^{4} r^{8} + 6 \, a^{6} r^{5} - 4 \, a^{4} r^{7}\right)} y^{4} + {\left(5 \, a^{4} r^{8} + 5 \, a^{2} r^{10} + 8 \, a^{4} r^{7} - 2 \, a^{2} r^{9}\right)} y^{2}}

In vacuum and for stationary spacetimes, the dynamical Einstein equations are LβKijDiDjN+N(Rij+KKij2KikK jk)=0 \mathcal{L}_\beta K_{ij} - D_i D_j N + N \left( R_{ij} + K K_{ij} - 2 K_{ik} K^k_{\ \, j}\right) = 0

dyn = K.lie_der(b) - D(D(N)) + N*( Ric + trK*K - 2*KK ) print dyn dyn.display()
tensor field of type (0,2) on the 3-dimensional manifold 'Sigma'
00

Hence, we have checked that all the vacuum 3+1 Einstein equations are fulfilled.

Electric and magnetic parts of the Weyl tensor

The electric part is the bilinear form EE given by Eij=Rij+KKijKikK jk E_{ij} = R_{ij} + K K_{ij} - K_{ik} K^k_{\ \, j}

E = Ric + trK*K - KK print E
field of symmetric bilinear forms on the 3-dimensional manifold 'Sigma'
E[1,1]
3a4r3+5a2r5+2r72a2r4+3(a6r+a4r32a4r2)y4(9a6r+16a4r3+7a2r56a4r22a2r4)y22a2r8+r10+2a4r52r9+(a44a2)r6+(a10+a6r44a8r4a6r3+2(a8+2a6)r2)y6+(3a4r6+2a8r8a6r310a4r5+2(3a6+4a4)r4+(3a84a6)r2)y4+(3a2r8+4a6r34a4r58a2r7+2(3a4+2a2)r6+(3a68a4)r4)y2-\frac{3 \, a^{4} r^{3} + 5 \, a^{2} r^{5} + 2 \, r^{7} - 2 \, a^{2} r^{4} + 3 \, {\left(a^{6} r + a^{4} r^{3} - 2 \, a^{4} r^{2}\right)} y^{4} - {\left(9 \, a^{6} r + 16 \, a^{4} r^{3} + 7 \, a^{2} r^{5} - 6 \, a^{4} r^{2} - 2 \, a^{2} r^{4}\right)} y^{2}}{2 \, a^{2} r^{8} + r^{10} + 2 \, a^{4} r^{5} - 2 \, r^{9} + {\left(a^{4} - 4 \, a^{2}\right)} r^{6} + {\left(a^{10} + a^{6} r^{4} - 4 \, a^{8} r - 4 \, a^{6} r^{3} + 2 \, {\left(a^{8} + 2 \, a^{6}\right)} r^{2}\right)} y^{6} + {\left(3 \, a^{4} r^{6} + 2 \, a^{8} r - 8 \, a^{6} r^{3} - 10 \, a^{4} r^{5} + 2 \, {\left(3 \, a^{6} + 4 \, a^{4}\right)} r^{4} + {\left(3 \, a^{8} - 4 \, a^{6}\right)} r^{2}\right)} y^{4} + {\left(3 \, a^{2} r^{8} + 4 \, a^{6} r^{3} - 4 \, a^{4} r^{5} - 8 \, a^{2} r^{7} + 2 \, {\left(3 \, a^{4} + 2 \, a^{2}\right)} r^{6} + {\left(3 \, a^{6} - 8 \, a^{4}\right)} r^{4}\right)} y^{2}}
E[1,1].factor()
(a4y2+a2r2y22a2ry23a45a2r22r4+2a2r)(3a2y2r2)r(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)2(a2+r22r)-\frac{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} - 3 \, a^{4} - 5 \, a^{2} r^{2} - 2 \, r^{4} + 2 \, a^{2} r\right)} {\left(3 \, a^{2} y^{2} - r^{2}\right)} r}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{2} {\left(a^{2} + r^{2} - 2 \, r\right)}}
E[1,2]
3((a6+a4r2)y33(a4r2+a2r4)y)a2r6+r8+2a2r5+(a8+a6r22a6r)y6+(3a6r2+3a4r4+2a6r4a4r3)y4+(3a4r4+3a2r6+4a4r32a2r5)y2\frac{3 \, {\left({\left(a^{6} + a^{4} r^{2}\right)} y^{3} - 3 \, {\left(a^{4} r^{2} + a^{2} r^{4}\right)} y\right)}}{a^{2} r^{6} + r^{8} + 2 \, a^{2} r^{5} + {\left(a^{8} + a^{6} r^{2} - 2 \, a^{6} r\right)} y^{6} + {\left(3 \, a^{6} r^{2} + 3 \, a^{4} r^{4} + 2 \, a^{6} r - 4 \, a^{4} r^{3}\right)} y^{4} + {\left(3 \, a^{4} r^{4} + 3 \, a^{2} r^{6} + 4 \, a^{4} r^{3} - 2 \, a^{2} r^{5}\right)} y^{2}}
E[1,2].factor()
3(a2y23r2)(a2+r2)a2y(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)2\frac{3 \, {\left(a^{2} y^{2} - 3 \, r^{2}\right)} {\left(a^{2} + r^{2}\right)} a^{2} y}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{2}}
E[1,3]
00
E[2,2]
3a4r3+4a2r5+r74a2r4+6(a6r+a4r32a4r2)y4(9a6r+14a4r3+5a2r512a4r24a2r4)y2(a8+a6r22a6r)y8a2r6r82a2r5(a82a6r23a4r44a6r+4a4r3)y6(3a6r23a2r6+2a6r8a4r3+2a2r5)y4(3a4r4+2a2r6r8+4a4r34a2r5)y2-\frac{3 \, a^{4} r^{3} + 4 \, a^{2} r^{5} + r^{7} - 4 \, a^{2} r^{4} + 6 \, {\left(a^{6} r + a^{4} r^{3} - 2 \, a^{4} r^{2}\right)} y^{4} - {\left(9 \, a^{6} r + 14 \, a^{4} r^{3} + 5 \, a^{2} r^{5} - 12 \, a^{4} r^{2} - 4 \, a^{2} r^{4}\right)} y^{2}}{{\left(a^{8} + a^{6} r^{2} - 2 \, a^{6} r\right)} y^{8} - a^{2} r^{6} - r^{8} - 2 \, a^{2} r^{5} - {\left(a^{8} - 2 \, a^{6} r^{2} - 3 \, a^{4} r^{4} - 4 \, a^{6} r + 4 \, a^{4} r^{3}\right)} y^{6} - {\left(3 \, a^{6} r^{2} - 3 \, a^{2} r^{6} + 2 \, a^{6} r - 8 \, a^{4} r^{3} + 2 \, a^{2} r^{5}\right)} y^{4} - {\left(3 \, a^{4} r^{4} + 2 \, a^{2} r^{6} - r^{8} + 4 \, a^{4} r^{3} - 4 \, a^{2} r^{5}\right)} y^{2}}
E[2,2].factor()
(2a4y2+2a2r2y24a2ry23a44a2r2r4+4a2r)(3a2y2r2)r(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)2(y+1)(y1)-\frac{{\left(2 \, a^{4} y^{2} + 2 \, a^{2} r^{2} y^{2} - 4 \, a^{2} r y^{2} - 3 \, a^{4} - 4 \, a^{2} r^{2} - r^{4} + 4 \, a^{2} r\right)} {\left(3 \, a^{2} y^{2} - r^{2}\right)} r}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{2} {\left(y + 1\right)} {\left(y - 1\right)}}
E[2,3]
00
E[3,3]
a2r5+r7+3(a6r+a4r32a4r2)y6+2a2r4(3a6r+a4r32a2r512a4r22a2r4)y4(2a4r3+3a2r5+r7+6a4r2+4a2r4)y2a8y8+4a6r2y6+6a4r4y4+4a2r6y2+r8\frac{a^{2} r^{5} + r^{7} + 3 \, {\left(a^{6} r + a^{4} r^{3} - 2 \, a^{4} r^{2}\right)} y^{6} + 2 \, a^{2} r^{4} - {\left(3 \, a^{6} r + a^{4} r^{3} - 2 \, a^{2} r^{5} - 12 \, a^{4} r^{2} - 2 \, a^{2} r^{4}\right)} y^{4} - {\left(2 \, a^{4} r^{3} + 3 \, a^{2} r^{5} + r^{7} + 6 \, a^{4} r^{2} + 4 \, a^{2} r^{4}\right)} y^{2}}{a^{8} y^{8} + 4 \, a^{6} r^{2} y^{6} + 6 \, a^{4} r^{4} y^{4} + 4 \, a^{2} r^{6} y^{2} + r^{8}}
E[3,3].factor()
(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(3a2y2r2)r(y+1)(y1)(a2y2+r2)4\frac{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(3 \, a^{2} y^{2} - r^{2}\right)} r {\left(y + 1\right)} {\left(y - 1\right)}}{{\left(a^{2} y^{2} + r^{2}\right)}^{4}}

