Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download

📚 The CoCalc Library - books, templates and other resources

Views: 96107
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

AppendixBHints and Solutions to Selected Exercises

Exercises1.3Exercises

Exercise1

Suppose that

A={x:xN and x is even},B={x:xN and x is prime},C={x:xN and x is a multiple of 5}.\begin{align*} A & = \{ x : x \in \mathbb N \text{ and } x \text{ is even} \},\\ B & = \{x : x \in \mathbb N \text{ and } x \text{ is prime}\},\\ C & = \{ x : x \in \mathbb N \text{ and } x \text{ is a multiple of 5}\}. \end{align*}

Describe each of the following sets.

  1. ABA \cap B

  2. BCB \cap C

  3. ABA \cup B

  4. A(BC)A \cap (B \cup C)

Hint

(a) AB={2};A \cap B = \{ 2 \}\text{;} (b) BC={5}.B \cap C = \{ 5 \}\text{.}

Exercise2

If A={a,b,c},A = \{ a, b, c \}\text{,} B={1,2,3},B = \{ 1, 2, 3 \}\text{,} C={x},C = \{ x \}\text{,} and D=,D = \emptyset\text{,} list all of the elements in each of the following sets.

  1. A×BA \times B

  2. B×AB \times A

  3. A×B×CA \times B \times C

  4. A×DA \times D

Hint

(a) A×B={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)};A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) \}\text{;} (d) A×D=.A \times D = \emptyset\text{.}

Exercise6

Prove A(BC)=(AB)(AC).A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\text{.}

Hint

If xA(BC),x \in A \cup (B \cap C)\text{,} then either xAx \in A or xBC.x \in B \cap C\text{.} Thus, xABx \in A \cup B and AC.A \cup C\text{.} Hence, x(AB)(AC).x \in (A \cup B) \cap (A \cup C)\text{.} Therefore, A(BC)(AB)(AC).A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)\text{.} Conversely, if x(AB)(AC),x \in (A \cup B) \cap (A \cup C)\text{,} then xABx \in A \cup B and AC.A \cup C\text{.} Thus, xAx \in A or xx is in both BB and C.C\text{.} So xA(BC)x \in A \cup (B \cap C) and therefore (AB)(AC)A(BC).(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)\text{.} Hence, A(BC)=(AB)(AC).A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\text{.}

Exercise10

Prove AB=(AB)(AB)(BA).A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A)\text{.}

Hint

(AB)(AB)(BA)=(AB)(AB)(BA)=[A(BB)](BA)=A(BA)=(AB)(AA)=AB.(A \cap B) \cup (A \setminus B) \cup (B \setminus A) = (A \cap B) \cup (A \cap B') \cup (B \cap A') = [A \cap (B \cup B')] \cup (B \cap A') = A \cup (B \cap A') = (A \cup B) \cap (A \cup A') = A \cup B\text{.}

Exercise14

Prove A(BC)=(AB)(AC).A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)\text{.}

Hint

A(BC)=A(BC)=(AA)(BC)=(AB)(AC)=(AB)(AC).A \setminus (B \cup C) = A \cap (B \cup C)' = (A \cap A) \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A \setminus B) \cap (A \setminus C)\text{.}

Exercise17

Which of the following relations f:QQf: {\mathbb Q} \rightarrow {\mathbb Q} define a mapping? In each case, supply a reason why ff is or is not a mapping.

  1. f(p/q)=p+1p2\displaystyle f(p/q) = \frac{p+ 1}{p - 2}

  2. f(p/q)=3p3q\displaystyle f(p/q) = \frac{3p}{3q}

  3. f(p/q)=p+qq2\displaystyle f(p/q) = \frac{p+q}{q^2}

  4. f(p/q)=3p27q2pq\displaystyle f(p/q) = \frac{3 p^2}{7 q^2} - \frac{p}{q}

Hint

(a) Not a map since f(2/3)f(2/3) is undefined; (b) this is a map; (c) not a map, since f(1/2)=3/4f(1/2) = 3/4 but f(2/4)=3/8;f(2/4)=3/8\text{;} (d) this is a map.

Exercise18

Determine which of the following functions are one-to-one and which are onto. If the function is not onto, determine its range.

  1. f:RRf: {\mathbb R} \rightarrow {\mathbb R} defined by f(x)=exf(x) = e^x

  2. f:ZZf: {\mathbb Z} \rightarrow {\mathbb Z} defined by f(n)=n2+3f(n) = n^2 + 3

  3. f:RRf: {\mathbb R} \rightarrow {\mathbb R} defined by f(x)=sinxf(x) = \sin x

  4. f:ZZf: {\mathbb Z} \rightarrow {\mathbb Z} defined by f(x)=x2f(x) = x^2

Hint

(a) ff is one-to-one but not onto. f(R)={xR:x>0}.f({\mathbb R} ) = \{ x \in {\mathbb R} : x \gt 0 \}\text{.} (c) ff is neither one-to-one nor onto. f(R)={x:1x1}.f(\mathbb R) = \{ x : -1 \leq x \leq 1 \}\text{.}

Exercise20
  1. Define a function f:NNf: {\mathbb N} \rightarrow {\mathbb N} that is one-to-one but not onto.

  2. Define a function f:NNf: {\mathbb N} \rightarrow {\mathbb N} that is onto but not one-to-one.

Hint

(a) f(n)=n+1.f(n) = n + 1\text{.}

Exercise22

Let f:ABf : A \rightarrow B and g:BCg : B \rightarrow C be maps.

  1. If ff and gg are both one-to-one functions, show that gfg \circ f is one-to-one.

  2. If gfg \circ f is onto, show that gg is onto.

  3. If gfg \circ f is one-to-one, show that ff is one-to-one.

  4. If gfg \circ f is one-to-one and ff is onto, show that gg is one-to-one.

  5. If gfg \circ f is onto and gg is one-to-one, show that ff is onto.

Hint

(a) Let x,yA.x, y \in A\text{.} Then g(f(x))=(gf)(x)=(gf)(y)=g(f(y)).g(f(x)) = (g \circ f)(x) = (g \circ f)(y) = g(f(y))\text{.} Thus, f(x)=f(y)f(x) = f(y) and x=y,x = y\text{,} so gfg \circ f is one-to-one. (b) Let cC,c \in C\text{,} then c=(gf)(x)=g(f(x))c = (g \circ f)(x) = g(f(x)) for some xA.x \in A\text{.} Since f(x)B,f(x) \in B\text{,} gg is onto.