The magnetic part is the bilinear form BB defined by Bij=ϵ likDkK jl, B_{ij} = \epsilon^k_{\ \, l i} D_k K^l_{\ \, j},

where ϵ lik\epsilon^k_{\ \, l i} are the components of the type-(1,2) tensor ϵ\epsilon^\sharp, related to the Levi-Civita alternating tensor ϵ\epsilon associated with γ\gamma by ϵ lik=γkmϵmli\epsilon^k_{\ \, l i} = \gamma^{km} \epsilon_{m l i}. In SageManifolds, ϵ\epsilon is obtained by the command volume_form() and ϵ\epsilon^\sharp by the command volume_form(1) (1 = 1 index raised):

eps = gam.volume_form() print eps ; eps.display()
3-form 'eps_gam' on the 3-dimensional manifold 'Sigma'
ϵγ=(a2r2+r4+2a2r+(a4+a2r22a2r)y2a2y2+r2a2+r22r)drdydϕ\epsilon_{\gamma} = \left( \frac{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} y^{2} + r^{2}}}{\sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} r\wedge \mathrm{d} y\wedge \mathrm{d} {\phi}
epsu = gam.volume_form(1) print epsu ; epsu.display()
tensor field of type (1,2) on the 3-dimensional manifold 'Sigma'
(a2r2+r4+2a2r+(a4+a2r22a2r)y2a2+r22ra2y2+r2)rdydϕ+(a2r2+r4+2a2r+(a4+a2r22a2r)y2a2+r22ra2y2+r2)rdϕdy+(a2r2+r4+2a2r+(a4+a2r22a2r)y2(y21)a2y2+r2a2+r22r)ydrdϕ+(a2r2+r4+2a2r+(a4+a2r22a2r)y2(y21)a2y2+r2a2+r22r)ydϕdr+(a2r2+r4+2a2r+(a4+a2r22a2r)y2(a2y2+r2)32((a4+a2r22a2r)y4a2r2r42a2r(a4r44a2r)y2)a2+r22r)ϕdrdy+(a2r2+r4+2a2r+(a4+a2r22a2r)y2(a2y2+r2)32((a4+a2r22a2r)y4a2r2r42a2r(a4r44a2r)y2)a2+r22r)ϕdydr\left( \frac{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}}{\sqrt{a^{2} y^{2} + r^{2}}} \right) \frac{\partial}{\partial r }\otimes \mathrm{d} y\otimes \mathrm{d} {\phi} + \left( -\frac{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}}{\sqrt{a^{2} y^{2} + r^{2}}} \right) \frac{\partial}{\partial r }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} y + \left( \frac{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left(y^{2} - 1\right)}}{\sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \frac{\partial}{\partial y }\otimes \mathrm{d} r\otimes \mathrm{d} {\phi} + \left( -\frac{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left(y^{2} - 1\right)}}{\sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \frac{\partial}{\partial y }\otimes \mathrm{d} {\phi}\otimes \mathrm{d} r + \left( -\frac{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left(a^{2} y^{2} + r^{2}\right)}^{\frac{3}{2}}}{{\left({\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{4} - a^{2} r^{2} - r^{4} - 2 \, a^{2} r - {\left(a^{4} - r^{4} - 4 \, a^{2} r\right)} y^{2}\right)} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} r\otimes \mathrm{d} y + \left( \frac{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left(a^{2} y^{2} + r^{2}\right)}^{\frac{3}{2}}}{{\left({\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{4} - a^{2} r^{2} - r^{4} - 2 \, a^{2} r - {\left(a^{4} - r^{4} - 4 \, a^{2} r\right)} y^{2}\right)} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \frac{\partial}{\partial {\phi} }\otimes \mathrm{d} y\otimes \mathrm{d} r
DKu = D(Ku) B = epsu['^k_li']*DKu['^l_jk'] print B
tensor field of type (0,2) on the 3-dimensional manifold 'Sigma'

Let us check that BB is symmetric:

B1 = B.symmetrize() B == B1
True\mathrm{True}

Accordingly, we set

B = B1 B.set_name('B') print B
field of symmetric bilinear forms 'B' on the 3-dimensional manifold 'Sigma'
B[1,1]
(a7+a5r22a5r)y5(3a7+8a5r2+5a3r42a5r6a3r3)y3+3(3a5r2+5a3r4+2ar62a3r3)y2a2r8+r10+2a4r52r9+(a44a2)r6+(a10+a6r44a8r4a6r3+2(a8+2a6)r2)y6+(3a4r6+2a8r8a6r310a4r5+2(3a6+4a4)r4+(3a84a6)r2)y4+(3a2r8+4a6r34a4r58a2r7+2(3a4+2a2)r6+(3a68a4)r4)y2-\frac{{\left(a^{7} + a^{5} r^{2} - 2 \, a^{5} r\right)} y^{5} - {\left(3 \, a^{7} + 8 \, a^{5} r^{2} + 5 \, a^{3} r^{4} - 2 \, a^{5} r - 6 \, a^{3} r^{3}\right)} y^{3} + 3 \, {\left(3 \, a^{5} r^{2} + 5 \, a^{3} r^{4} + 2 \, a r^{6} - 2 \, a^{3} r^{3}\right)} y}{2 \, a^{2} r^{8} + r^{10} + 2 \, a^{4} r^{5} - 2 \, r^{9} + {\left(a^{4} - 4 \, a^{2}\right)} r^{6} + {\left(a^{10} + a^{6} r^{4} - 4 \, a^{8} r - 4 \, a^{6} r^{3} + 2 \, {\left(a^{8} + 2 \, a^{6}\right)} r^{2}\right)} y^{6} + {\left(3 \, a^{4} r^{6} + 2 \, a^{8} r - 8 \, a^{6} r^{3} - 10 \, a^{4} r^{5} + 2 \, {\left(3 \, a^{6} + 4 \, a^{4}\right)} r^{4} + {\left(3 \, a^{8} - 4 \, a^{6}\right)} r^{2}\right)} y^{4} + {\left(3 \, a^{2} r^{8} + 4 \, a^{6} r^{3} - 4 \, a^{4} r^{5} - 8 \, a^{2} r^{7} + 2 \, {\left(3 \, a^{4} + 2 \, a^{2}\right)} r^{6} + {\left(3 \, a^{6} - 8 \, a^{4}\right)} r^{4}\right)} y^{2}}
B[1,1].factor()
(a4y2+a2r2y22a2ry23a45a2r22r4+2a2r)(a2y23r2)ay(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)2(a2+r22r)-\frac{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} - 3 \, a^{4} - 5 \, a^{2} r^{2} - 2 \, r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} - 3 \, r^{2}\right)} a y}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{2} {\left(a^{2} + r^{2} - 2 \, r\right)}}
B[1,2]
3(a3r3+ar53(a5r+a3r3)y2)a2r6+r8+2a2r5+(a8+a6r22a6r)y6+(3a6r2+3a4r4+2a6r4a4r3)y4+(3a4r4+3a2r6+4a4r32a2r5)y2\frac{3 \, {\left(a^{3} r^{3} + a r^{5} - 3 \, {\left(a^{5} r + a^{3} r^{3}\right)} y^{2}\right)}}{a^{2} r^{6} + r^{8} + 2 \, a^{2} r^{5} + {\left(a^{8} + a^{6} r^{2} - 2 \, a^{6} r\right)} y^{6} + {\left(3 \, a^{6} r^{2} + 3 \, a^{4} r^{4} + 2 \, a^{6} r - 4 \, a^{4} r^{3}\right)} y^{4} + {\left(3 \, a^{4} r^{4} + 3 \, a^{2} r^{6} + 4 \, a^{4} r^{3} - 2 \, a^{2} r^{5}\right)} y^{2}}
B[1,2].factor()
3(3a2y2r2)(a2+r2)ar(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)2-\frac{3 \, {\left(3 \, a^{2} y^{2} - r^{2}\right)} {\left(a^{2} + r^{2}\right)} a r}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{2}}
B[1,3]
00
B[2,2]
2(a7+a5r22a5r)y5(3a7+10a5r2+7a3r44a5r12a3r3)y3+3(3a5r2+4a3r4+ar64a3r3)y(a8+a6r22a6r)y8a2r6r82a2r5(a82a6r23a4r44a6r+4a4r3)y6(3a6r23a2r6+2a6r8a4r3+2a2r5)y4(3a4r4+2a2r6r8+4a4r34a2r5)y2-\frac{2 \, {\left(a^{7} + a^{5} r^{2} - 2 \, a^{5} r\right)} y^{5} - {\left(3 \, a^{7} + 10 \, a^{5} r^{2} + 7 \, a^{3} r^{4} - 4 \, a^{5} r - 12 \, a^{3} r^{3}\right)} y^{3} + 3 \, {\left(3 \, a^{5} r^{2} + 4 \, a^{3} r^{4} + a r^{6} - 4 \, a^{3} r^{3}\right)} y}{{\left(a^{8} + a^{6} r^{2} - 2 \, a^{6} r\right)} y^{8} - a^{2} r^{6} - r^{8} - 2 \, a^{2} r^{5} - {\left(a^{8} - 2 \, a^{6} r^{2} - 3 \, a^{4} r^{4} - 4 \, a^{6} r + 4 \, a^{4} r^{3}\right)} y^{6} - {\left(3 \, a^{6} r^{2} - 3 \, a^{2} r^{6} + 2 \, a^{6} r - 8 \, a^{4} r^{3} + 2 \, a^{2} r^{5}\right)} y^{4} - {\left(3 \, a^{4} r^{4} + 2 \, a^{2} r^{6} - r^{8} + 4 \, a^{4} r^{3} - 4 \, a^{2} r^{5}\right)} y^{2}}
B[2,2].factor()
(2a4y2+2a2r2y24a2ry23a44a2r2r4+4a2r)(a2y23r2)ay(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)2(y+1)(y1)-\frac{{\left(2 \, a^{4} y^{2} + 2 \, a^{2} r^{2} y^{2} - 4 \, a^{2} r y^{2} - 3 \, a^{4} - 4 \, a^{2} r^{2} - r^{4} + 4 \, a^{2} r\right)} {\left(a^{2} y^{2} - 3 \, r^{2}\right)} a y}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{2} {\left(y + 1\right)} {\left(y - 1\right)}}
B[2,3]
00
B[3,3]
(a7+a5r22a5r)y7(a7+3a5r2+2a3r44a5r6a3r3)y5+(2a5r2a3r43ar62a5r12a3r3)y3+3(a3r4+ar6+2a3r3)ya8y8+4a6r2y6+6a4r4y4+4a2r6y2+r8\frac{{\left(a^{7} + a^{5} r^{2} - 2 \, a^{5} r\right)} y^{7} - {\left(a^{7} + 3 \, a^{5} r^{2} + 2 \, a^{3} r^{4} - 4 \, a^{5} r - 6 \, a^{3} r^{3}\right)} y^{5} + {\left(2 \, a^{5} r^{2} - a^{3} r^{4} - 3 \, a r^{6} - 2 \, a^{5} r - 12 \, a^{3} r^{3}\right)} y^{3} + 3 \, {\left(a^{3} r^{4} + a r^{6} + 2 \, a^{3} r^{3}\right)} y}{a^{8} y^{8} + 4 \, a^{6} r^{2} y^{6} + 6 \, a^{4} r^{4} y^{4} + 4 \, a^{2} r^{6} y^{2} + r^{8}}
B[3,3].factor()
(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y23r2)a(y+1)(y1)y(a2y2+r2)4\frac{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} - 3 \, r^{2}\right)} a {\left(y + 1\right)} {\left(y - 1\right)} y}{{\left(a^{2} y^{2} + r^{2}\right)}^{4}}