Exercise23

Define a function on the real numbers by

f(x)=x+1x1.\begin{equation*} f(x) = \frac{x + 1}{x - 1}. \end{equation*}

What are the domain and range of f?f\text{?} What is the inverse of f?f\text{?} Compute ff1f \circ f^{-1} and f1f.f^{-1} \circ f\text{.}

Hint

f1(x)=(x+1)/(x1).f^{-1}(x) = (x+1)/(x-1)\text{.}

Exercise24

Let f:XYf: X \rightarrow Y be a map with A1,A2XA_1, A_2 \subset X and B1,B2Y.B_1, B_2 \subset Y\text{.}

  1. Prove f(A1A2)=f(A1)f(A2).f( A_1 \cup A_2 ) = f( A_1) \cup f( A_2 )\text{.}

  2. Prove f(A1A2)f(A1)f(A2).f( A_1 \cap A_2 ) \subset f( A_1) \cap f( A_2 )\text{.} Give an example in which equality fails.

  3. Prove f1(B1B2)=f1(B1)f1(B2),f^{-1}( B_1 \cup B_2 ) = f^{-1}( B_1) \cup f^{-1}(B_2 )\text{,} where

    f1(B)={xX:f(x)B}.\begin{equation*} f^{-1}(B) = \{ x \in X : f(x) \in B \}. \end{equation*}
  4. Prove f1(B1B2)=f1(B1)f1(B2).f^{-1}( B_1 \cap B_2 ) = f^{-1}( B_1) \cap f^{-1}( B_2 )\text{.}

  5. Prove f1(YB1)=Xf1(B1).f^{-1}( Y \setminus B_1 ) = X \setminus f^{-1}( B_1)\text{.}

Hint

(a) Let yf(A1A2).y \in f(A_1 \cup A_2)\text{.} Then there exists an xA1A2x \in A_1 \cup A_2 such that f(x)=y.f(x) = y\text{.} Hence, yf(A1)y \in f(A_1) or f(A2).f(A_2) \text{.} Therefore, yf(A1)f(A2).y \in f(A_1) \cup f(A_2)\text{.} Consequently, f(A1A2)f(A1)f(A2).f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)\text{.} Conversely, if yf(A1)f(A2),y \in f(A_1) \cup f(A_2)\text{,} then yf(A1)y \in f(A_1) or f(A2).f(A_2)\text{.} Hence, there exists an xx in A1A_1 or A2A_2 such that f(x)=y.f(x) = y\text{.} Thus, there exists an xA1A2x \in A_1 \cup A_2 such that f(x)=y.f(x) = y\text{.} Therefore, f(A1)f(A2)f(A1A2),f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)\text{,} and f(A1A2)=f(A1)f(A2).f(A_1 \cup A_2) = f(A_1) \cup f(A_2)\text{.}

Exercise25

Determine whether or not the following relations are equivalence relations on the given set. If the relation is an equivalence relation, describe the partition given by it. If the relation is not an equivalence relation, state why it fails to be one.

  1. xyx \sim y in R{\mathbb R} if xyx \geq y

  2. mnm \sim n in Z{\mathbb Z} if mn>0mn > 0

  3. xyx \sim y in R{\mathbb R} if xy4|x - y| \leq 4

  4. mnm \sim n in Z{\mathbb Z} if mn(mod6)m \equiv n \pmod{6}

Hint

(a) The relation fails to be symmetric. (b) The relation is not reflexive, since 0 is not equivalent to itself. (c) The relation is not transitive.

Exercise28

Find the error in the following argument by providing a counterexample. “The reflexive property is redundant in the axioms for an equivalence relation. If xy,x \sim y\text{,} then yxy \sim x by the symmetric property. Using the transitive property, we can deduce that xx.x \sim x\text{.}

Hint

Let X=N{2}X = {\mathbb N} \cup \{ \sqrt{2}\, \} and define xyx \sim y if x+yN.x + y \in {\mathbb N}\text{.}

Exercises2.3Exercises

Exercise1

Prove that

12+22++n2=n(n+1)(2n+1)6\begin{equation*} 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \end{equation*}

for nN.n \in {\mathbb N}\text{.}

Hint

The base case, S(1):[1(1+1)(2(1)+1)]/6=1=12S(1): [1(1 + 1)(2(1) + 1)]/6 = 1 = 1^2 is true. Assume that S(k):12+22++k2=[k(k+1)(2k+1)]/6S(k): 1^2 + 2^2 + \cdots + k^2 = [k(k + 1)(2k + 1)]/6 is true. Then

12+22++k2+(k+1)2=[k(k+1)(2k+1)]/6+(k+1)2=[(k+1)((k+1)+1)(2(k+1)+1)]/6,\begin{align*} 1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 & = [k(k + 1)(2k + 1)]/6 + (k + 1)^2\\ & = [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6, \end{align*}

and so S(k+1)S(k + 1) is true. Thus, S(n)S(n) is true for all positive integers n.n\text{.}

Exercise3

Prove that n!>2nn! \gt 2^n for n4.n \geq 4\text{.}

Hint

The base case, S(4):4!=24>16=24S(4): 4! = 24 \gt 16 =2^4 is true. Assume S(k):k!>2kS(k): k! \gt 2^k is true. Then (k+1)!=k!(k+1)>2k2=2k+1,(k + 1)! = k! (k + 1) \gt 2^k \cdot 2 = 2^{k + 1}\text{,} so S(k+1)S(k + 1) is true. Thus, S(n)S(n) is true for all positive integers n.n\text{.}

Exercise8

Prove the Leibniz rule for f(n)(x),f^{(n)} (x)\text{,} where f(n)f^{(n)} is the nnth derivative of f;f\text{;} that is, show that

(fg)(n)(x)=k=0n(nk)f(k)(x)g(nk)(x).\begin{equation*} (fg)^{(n)}(x) = \sum_{k = 0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n - k)}(x). \end{equation*}
Hint

Follow the proof in Example 2.4.

Exercise11

If xx is a nonnegative real number, then show that (1+x)n1nx(1 + x)^n - 1 \geq nx for n=0,1,2,.n = 0, 1, 2, \ldots\text{.}

Hint

The base case, S(0):(1+x)01=00=0xS(0): (1 + x)^0 - 1 = 0 \geq 0 = 0 \cdot x is true. Assume S(k):(1+x)k1kxS(k): (1 + x)^k -1 \geq kx is true. Then

(1+x)k+11=(1+x)(1+x)k1=(1+x)k+x(1+x)k1kx+x(1+x)kkx+x=(k+1)x,\begin{align*} (1 + x)^{k + 1} - 1 & = (1 + x)(1 + x)^k -1\\ & = (1 + x)^k + x(1 + x)^k - 1\\ & \geq kx + x(1 + x)^k\\ & \geq kx + x\\ & = (k + 1)x, \end{align*}

so S(k+1)S(k + 1) is true. Therefore, S(n)S(n) is true for all positive integers n.n\text{.}

Exercise17Fibonacci Numbers

The Fibonacci numbers are

1,1,2,3,5,8,13,21,.\begin{equation*} 1, 1, 2, 3, 5, 8, 13, 21, \ldots. \end{equation*}

We can define them inductively by f1=1,f_1 = 1\text{,} f2=1,f_2 = 1\text{,} and fn+2=fn+1+fnf_{n + 2} = f_{n + 1} + f_n for nN.n \in {\mathbb N}\text{.}

  1. Prove that fn<2n.f_n \lt 2^n\text{.}

  2. Prove that fn+1fn1=fn2+(1)n,f_{n + 1} f_{n - 1} = f^2_n + (-1)^n\text{,} n2.n \geq 2\text{.}

  3. Prove that fn=[(1+5)n(15)n]/2n5.f_n = [(1 + \sqrt{5}\, )^n - (1 - \sqrt{5}\, )^n]/ 2^n \sqrt{5}\text{.}

  4. Show that limnfn/fn+1=(51)/2.\lim_{n \rightarrow \infty} f_n / f_{n + 1} = (\sqrt{5} - 1)/2\text{.}

  5. Prove that fnf_n and fn+1f_{n + 1} are relatively prime.

Hint

For (a) and (b) use mathematical induction. (c) Show that f1=1,f_1 = 1\text{,} f2=1,f_2 = 1\text{,} and fn+2=fn+1+fn.f_{n + 2} = f_{n + 1} + f_n\text{.} (d) Use part (c). (e) Use part (b) and Exercise 2.3.16.

Exercise19

Let x,yNx, y \in {\mathbb N} be relatively prime. If xyxy is a perfect square, prove that xx and yy must both be perfect squares.

Hint

Use the Fundamental Theorem of Arithmetic.

Exercise23

Define the of two nonzero integers aa and b,b\text{,} denoted by lcm(a,b),\lcm(a,b)\text{,} to be the nonnegative integer mm such that both aa and bb divide m,m\text{,} and if aa and bb divide any other integer n,n\text{,} then mm also divides n.n\text{.} Prove there exists a unique least common multiple for any two integers aa and b.b\text{.}

Hint

Use the Principle of Well-Ordering and the division algorithm.

Exercise27

Let a,b,cZ.a, b, c \in {\mathbb Z}\text{.} Prove that if gcd(a,b)=1\gcd(a,b) = 1 and abc,a \mid bc\text{,} then ac.a \mid c\text{.}

Hint

Since gcd(a,b)=1,\gcd(a,b) = 1\text{,} there exist integers rr and ss such that ar+bs=1.ar + bs = 1\text{.} Thus, acr+bcs=c.acr + bcs = c\text{.}

Exercise29

Prove that there are an infinite number of primes of the form 6n+5.6n + 5\text{.}

Hint

Every prime must be of the form 2, 3, 6n+1,6n + 1\text{,} or 6n+5.6n + 5\text{.} Suppose there are only finitely many primes of the form 6k+5.6k + 5\text{.}

Exercises3.4Exercises

Exercise1

Find all xZx \in {\mathbb Z} satisfying each of the following equations.

  1. 3x2(mod7)3x \equiv 2 \pmod{7}

  2. 5x+113(mod23)5x + 1 \equiv 13 \pmod{23}

  3. 5x+113(mod26)5x + 1 \equiv 13 \pmod{26}

  4. 9x3(mod5)9x \equiv 3 \pmod{5}

  5. 5x1(mod6)5x \equiv 1 \pmod{6}

  6. 3x1(mod6)3x \equiv 1 \pmod{6}

Hint

(a) 3+7Z={,4,3,10,};3 + 7 \mathbb Z = \{ \ldots, -4, 3, 10, \ldots \}\text{;} (c) 18+26Z;18 + 26 \mathbb Z\text{;} (e) 5+6Z.5 + 6 \mathbb Z\text{.}

Exercise2

Which of the following multiplication tables defined on the set G={a,b,c,d}G = \{ a, b, c, d \} form a group? Support your answer in each case.

  1. abcdaacdabbbcdccdabddabc\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & c & d & a \\ b & b & b & c & d \\ c & c & d & a & b \\ d & d & a & b & c \end{array} \end{equation*}
  2. abcdaabcdbbadcccdabddcba\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & b & c & d \\ b & b & a & d & c \\ c & c & d & a & b \\ d & d & c & b & a \end{array} \end{equation*}
  3. abcdaabcdbbcdaccdabddabc\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & b & c & d \\ b & b & c & d & a \\ c & c & d & a & b \\ d & d & a & b & c \end{array} \end{equation*}
  4. abcdaabcdbbacdccbaddddbc\begin{equation*} \begin{array}{c|cccc} \circ & a & b & c & d \\ \hline a & a & b & c & d \\ b & b & a & c & d \\ c & c & b & a & d \\ d & d & d & b & c \end{array} \end{equation*}
Hint

(a) Not a group; (c) a group.