3+1 decomposition of the Simon-Mars tensor

We follow the computation presented in arXiv:1412.6542. We start by the tensor EE^\sharp of components E jiE^i_ {\ \, j}:

Eu = E.up(gam, 0) print Eu
tensor field of type (1,1) on the 3-dimensional manifold 'Sigma'

Tensor BB^\sharp of components B jiB^i_{\ \, j}:

Bu = B.up(gam, 0) print Bu
tensor field of type (1,1) on the 3-dimensional manifold 'Sigma'

1-form β\beta^\flat of components βi\beta_i and its exterior derivative:

bd = b.down(gam) xdb = bd.exterior_der() print xdb ; xdb.display()
2-form on the 3-dimensional manifold 'Sigma'
(2(a3y4+ar2(a3+ar2)y2)a4y4+2a2r2y2+r4)drdϕ+(4(a3r+ar3)ya4y4+2a2r2y2+r4)dydϕ\left( \frac{2 \, {\left(a^{3} y^{4} + a r^{2} - {\left(a^{3} + a r^{2}\right)} y^{2}\right)}}{a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}} \right) \mathrm{d} r\wedge \mathrm{d} {\phi} + \left( \frac{4 \, {\left(a^{3} r + a r^{3}\right)} y}{a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}} \right) \mathrm{d} y\wedge \mathrm{d} {\phi}

Scalar square of shift βiβi\beta_i \beta^i:

b2 = bd(b) print b2 ; b2.display()
scalar field on the 3-dimensional manifold 'Sigma'
ΣR(r,y,ϕ)4(a2r2y2a2r2)a2r4+r6+2a2r3+(a6+a4r22a4r)y4+2(a4r2+a2r4+a4ra2r3)y2\begin{array}{llcl} & \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & -\frac{4 \, {\left(a^{2} r^{2} y^{2} - a^{2} r^{2}\right)}}{a^{2} r^{4} + r^{6} + 2 \, a^{2} r^{3} + {\left(a^{6} + a^{4} r^{2} - 2 \, a^{4} r\right)} y^{4} + 2 \, {\left(a^{4} r^{2} + a^{2} r^{4} + a^{4} r - a^{2} r^{3}\right)} y^{2}} \end{array}

Scalar Y=E(β,β)=EijβiβjY = E(\beta,\beta) = E_{ij} \beta^i \beta^j:

Ebb = E(b,b) Y = Ebb print Y ; Y.display()
scalar field on the 3-dimensional manifold 'Sigma'
ΣR(r,y,ϕ)4(3a4r3y4+a2r5(3a4r3+a2r5)y2)a2r10+r12+2a2r9+(a12+a10r22a10r)y10+(5a10r2+5a8r4+2a10r8a8r3)y8+2(5a8r4+5a6r6+4a8r36a6r5)y6+2(5a6r6+5a4r8+6a6r54a4r7)y4+(5a4r8+5a2r10+8a4r72a2r9)y2\begin{array}{llcl} & \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & \frac{4 \, {\left(3 \, a^{4} r^{3} y^{4} + a^{2} r^{5} - {\left(3 \, a^{4} r^{3} + a^{2} r^{5}\right)} y^{2}\right)}}{a^{2} r^{10} + r^{12} + 2 \, a^{2} r^{9} + {\left(a^{12} + a^{10} r^{2} - 2 \, a^{10} r\right)} y^{10} + {\left(5 \, a^{10} r^{2} + 5 \, a^{8} r^{4} + 2 \, a^{10} r - 8 \, a^{8} r^{3}\right)} y^{8} + 2 \, {\left(5 \, a^{8} r^{4} + 5 \, a^{6} r^{6} + 4 \, a^{8} r^{3} - 6 \, a^{6} r^{5}\right)} y^{6} + 2 \, {\left(5 \, a^{6} r^{6} + 5 \, a^{4} r^{8} + 6 \, a^{6} r^{5} - 4 \, a^{4} r^{7}\right)} y^{4} + {\left(5 \, a^{4} r^{8} + 5 \, a^{2} r^{10} + 8 \, a^{4} r^{7} - 2 \, a^{2} r^{9}\right)} y^{2}} \end{array}
Ebb.function_chart().factor()
4(3a2y2r2)a2r3(y+1)(y1)(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)4\frac{4 \, {\left(3 \, a^{2} y^{2} - r^{2}\right)} a^{2} r^{3} {\left(y + 1\right)} {\left(y - 1\right)}}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{4}}
Ebb.display()
ΣR(r,y,ϕ)4(3a2y2r2)a2r3(y+1)(y1)(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)4\begin{array}{llcl} & \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & \frac{4 \, {\left(3 \, a^{2} y^{2} - r^{2}\right)} a^{2} r^{3} {\left(y + 1\right)} {\left(y - 1\right)}}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{4}} \end{array}

Scalar Yˉ=B(β,β)=Bijβiβj\bar Y = B(\beta,\beta) = B_{ij}\beta^i \beta^j:

Bbb = B(b,b) Y_bar = Bbb print Y_bar ; Y_bar.display()
scalar field 'B(beta,beta)' on the 3-dimensional manifold 'Sigma'
B(β,β):ΣR(r,y,ϕ)4(a5r2y5+3a3r4y(a5r2+3a3r4)y3)a2r10+r12+2a2r9+(a12+a10r22a10r)y10+(5a10r2+5a8r4+2a10r8a8r3)y8+2(5a8r4+5a6r6+4a8r36a6r5)y6+2(5a6r6+5a4r8+6a6r54a4r7)y4+(5a4r8+5a2r10+8a4r72a2r9)y2\begin{array}{llcl} B\left(\beta,\beta\right):& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & \frac{4 \, {\left(a^{5} r^{2} y^{5} + 3 \, a^{3} r^{4} y - {\left(a^{5} r^{2} + 3 \, a^{3} r^{4}\right)} y^{3}\right)}}{a^{2} r^{10} + r^{12} + 2 \, a^{2} r^{9} + {\left(a^{12} + a^{10} r^{2} - 2 \, a^{10} r\right)} y^{10} + {\left(5 \, a^{10} r^{2} + 5 \, a^{8} r^{4} + 2 \, a^{10} r - 8 \, a^{8} r^{3}\right)} y^{8} + 2 \, {\left(5 \, a^{8} r^{4} + 5 \, a^{6} r^{6} + 4 \, a^{8} r^{3} - 6 \, a^{6} r^{5}\right)} y^{6} + 2 \, {\left(5 \, a^{6} r^{6} + 5 \, a^{4} r^{8} + 6 \, a^{6} r^{5} - 4 \, a^{4} r^{7}\right)} y^{4} + {\left(5 \, a^{4} r^{8} + 5 \, a^{2} r^{10} + 8 \, a^{4} r^{7} - 2 \, a^{2} r^{9}\right)} y^{2}} \end{array}
Bbb.function_chart().factor()
4(a2y23r2)a3r2(y+1)(y1)y(a4y2+a2r2y22a2ry2+a2r2+r4+2a2r)(a2y2+r2)4\frac{4 \, {\left(a^{2} y^{2} - 3 \, r^{2}\right)} a^{3} r^{2} {\left(y + 1\right)} {\left(y - 1\right)} y}{{\left(a^{4} y^{2} + a^{2} r^{2} y^{2} - 2 \, a^{2} r y^{2} + a^{2} r^{2} + r^{4} + 2 \, a^{2} r\right)} {\left(a^{2} y^{2} + r^{2}\right)}^{4}}

1-form of components Ebi=EijβjEb_i = E_{ij} \beta^j:

Eb = E.contract(b) print Eb ; Eb.display()
1-form on the 3-dimensional manifold 'Sigma'
(2(3a3r2y4+ar4(3a3r2+ar4)y2)a8y8+4a6r2y6+6a4r4y4+4a2r6y2+r8)dϕ\left( -\frac{2 \, {\left(3 \, a^{3} r^{2} y^{4} + a r^{4} - {\left(3 \, a^{3} r^{2} + a r^{4}\right)} y^{2}\right)}}{a^{8} y^{8} + 4 \, a^{6} r^{2} y^{6} + 6 \, a^{4} r^{4} y^{4} + 4 \, a^{2} r^{6} y^{2} + r^{8}} \right) \mathrm{d} {\phi}

Vector field of components Eubi=E jiβjEub^i = E^i_{\ \, j} \beta^j:

Eub = Eu.contract(b) print Eub ; Eub.display()
vector field on the 3-dimensional manifold 'Sigma'
(2(3a3r2y2ar4)a2r8+r10+2a2r7+(a10+a8r22a8r)y8+2(2a8r2+2a6r4+a8r3a6r3)y6+6(a6r4+a4r6+a6r3a4r5)y4+2(2a4r6+2a2r8+3a4r5a2r7)y2)ϕ\left( \frac{2 \, {\left(3 \, a^{3} r^{2} y^{2} - a r^{4}\right)}}{a^{2} r^{8} + r^{10} + 2 \, a^{2} r^{7} + {\left(a^{10} + a^{8} r^{2} - 2 \, a^{8} r\right)} y^{8} + 2 \, {\left(2 \, a^{8} r^{2} + 2 \, a^{6} r^{4} + a^{8} r - 3 \, a^{6} r^{3}\right)} y^{6} + 6 \, {\left(a^{6} r^{4} + a^{4} r^{6} + a^{6} r^{3} - a^{4} r^{5}\right)} y^{4} + 2 \, {\left(2 \, a^{4} r^{6} + 2 \, a^{2} r^{8} + 3 \, a^{4} r^{5} - a^{2} r^{7}\right)} y^{2}} \right) \frac{\partial}{\partial {\phi} }