Exercise6

Give a multiplication table for the group U(12).U(12)\text{.}

Hint
157111157115511177711151111751\begin{equation*} \begin{array}{c|cccc} \cdot & 1 & 5 & 7 & 11 \\ \hline 1 & 1 & 5 & 7 & 11 \\ 5 & 5 & 1 & 11 & 7 \\ 7 & 7 & 11 & 1 & 5 \\ 11 & 11 & 7 & 5 & 1 \end{array} \end{equation*}
Exercise8

Give an example of two elements AA and BB in GL2(R)GL_2({\mathbb R}) with ABBA.AB \neq BA\text{.}

Hint

Pick two matrices. Almost any pair will work.

Exercise15

Prove or disprove that every group containing six elements is abelian.

Hint

There is a nonabelian group containing six elements.

Exercise16

Give a specific example of some group GG and elements g,hGg, h \in G where (gh)ngnhn.(gh)^n \neq g^nh^n\text{.}

Hint

Look at the symmetry group of an equilateral triangle or a square.

Exercise17

Give an example of three different groups with eight elements. Why are the groups different?

Hint

The are five different groups of order 8.

Exercise18

Show that there are n!n! permutations of a set containing nn items.

Hint

Let

σ=(12na1a2an)\begin{equation*} \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \end{equation*}

be in Sn.S_n\text{.} All of the aia_is must be distinct. There are nn ways to choose a1,a_1\text{,} n1n-1 ways to choose a2,a_2\text{,} ,\ldots\text{,} 2 ways to choose an1,a_{n - 1}\text{,} and only one way to choose an.a_n\text{.} Therefore, we can form σ\sigma in n(n1)21=n!n(n - 1) \cdots 2 \cdot 1 = n! ways.

Exercise25

Let aa and bb be elements in a group G.G\text{.} Prove that abna1=(aba1)nab^na^{-1} = (aba^{-1})^n for nZ.n \in \mathbb Z\text{.}

Hint
(aba1)n=(aba1)(aba1)(aba1)=ab(aa1)b(aa1)bb(aa1)ba1=abna1.\begin{align*} (aba^{-1})^n & = (aba^{-1})(aba^{-1}) \cdots (aba^{-1})\\ & = ab(aa^{-1})b(aa^{-1})b \cdots b(aa^{-1})ba^{-1}\\ & = ab^na^{-1}. \end{align*}
Exercise31

Show that if a2=ea^2 = e for all elements aa in a group G,G\text{,} then GG must be abelian.

Hint

Since abab=(ab)2=e=a2b2=aabb,abab = (ab)^2 = e = a^2 b^2 = aabb\text{,} we know that ba=ab.ba = ab\text{.}

Exercise35

Find all the subgroups of the symmetry group of an equilateral triangle.

Hint

H1={id},H_1 = \{ \identity \}\text{,} H2={id,ρ1,ρ2},H_2 = \{ \identity, \rho_1, \rho_2 \}\text{,} H3={id,μ1},H_3 = \{ \identity, \mu_1 \}\text{,} H4={id,μ2},H_4 = \{ \identity, \mu_2 \}\text{,} H5={id,μ3},H_5 = \{ \identity, \mu_3 \}\text{,} S3.S_3\text{.}

Exercise41

Prove that

G={a+b2:a,bQ and a and b are not both zero}\begin{equation*} G = \{ a + b \sqrt{2} : a, b \in {\mathbb Q} \text{ and } a \text{ and } b \text{ are not both zero} \} \end{equation*}

is a subgroup of R{\mathbb R}^{\ast} under the group operation of multiplication.

Hint

The identity of GG is 1=1+02.1 = 1 + 0 \sqrt{2}\text{.} Since (a+b2)(c+d2)=(ac+2bd)+(ad+bc)2,(a + b \sqrt{2}\, )(c + d \sqrt{2}\, ) = (ac + 2bd) + (ad + bc)\sqrt{2}\text{,} GG is closed under multiplication. Finally, (a+b2)1=a/(a22b2)b2/(a22b2).(a + b \sqrt{2}\, )^{-1} = a/(a^2 - 2b^2) - b\sqrt{2}/(a^2 - 2 b^2)\text{.}

Exercise46

Prove or disprove: If HH and KK are subgroups of a group G,G\text{,} then HKH \cup K is a subgroup of G.G\text{.}

Hint

Look at S3.S_3\text{.}

Exercise49

Let aa and bb be elements of a group G.G\text{.} If a4b=baa^4 b = ba and a3=e,a^3 = e\text{,} prove that ab=ba.ab = ba\text{.}

Hint

ba=a4b=a3ab=abb a = a^4 b = a^3 a b = ab

Exercises4.4Exercises

Exercise1

Prove or disprove each of the following statements.

  1. All of the generators of Z60{\mathbb Z}_{60} are prime.

  2. U(8)U(8) is cyclic.

  3. Q{\mathbb Q} is cyclic.

  4. If every proper subgroup of a group GG is cyclic, then GG is a cyclic group.

  5. A group with a finite number of subgroups is finite.

Hint

(a) False; (c) false; (e) true.

Exercise2

Find the order of each of the following elements.

  1. 5Z125 \in {\mathbb Z}_{12}

  2. 3R\sqrt{3} \in {\mathbb R}

  3. 3R\sqrt{3} \in {\mathbb R}^\ast

  4. iC-i \in {\mathbb C}^\ast

  5. 72 in Z240{\mathbb Z}_{240}

  6. 312 in Z471{\mathbb Z}_{471}

Hint

(a) 12; (c) infinite; (e) 10.

Exercise3

List all of the elements in each of the following subgroups.

  1. The subgroup of Z{\mathbb Z} generated by 7

  2. The subgroup of Z24{\mathbb Z}_{24} generated by 15

  3. All subgroups of Z12{\mathbb Z}_{12}

  4. All subgroups of Z60{\mathbb Z}_{60}

  5. All subgroups of Z13{\mathbb Z}_{13}

  6. All subgroups of Z48{\mathbb Z}_{48}

  7. The subgroup generated by 3 in U(20)U(20)

  8. The subgroup generated by 5 in U(18)U(18)

  9. The subgroup of R{\mathbb R}^\ast generated by 7

  10. The subgroup of C{\mathbb C}^\ast generated by ii where i2=1i^2 = -1

  11. The subgroup of C{\mathbb C}^\ast generated by 2i2i

  12. The subgroup of C{\mathbb C}^\ast generated by (1+i)/2(1 + i) / \sqrt{2}

  13. The subgroup of C{\mathbb C}^\ast generated by (1+3i)/2(1 + \sqrt{3}\, i) / 2

Hint

(a) 7Z={,7,0,7,14,};7 {\mathbb Z} = \{ \ldots, -7, 0, 7, 14, \ldots \}\text{;} (b) {0,3,6,9,12,15,18,21};\{ 0, 3, 6, 9, 12, 15, 18, 21 \}\text{;} (c) {0},\{ 0 \}\text{,} {0,6},\{ 0, 6 \}\text{,} {0,4,8},\{ 0, 4, 8 \}\text{,} {0,3,6,9},\{ 0, 3, 6, 9 \}\text{,} {0,2,4,6,8,10};\{ 0, 2, 4, 6, 8, 10 \}\text{;} (g) {1,3,7,9};\{ 1, 3, 7, 9 \}\text{;} (j) {1,1,i,i}.\{ 1, -1, i, -i \}\text{.}

Exercise4

Find the subgroups of GL2(R)GL_2( {\mathbb R }) generated by each of the following matrices.

  1. (0110)\displaystyle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}

  2. (01/330)\displaystyle \begin{pmatrix} 0 & 1/3 \\ 3 & 0 \end{pmatrix}

  3. (1110)\displaystyle \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}

  4. (1101)\displaystyle \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}

  5. (1110)\displaystyle \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}

  6. (3/21/21/23/2)\displaystyle \begin{pmatrix} \sqrt{3}/ 2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}

Hint

(a)

(1001),(1001),(0110),(0110).\begin{equation*} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \end{equation*}

(c)

(1001),(1110),(1110),(0111),(0111),(1001).\begin{equation*} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \\ \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}. \end{equation*}
Exercise10

Find all elements of finite order in each of the following groups. Here the “\ast” indicates the set with zero removed.

  1. Z{\mathbb Z}

  2. Q{\mathbb Q}^\ast

  3. R{\mathbb R}^\ast

Hint

(a) 0;0\text{;} (b) 1,1.1, -1\text{.}

Exercise11

If a24=ea^{24} =e in a group G,G\text{,} what are the possible orders of a?a\text{?}

Hint

1, 2, 3, 4, 6, 8, 12, 24.

Exercise15

Evaluate each of the following.

  1. (32i)+(5i6)(3-2i)+ (5i-6)

  2. (45i)(4i4)(4-5i)-\overline{(4i -4)}

  3. (54i)(7+2i)(5-4i)(7+2i)

  4. (9i)(9i)(9-i) \overline{(9-i)}

  5. i45i^{45}

  6. (1+i)+(1+i)(1+i)+\overline{(1+i)}

Hint

(a) 3+3i;-3 + 3i\text{;} (c) 4318i;43- 18i\text{;} (e) ii

Exercise16

Convert the following complex numbers to the form a+bi.a + bi\text{.}

  1. 2cis(π/6)2 \cis(\pi / 6 )

  2. 5cis(9π/4)5 \cis(9\pi/4)

  3. 3cis(π)3 \cis(\pi)

  4. cis(7π/4)/2\cis(7\pi/4) /2

Hint

(a) 3+i;\sqrt{3} + i\text{;} (c) 3.-3\text{.}

Exercise17

Change the following complex numbers to polar representation.

  1. 1i1-i

  2. 5-5

  3. 2+2i2+2i

  4. 3+i\sqrt{3} + i

  5. 3i-3i

  6. 2i+232i + 2 \sqrt{3}

Hint

(a) 2cis(7π/4);\sqrt{2} \cis( 7 \pi /4)\text{;} (c) 22cis(π/4);2 \sqrt{2} \cis( \pi /4)\text{;} (e) 3cis(3π/2).3 \cis(3 \pi/2)\text{.}

Exercise18

Calculate each of the following expressions.

  1. (1+i)1(1+i)^{-1}

  2. (1i)6(1 - i)^{6}

  3. (3+i)5(\sqrt{3} + i)^{5}

  4. (i)10(-i)^{10}

  5. ((1i)/2)4((1-i)/2)^{4}

  6. (22i)12(-\sqrt{2} - \sqrt{2}\, i)^{12}

  7. (2+2i)5(-2 + 2i)^{-5}

Hint

(a) (1i)/2;(1 - i)/2\text{;} (c) 16(i3);16(i - \sqrt{3}\, )\text{;} (e) 1/4.-1/4\text{.}

Exercise22

Calculate each of the following.

  1. 2923171(mod582)292^{3171} \pmod{ 582}

  2. 2557341(mod5681)2557^{ 341} \pmod{ 5681}

  3. 20719521(mod4724)2071^{ 9521} \pmod{ 4724}

  4. 971321(mod765)971^{ 321} \pmod{ 765}

Hint

(a) 292; (c) 1523.

Exercise27

If gg and hh have orders 15 and 16 respectively in a group G,G\text{,} what is the order of gh?\langle g \rangle \cap \langle h \rangle \text{?}

Hint

gh=1.|\langle g \rangle \cap \langle h \rangle| = 1\text{.}

Exercise31

Let GG be an abelian group. Show that the elements of finite order in GG form a subgroup. This subgroup is called the of G.G\text{.}

Hint

The identity element in any group has finite order. Let g,hGg, h \in G have orders mm and n,n\text{,} respectively. Since (g1)m=e(g^{-1})^m = e and (gh)mn=e,(gh)^{mn} = e\text{,} the elements of finite order in GG form a subgroup of G.G\text{.}

Exercise37

Prove that if GG has no proper nontrivial subgroups, then GG is a cyclic group.