1-form of components Bbi=BijβjBb_i = B_{ij} \beta^j:

Bb = B.contract(b) print Bb ; Bb.display()
1-form on the 3-dimensional manifold 'Sigma'
(2(a4ry5+3a2r3y(a4r+3a2r3)y3)a8y8+4a6r2y6+6a4r4y4+4a2r6y2+r8)dϕ\left( -\frac{2 \, {\left(a^{4} r y^{5} + 3 \, a^{2} r^{3} y - {\left(a^{4} r + 3 \, a^{2} r^{3}\right)} y^{3}\right)}}{a^{8} y^{8} + 4 \, a^{6} r^{2} y^{6} + 6 \, a^{4} r^{4} y^{4} + 4 \, a^{2} r^{6} y^{2} + r^{8}} \right) \mathrm{d} {\phi}

Vector field of components Bubi=B jiβjBub^i = B^i_{\ \, j} \beta^j:

Bub = Bu.contract(b) print Bub ; Bub.display()
vector field on the 3-dimensional manifold 'Sigma'
(2(a4ry33a2r3y)a2r8+r10+2a2r7+(a10+a8r22a8r)y8+2(2a8r2+2a6r4+a8r3a6r3)y6+6(a6r4+a4r6+a6r3a4r5)y4+2(2a4r6+2a2r8+3a4r5a2r7)y2)ϕ\left( \frac{2 \, {\left(a^{4} r y^{3} - 3 \, a^{2} r^{3} y\right)}}{a^{2} r^{8} + r^{10} + 2 \, a^{2} r^{7} + {\left(a^{10} + a^{8} r^{2} - 2 \, a^{8} r\right)} y^{8} + 2 \, {\left(2 \, a^{8} r^{2} + 2 \, a^{6} r^{4} + a^{8} r - 3 \, a^{6} r^{3}\right)} y^{6} + 6 \, {\left(a^{6} r^{4} + a^{4} r^{6} + a^{6} r^{3} - a^{4} r^{5}\right)} y^{4} + 2 \, {\left(2 \, a^{4} r^{6} + 2 \, a^{2} r^{8} + 3 \, a^{4} r^{5} - a^{2} r^{7}\right)} y^{2}} \right) \frac{\partial}{\partial {\phi} }

Vector field of components Kubi=K jiβjKub^i = K^i_{\ \, j} \beta^j:

Kub = Ku.contract(b) print Kub ; Kub.display()
vector field on the 3-dimensional manifold 'Sigma'
(2(a4r3+3a2r5+(a6ra4r3)y4(a6r+3a2r5)y2)a2+r22r(a2r6+r8+2a2r5+(a8+a6r22a6r)y6+(3a6r2+3a4r4+2a6r4a4r3)y4+(3a4r4+3a2r6+4a4r32a2r5)y2)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2y2+r2)r+(4(a4r2y52a4r2y3+a4r2y)a2+r22r(a2r6+r8+2a2r5+(a8+a6r22a6r)y6+(3a6r2+3a4r4+2a6r4a4r3)y4+(3a4r4+3a2r6+4a4r32a2r5)y2)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2y2+r2)y\left( -\frac{2 \, {\left(a^{4} r^{3} + 3 \, a^{2} r^{5} + {\left(a^{6} r - a^{4} r^{3}\right)} y^{4} - {\left(a^{6} r + 3 \, a^{2} r^{5}\right)} y^{2}\right)} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{2} r^{6} + r^{8} + 2 \, a^{2} r^{5} + {\left(a^{8} + a^{6} r^{2} - 2 \, a^{6} r\right)} y^{6} + {\left(3 \, a^{6} r^{2} + 3 \, a^{4} r^{4} + 2 \, a^{6} r - 4 \, a^{4} r^{3}\right)} y^{4} + {\left(3 \, a^{4} r^{4} + 3 \, a^{2} r^{6} + 4 \, a^{4} r^{3} - 2 \, a^{2} r^{5}\right)} y^{2}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} y^{2} + r^{2}}} \right) \frac{\partial}{\partial r } + \left( -\frac{4 \, {\left(a^{4} r^{2} y^{5} - 2 \, a^{4} r^{2} y^{3} + a^{4} r^{2} y\right)} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{2} r^{6} + r^{8} + 2 \, a^{2} r^{5} + {\left(a^{8} + a^{6} r^{2} - 2 \, a^{6} r\right)} y^{6} + {\left(3 \, a^{6} r^{2} + 3 \, a^{4} r^{4} + 2 \, a^{6} r - 4 \, a^{4} r^{3}\right)} y^{4} + {\left(3 \, a^{4} r^{4} + 3 \, a^{2} r^{6} + 4 \, a^{4} r^{3} - 2 \, a^{2} r^{5}\right)} y^{2}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} y^{2} + r^{2}}} \right) \frac{\partial}{\partial y }
T = 2*b(N) - 2*K(b,b) print T ; T.display()
scalar field 'zero' on the 3-dimensional manifold 'Sigma'
0:ΣR(r,y,ϕ)0\begin{array}{llcl} 0:& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & 0 \end{array}
Db = D(b) # Db^i_j = D_j b^i Dbu = Db.up(gam, 1) # Dbu^{ij} = D^j b^i bDb = b*Dbu # bDb^{ijk} = b^i D^k b^j T_bar = eps['_ijk']*bDb['^ikj'] print T_bar ; T_bar.display()
scalar field on the 3-dimensional manifold 'Sigma'
ΣR(r,y,ϕ)0\begin{array}{llcl} & \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & 0 \end{array}
epsb = eps.contract(b) print epsb epsb.display()
2-form on the 3-dimensional manifold 'Sigma'
(2a2y2+r2ara2r2+r4+2a2r+(a4+a2r22a2r)y2a2+r22r)drdy\left( -\frac{2 \, \sqrt{a^{2} y^{2} + r^{2}} a r}{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}} \right) \mathrm{d} r\wedge \mathrm{d} y
epsB = eps['_ijl']*Bu['^l_k'] print epsB
tensor field of type (0,3) on the 3-dimensional manifold 'Sigma'
epsB.symmetries()
no symmetry; antisymmetry: (0, 1)
epsB[1,2,3]
(a3y33ar2y)a2r2+r4+2a2r+(a4+a2r22a2r)y2a2y2+r2(a6y6+3a4r2y4+3a2r4y2+r6)a2+r22r-\frac{{\left(a^{3} y^{3} - 3 \, a r^{2} y\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} \sqrt{a^{2} y^{2} + r^{2}}}{{\left(a^{6} y^{6} + 3 \, a^{4} r^{2} y^{4} + 3 \, a^{2} r^{4} y^{2} + r^{6}\right)} \sqrt{a^{2} + r^{2} - 2 \, r}}
Z = 2*N*( D(N) -K.contract(b)) + b.contract(xdb) print Z ; Z.display()
1-form on the 3-dimensional manifold 'Sigma'
(2(a2y2r2)a4y4+2a2r2y2+r4)dr+(4a2rya4y4+2a2r2y2+r4)dy\left( -\frac{2 \, {\left(a^{2} y^{2} - r^{2}\right)}}{a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}} \right) \mathrm{d} r + \left( \frac{4 \, a^{2} r y}{a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}} \right) \mathrm{d} y
DNu = D(N).up(gam) A = 2*(DNu - Ku.contract(b))*b + N*Dbu Z_bar = eps['_ijk']*A['^kj'] print Z_bar ; Z_bar.display()
1-form on the 3-dimensional manifold 'Sigma'
(4arya4y4+2a2r2y2+r4)dr+(2(a3y2ar2)a4y4+2a2r2y2+r4)dy\left( \frac{4 \, a r y}{a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}} \right) \mathrm{d} r + \left( \frac{2 \, {\left(a^{3} y^{2} - a r^{2}\right)}}{a^{4} y^{4} + 2 \, a^{2} r^{2} y^{2} + r^{4}} \right) \mathrm{d} y
# Test: Dbdu = D(bd).up(gam,1).up(gam,1) # (Db)^{ij} = D^i b^j A = 2*b*(DNu - Ku.contract(b)) + N*Dbdu Z_bar0 = eps['_ijk']*A['^jk'] # NB: '^jk' and not 'kj' Z_bar0 == Z_bar
True\mathrm{True}
W = N*Eb + epsb.contract(Bub) print W ; W.display()
1-form on the 3-dimensional manifold 'Sigma'
(2(3a3r2y4+ar4(3a3r2+ar4)y2)a2y2+r2a2+r22r(a8y8+4a6r2y6+6a4r4y4+4a2r6y2+r8)a2r2+r4+2a2r+(a4+a2r22a2r)y2)dϕ\left( -\frac{2 \, {\left(3 \, a^{3} r^{2} y^{4} + a r^{4} - {\left(3 \, a^{3} r^{2} + a r^{4}\right)} y^{2}\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{8} y^{8} + 4 \, a^{6} r^{2} y^{6} + 6 \, a^{4} r^{4} y^{4} + 4 \, a^{2} r^{6} y^{2} + r^{8}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}}} \right) \mathrm{d} {\phi}
W_bar = N*Bb - epsb.contract(Eub) print W_bar ; W_bar.display()
1-form on the 3-dimensional manifold 'Sigma'
(2(a4ry5+3a2r3y(a4r+3a2r3)y3)a2y2+r2a2+r22r(a8y8+4a6r2y6+6a4r4y4+4a2r6y2+r8)a2r2+r4+2a2r+(a4+a2r22a2r)y2)dϕ\left( -\frac{2 \, {\left(a^{4} r y^{5} + 3 \, a^{2} r^{3} y - {\left(a^{4} r + 3 \, a^{2} r^{3}\right)} y^{3}\right)} \sqrt{a^{2} y^{2} + r^{2}} \sqrt{a^{2} + r^{2} - 2 \, r}}{{\left(a^{8} y^{8} + 4 \, a^{6} r^{2} y^{6} + 6 \, a^{4} r^{4} y^{4} + 4 \, a^{2} r^{6} y^{2} + r^{8}\right)} \sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}}} \right) \mathrm{d} {\phi}
W[3].factor()
2(3a2y2r2)a2+r22rar2(y+1)(y1)a2r2+r4+2a2r+(a4+a2r22a2r)y2(a2y2+r2)72-\frac{2 \, {\left(3 \, a^{2} y^{2} - r^{2}\right)} \sqrt{a^{2} + r^{2} - 2 \, r} a r^{2} {\left(y + 1\right)} {\left(y - 1\right)}}{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left(a^{2} y^{2} + r^{2}\right)}^{\frac{7}{2}}}
W_bar[3].factor()
2(a2y23r2)a2+r22ra2r(y+1)(y1)ya2r2+r4+2a2r+(a4+a2r22a2r)y2(a2y2+r2)72-\frac{2 \, {\left(a^{2} y^{2} - 3 \, r^{2}\right)} \sqrt{a^{2} + r^{2} - 2 \, r} a^{2} r {\left(y + 1\right)} {\left(y - 1\right)} y}{\sqrt{a^{2} r^{2} + r^{4} + 2 \, a^{2} r + {\left(a^{4} + a^{2} r^{2} - 2 \, a^{2} r\right)} y^{2}} {\left(a^{2} y^{2} + r^{2}\right)}^{\frac{7}{2}}}
M = - 4*Eb(Kub - DNu) - 2*(epsB['_ij.']*Dbu['^ji'])(b) print M ; M.display()
scalar field 'zero' on the 3-dimensional manifold 'Sigma'
0:ΣR(r,y,ϕ)0\begin{array}{llcl} 0:& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & 0 \end{array}
M_bar = 2*(eps.contract(Eub))['_ij']*Dbu['^ji'] - 4*Bb(Kub - DNu) print M_bar ; M_bar.display()
scalar field 'zero' on the 3-dimensional manifold 'Sigma'
0:ΣR(r,y,ϕ)0\begin{array}{llcl} 0:& \Sigma & \longrightarrow & \mathbb{R} \\ & \left(r, y, {\phi}\right) & \longmapsto & 0 \end{array}
A = epsB['_ilk']*b['^l'] + epsB['_ikl']*b['^l'] + Bu['^m_i']*epsb['_mk'] - 2*N*E xdbE = xdb['_kl']*Eu['^k_i'] L = 2*N*epsB['_kli']*Dbu['^kl'] + 2*xdb['_ij']*Eub['^j'] + 2*xdbE['_li']*b['^l'] \ + 2*A['_ik']*(Kub - DNu)['^k'] print L
1-form on the 3-dimensional manifold 'Sigma'
L[1]
8(5a4ry410a2r3y2+r5)a10y10+5a8r2y8+10a6r4y6+10a4r6y4+5a2r8y2+r10-\frac{8 \, {\left(5 \, a^{4} r y^{4} - 10 \, a^{2} r^{3} y^{2} + r^{5}\right)}}{a^{10} y^{10} + 5 \, a^{8} r^{2} y^{8} + 10 \, a^{6} r^{4} y^{6} + 10 \, a^{4} r^{6} y^{4} + 5 \, a^{2} r^{8} y^{2} + r^{10}}
L[1].factor()
8(5a4y410a2r2y2+r4)r(a2y2+r2)5-\frac{8 \, {\left(5 \, a^{4} y^{4} - 10 \, a^{2} r^{2} y^{2} + r^{4}\right)} r}{{\left(a^{2} y^{2} + r^{2}\right)}^{5}}
L[2]
8(a6y510a4r2y3+5a2r4y)a10y10+5a8r2y8+10a6r4y6+10a4r6y4+5a2r8y2+r10-\frac{8 \, {\left(a^{6} y^{5} - 10 \, a^{4} r^{2} y^{3} + 5 \, a^{2} r^{4} y\right)}}{a^{10} y^{10} + 5 \, a^{8} r^{2} y^{8} + 10 \, a^{6} r^{4} y^{6} + 10 \, a^{4} r^{6} y^{4} + 5 \, a^{2} r^{8} y^{2} + r^{10}}
L[2].factor()
8(a4y410a2r2y2+5r4)a2y(a2y2+r2)5-\frac{8 \, {\left(a^{4} y^{4} - 10 \, a^{2} r^{2} y^{2} + 5 \, r^{4}\right)} a^{2} y}{{\left(a^{2} y^{2} + r^{2}\right)}^{5}}
L[3]
00
N2pbb = N^2 + b2 V = N2pbb*E - 2*(b.contract(E)*bd).symmetrize() + Ebb*gam + 2*N*(b.contract(epsB).symmetrize()) print V
V[1,1]
V[1,1].factor()
V[1,2]
V[1,2].factor()
V[1,3]
V[2,2]
V[2,2].factor()
V[2,3]
V[3,3]
V[3,3].factor()
beps = b.contract(eps) V_bar = N2pbb*B - 2*(b.contract(B)*bd).symmetrize() + Bbb*gam \ -2*N*(beps['_il']*Eu['^l_j']).symmetrize() print V_bar
V_bar[1,1]
V_bar[1,1].factor()
V_bar[1,2]
V_bar[1,2].factor()
V_bar[1,3]
V_bar[2,2]
V_bar[2,2].factor()
V_bar[2,3]
V_bar[3,3]
V_bar[3,3].factor()
G = (N^2 - b2)*gam + bd*bd print G
G.display()