Hint

If gg is an element distinct from the identity in G,G\text{,} gg must generate G;G\text{;} otherwise, g\langle g \rangle is a nontrivial proper subgroup of G.G\text{.}

Exercises5.3Exercises

Exercise1

Write the following permutations in cycle notation.

  1. (1234524153)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix} \end{equation*}
  2. (1234542513)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 1 & 3 \end{pmatrix} \end{equation*}
  3. (1234535142)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix} \end{equation*}
  4. (1234514325)\begin{equation*} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix} \end{equation*}
Hint

(a) (12453);(12453)\text{;} (c) (13)(25).(13)(25)\text{.}

Exercise2

Compute each of the following.

  1. (1345)(234)(1345)(234)

  2. (12)(1253)(12)(1253)

  3. (143)(23)(24)(143)(23)(24)

  4. (1423)(34)(56)(1324)(1423)(34)(56)(1324)

  5. (1254)(13)(25)(1254)(13)(25)

  6. (1254)(13)(25)2(1254) (13)(25)^2

  7. (1254)1(123)(45)(1254)(1254)^{-1} (123)(45) (1254)

  8. (1254)2(123)(45)(1254)^2 (123)(45)

  9. (123)(45)(1254)2(123)(45) (1254)^{-2}

  10. (1254)100(1254)^{100}

  11. (1254)|(1254)|

  12. (1254)2|(1254)^2|

  13. (12)1(12)^{-1}

  14. (12537)1(12537)^{-1}

  15. [(12)(34)(12)(47)]1[(12)(34)(12)(47)]^{-1}

  16. [(1235)(467)]1[(1235)(467)]^{-1}

Hint

(a) (135)(24);(135)(24)\text{;} (c) (14)(23);(14)(23)\text{;} (e) (1324);(1324)\text{;} (g) (134)(25);(134)(25)\text{;} (n) (17352).(17352)\text{.}

Exercise3

Express the following permutations as products of transpositions and identify them as even or odd.

  1. (14356)(14356)

  2. (156)(234)(156)(234)

  3. (1426)(142)(1426)(142)

  4. (17254)(1423)(154632)(17254)(1423)(154632)

  5. (142637)(142637)

Hint

(a) (16)(15)(13)(14);(16)(15)(13)(14)\text{;} (c) (16)(14)(12).(16)(14)(12)\text{.}

Exercise4

Find (a1,a2,,an)1.(a_1, a_2, \ldots, a_n)^{-1}\text{.}

Hint

(a1,a2,,an)1=(a1,an,an1,,a2)(a_1, a_2, \ldots, a_n)^{-1} = (a_1, a_{n}, a_{n-1}, \ldots, a_2)

Exercise5

List all of the subgroups of S4.S_4\text{.} Find each of the following sets.

  1. {σS4:σ(1)=3}\{ \sigma \in S_4 : \sigma(1) = 3 \}

  2. {σS4:σ(2)=2}\{ \sigma \in S_4 : \sigma(2) = 2 \}

  3. {σS4:σ(1)=3\{ \sigma \in S_4 : \sigma(1) = 3 and σ(2)=2}\sigma(2) = 2 \}

Are any of these sets subgroups of S4?S_4\text{?}

Hint

(a) {(13),(13)(24),(132),(134),(1324),(1342)}\{ (13), (13)(24), (132), (134), (1324), (1342) \} is not a subgroup.

Exercise8

Show that A10A_{10} contains an element of order 15.

Hint

(12345)(678).(12345)(678)\text{.}

Exercise11

What are the possible cycle structures of elements of A5?A_5\text{?} What about A6?A_6\text{?}

Hint

Permutations of the form

(1),(a1,a2)(a3,a4),(a1,a2,a3),(a1,a2,a3,a4,a5)\begin{equation*} (1), (a_1, a_2)(a_3, a_4), (a_1, a_2, a_3), (a_1, a_2, a_3, a_4, a_5) \end{equation*}

are possible for A5.A_5\text{.}

Exercise17

Prove that SnS_n is nonabelian for n3.n \geq 3\text{.}

Hint

Calculate (123)(12)(123)(12) and (12)(123).(12)(123)\text{.}

Exercise25

Prove that in AnA_n with n3,n \geq 3\text{,} any permutation is a product of cycles of length 3.

Hint

Consider the cases (ab)(bc)(ab)(bc) and (ab)(cd).(ab)(cd)\text{.}

Exercise30

Let τ=(a1,a2,,ak)\tau = (a_1, a_2, \ldots, a_k) be a cycle of length k.k\text{.}

  1. Prove that if σ\sigma is any permutation, then

    στσ1=(σ(a1),σ(a2),,σ(ak))\begin{equation*} \sigma \tau \sigma^{-1 } = ( \sigma(a_1), \sigma(a_2), \ldots, \sigma(a_k)) \end{equation*}

    is a cycle of length k.k\text{.}

  2. Let μ\mu be a cycle of length k.k\text{.} Prove that there is a permutation σ\sigma such that στσ1=μ.\sigma \tau \sigma^{-1 } = \mu\text{.}

Hint

For (a), show that στσ1(σ(ai))=σ(ai+1).\sigma \tau \sigma^{-1 }(\sigma(a_i)) = \sigma(a_{i + 1})\text{.}

Exercises6.4Exercises

Exercise1

Suppose that GG is a finite group with an element gg of order 5 and an element hh of order 7. Why must G35?|G| \geq 35\text{?}

Hint

The order of gg and the order hh must both divide the order of G.G\text{.}

Exercise2

Suppose that GG is a finite group with 60 elements. What are the orders of possible subgroups of G?G\text{?}

Hint

The possible orders must divide 60.

Exercise3

Prove or disprove: Every subgroup of the integers has finite index.

Hint

This is true for every proper nontrivial subgroup.

Exercise4

Prove or disprove: Every subgroup of the integers has finite order.

Hint

False.