3+1 decomposition of the real part of the Simon-Mars tensor

We follow Eqs. (77)-(80) of arXiv:1412.6542:

S1 = (4*(V*Z - V_bar*Z_bar) + G*L).antisymmetrize(1,2) print S1
S1.display()
S2 = 4*(T*V - T_bar*V_bar - W*Z + W_bar*Z_bar) + M*G - N*bd*L print S2
S2.display()
S3 = (4*(W*Z - W_bar*Z_bar) + N*bd*L).antisymmetrize() print S3
S3.display()
S2[3,1] == -2*S3[3,1]
S2[3,2] == -2*S3[3,2]
S4 = 4*(T*W - T_bar*W_bar) -4*(Y*Z - Y_bar*Z_bar) + N*M*bd - b2*L print S4
S4.display()

Hence all the tensors S1S^1, S2S^2, S3S^3 and S4S^4 involved in the 3+1 decomposition of the real part of the Simon-Mars are zero, as they should since the Simon-Mars tensor vanishes identically for the Kerr spacetime.

3+1 decomposition of the imaginary part of the Simon-Mars tensor

We follow Eqs. (82)-(85) of arXiv:1412.6542.

epsE = eps['_ijl']*Eu['^l_k'] print epsE
A = - epsE['_ilk']*b['^l'] - epsE['_ikl']*b['^l'] - Eu['^m_i']*epsb['_mk'] - 2*N*B xdbB = xdb['_kl']*Bu['^k_i'] L_bar = - 2*N*epsE['_kli']*Dbu['^kl'] + 2*xdb['_ij']*Bub['^j'] + 2*xdbB['_li']*b['^l'] \ + 2*A['_ik']*(Kub - DNu)['^k'] print L_bar
L_bar.display()
S1_bar = (4*(V*Z_bar + V_bar*Z) + G*L_bar).antisymmetrize(1,2) print S1_bar
S1_bar.display()
S2_bar = 4*(T_bar*V + T*V_bar) - 4*(W*Z_bar + W_bar*Z) + M_bar*G - N*bd*L_bar print S2_bar
S2_bar.display()
S3_bar = (4*(W*Z_bar + W_bar*Z) + N*bd*L_bar).antisymmetrize() print S3_bar
S3_bar.display()
S4_bar = 4*(T_bar*W + T*W_bar - Y*Z_bar - Y_bar*Z) + M_bar*N*bd - b2*L_bar print S4_bar
S4_bar.display()

Hence all the tensors Sˉ1{\bar S}^1, Sˉ2{\bar S}^2, Sˉ3{\bar S}^3 and Sˉ4{\bar S}^4 involved in the 3+1 decomposition of the imaginary part of the Simon-Mars are zero, as they should since the Simon-Mars tensor vanishes identically for the Kerr spacetime.