Exercise5

List the left and right cosets of the subgroups in each of the following.

  1. 8\langle 8 \rangle in Z24{\mathbb Z}_{24}

  2. 3\langle 3 \rangle in U(8)U(8)

  3. 3Z3 {\mathbb Z} in Z{\mathbb Z}

  4. A4A_4 in S4S_4

  5. AnA_n in SnS_n

  6. D4D_4 in S4S_4

  7. T{\mathbb T} in C{\mathbb C}^\ast

  8. H={(1),(123),(132)}H = \{ (1), (123), (132) \} in S4S_4

Hint

(a) 8,\langle 8 \rangle\text{,} 1+8,1 + \langle 8 \rangle\text{,} 2+8,2 + \langle 8 \rangle\text{,} 3+8,3 + \langle 8 \rangle\text{,} 4+8,4 + \langle 8 \rangle\text{,} 5+8,5 + \langle 8 \rangle\text{,} 6+8,6 + \langle 8 \rangle\text{,} and 7+8;7 + \langle 8 \rangle\text{;} (c) 3Z,3 {\mathbb Z}\text{,} 1+3Z,1 + 3 {\mathbb Z}\text{,} and 2+3Z.2 + 3 {\mathbb Z}\text{.}

Exercise7

Verify Euler's Theorem for n=15n = 15 and a=4.a = 4\text{.}

Hint

4ϕ(15)481(mod15).4^{\phi(15)} \equiv 4^8 \equiv 1 \pmod{15}\text{.}

Exercise12

If ghg1Hghg^{-1} \in H for all gGg \in G and hH,h \in H\text{,} show that right cosets are identical to left cosets. That is, show that gH=HggH = Hg for all gG.g \in G\text{.}

Hint

Let g1gH.g_1 \in gH\text{.} Show that g1Hgg_1 \in Hg and thus gHHg.gH \subset Hg\text{.}

Exercise19

Let HH and KK be subgroups of a group G.G\text{.} Prove that gHgKgH \cap gK is a coset of HKH \cap K in G.G\text{.}

Hint

Show that g(HK)=gHgK.g(H \cap K) = gH \cap gK\text{.}

Exercise22

Let n=p1e1p2e2pkek,n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}\text{,} where p1,p2,,pkp_1, p_2, \ldots, p_k are distinct primes. Prove that

ϕ(n)=n(11p1)(11p2)(11pk).\begin{equation*} \phi(n) = n \left( 1 - \frac{1}{p_1} \right) \left( 1 - \frac{1}{p_2} \right)\cdots \left( 1 - \frac{1}{p_k} \right). \end{equation*}
Hint

If gcd(m,n)=1,\gcd(m,n) = 1\text{,} then ϕ(mn)=ϕ(m)ϕ(n)\phi(mn) = \phi(m)\phi(n) (Exercise 2.3.26 in Chapter 2).

Exercises7.3Exercises

Exercise1

Encode IXLOVEXMATH using the cryptosystem in Example 1.

Hint

LAORYHAPDWK

Exercise3

Assuming that monoalphabetic code was used to encode the following secret message, what was the original message?

APHUO EGEHP PEXOV FKEUH CKVUE CHKVE APHUO
EGEHU EXOVL EXDKT VGEFT EHFKE UHCKF TZEXO
VEZDT TVKUE XOVKV ENOHK ZFTEH TEHKQ LEROF
PVEHP PEXOV ERYKP GERYT GVKEG XDRTE RGAGA

What is the significance of this message in the history of cryptography?

Hint

Hint: V = E, E = X (also used for spaces and punctuation), K = R.

Exercise4

What is the total number of possible monoalphabetic cryptosystems? How secure are such cryptosystems?

Hint

26!126! - 1

Exercise7

Encrypt each of the following RSA messages xx so that xx is divided into blocks of integers of length 2; that is, if x=142528,x = 142528\text{,} encode 14, 25, and 28 separately.

  1. n=3551,E=629,x=31n = 3551, E = 629, x = 31

  2. n=2257,E=47,x=23n = 2257, E = 47, x = 23

  3. n=120979,E=13251,x=142371n = 120979, E = 13251, x = 142371

  4. n=45629,E=781,x=231561n = 45629, E = 781, x = 231561

Hint

(a) 2791; (c) 112135 25032 442.

Exercise9

Decrypt each of the following RSA messages y.y\text{.}

  1. n=3551,D=1997,y=2791n = 3551, D = 1997, y = 2791

  2. n=5893,D=81,y=34n = 5893, D = 81, y = 34

  3. n=120979,D=27331,y=112135n = 120979, D = 27331, y = 112135

  4. n=79403,D=671,y=129381n = 79403, D = 671, y = 129381

Hint

(a) 31; (c) 14.

Exercise10

For each of the following encryption keys (n,E)(n, E) in the RSA cryptosystem, compute D.D\text{.}

  1. (n,E)=(451,231)(n, E) = (451, 231)

  2. (n,E)=(3053,1921)(n, E) = (3053, 1921)

  3. (n,E)=(37986733,12371)(n, E) = (37986733, 12371)

  4. (n,E)=(16394854313,34578451)(n, E) = (16394854313, 34578451)

Hint

(a) n=1141;n = 11 \cdot 41\text{;} (c) n=87794327.n = 8779 \cdot 4327\text{.}

Exercises8.5Exercises

Exercise2

Without doing any addition, explain why the following set of 4-tuples in Z24{\mathbb Z}_2^4 cannot be a group code.

(0110)(1001)(1010)(1100)\begin{equation*} (0110) \quad (1001) \quad (1010) \quad (1100) \end{equation*}
Hint

This cannot be a group code since (0000)C.(0000) \notin C\text{.}

Exercise3

Compute the Hamming distances between the following pairs of nn-tuples.

  1. (011010),(011100)(011010), (011100)

  2. (11110101),(01010100)(11110101), (01010100)

  3. (00110),(01111)(00110), (01111)

  4. (1001),(0111)(1001), (0111)

Hint

(a) 2; (c) 2.

Exercise4

Compute the weights of the following nn-tuples.

  1. (011010)(011010)

  2. (11110101)(11110101)

  3. (01111)(01111)

  4. (1011)(1011)

Hint

(a) 3; (c) 4.

Exercise6

In each of the following codes, what is the minimum distance for the code? What is the best situation we might hope for in connection with error detection and error correction?

  1. (011010)  (011100)  (110111)  (110000)(011010) \; (011100) \; (110111) \; (110000)

  2. (011100)  (011011)  (111011)  (100011)(011100) \; (011011) \; (111011) \; (100011) \; (000000)  (010101)  (110100)  (110011)(000000) \; (010101) \; (110100) \; (110011)

  3. (000000)  (011100)  (110101)  (110001)(000000) \; (011100) \; (110101) \; (110001)

  4. (0110110)  (0111100)  (1110000)  (1111111)(0110110) \; (0111100) \; (1110000) \; (1111111) \; (1001001)  (1000011)  (0001111)  (0000000)(1001001) \; (1000011) \; (0001111) \; (0000000)

Hint

(a) dmin=2;d_{\min} = 2\text{;} (c) dmin=1.d_{\min} = 1\text{.}

Exercise7

Compute the null space of each of the following matrices. What type of (n,k)(n,k)-block codes are the null spaces? Can you find a matrix (not necessarily a standard generator matrix) that generates each code? Are your generator matrices unique?

  1. (010001010110010)\begin{equation*} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \end{equation*}
  2. (101000110100010010110001)\begin{equation*} \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \end{equation*}
  3. (1001101011)\begin{equation*} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \end{equation*}
  4. (0001111011001110101010110011)\begin{equation*} \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \end{equation*}
Hint
  1. (00000),(00101),(10011),(10110)(00000), (00101), (10011), (10110)

    G=(0100100111)\begin{equation*} G = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \end{equation*}
  2. (000000),(010111),(101101),(111010)(000000), (010111), (101101), (111010)

    G=(100110110111)\begin{equation*} G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \end{equation*}
Exercise9

Let CC be the code obtained from the null space of the matrix

H=(010011010100111).\begin{equation*} H = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}. \end{equation*}

Decode the message

01111101010111000011\begin{equation*} 01111 \quad 10101 \quad 01110 \quad 00011 \end{equation*}

if possible.

Hint

Multiple errors occur in one of the received words.

Exercise11

Which matrices are canonical parity-check matrices? For those matrices that are canonical parity-check matrices, what are the corresponding standard generator matrices? What are the error-detection and error-correction capabilities of the code generated by each of these matrices?

  1. (11000001000001010001)\begin{equation*} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \end{equation*}
  2. (011000110100010010110001)\begin{equation*} \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \end{equation*}
  3. (11101001)\begin{equation*} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \end{equation*}
  4. (0001000011010010100100110001)\begin{equation*} \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \end{equation*}
Hint

(a) A canonical parity-check matrix with standard generator matrix

G=(11001).\begin{equation*} G = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}. \end{equation*}

(c) A canonical parity-check matrix with standard generator matrix

G=(10011110).\begin{equation*} G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}. \end{equation*}
Exercise12

List all possible syndromes for the codes generated by each of the matrices in Exercise 8.5.11.

Hint

(a) All possible syndromes occur.

Exercise15

For each of the following matrices, find the cosets of the corresponding code C.C\text{.} Give a decoding table for each code if possible.

  1. (010001010110010)\begin{equation*} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \end{equation*}
  2. (00100110100101011001)\begin{equation*} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix} \end{equation*}
  3. (1001101011)\begin{equation*} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \end{equation*}
  4. (1001111111001110101011110010)\begin{equation*} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \end{equation*}
Hint

(a) C,C\text{,} (10000)+C,(10000) + C\text{,} (01000)+C,(01000) + C\text{,} (00100)+C,(00100) + C\text{,} (00010)+C,(00010) + C\text{,} (11000)+C,(11000) + C\text{,} (01100)+C,(01100) + C\text{,} (01010)+C.(01010) + C\text{.} A decoding table does not exist for CC since this is only a single error-detecting code.

Exercise19

Let CC be a linear code. Show that either every codeword has even weight or exactly half of the codewords have even weight.

Hint

Let xC{\mathbf x} \in C have odd weight and define a map from the set of odd codewords to the set of even codewords by yx+y.{\mathbf y} \mapsto {\mathbf x} + {\mathbf y}\text{.} Show that this map is a bijection.

Exercise23

How many check positions are needed for a single error-correcting code with 20 information positions? With 32 information positions?

Hint

For 20 information positions, at least 6 check bits are needed to ensure an error-correcting code.

Exercises9.3Exercises

Exercise1

Prove that ZnZ\mathbb Z \cong n \mathbb Z for n0.n \neq 0\text{.}

Hint

Every infinite cyclic group is isomorphic to Z{\mathbb Z} by Theorem 9.7.

Exercise2

Prove that C{\mathbb C}^\ast is isomorphic to the subgroup of GL2(R)GL_2( {\mathbb R} ) consisting of matrices of the form

(abba).\begin{equation*} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}. \end{equation*}
Hint

Define ϕ:CGL2(R)\phi: {\mathbb C}^* \rightarrow GL_2( {\mathbb R}) by

ϕ(a+bi)=(abba).\begin{equation*} \phi(a + bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}. \end{equation*}
Exercise3

Prove or disprove: U(8)Z4.U(8) \cong {\mathbb Z}_4\text{.}

Hint

False.

Exercise6

Show that the nnth roots of unity are isomorphic to Zn.{\mathbb Z}_n\text{.}

Hint

Define a map from Zn{\mathbb Z}_n into the nnth roots of unity by kcis(2kπ/n).k \mapsto \cis(2k\pi / n)\text{.}

Exercise8

Prove that Q{\mathbb Q} is not isomorphic to Z.{\mathbb Z}\text{.}

Hint

Assume that Q{\mathbb Q} is cyclic and try to find a generator.

Exercise11

Find five non-isomorphic groups of order 8.

Hint

There are two nonabelian and three abelian groups that are not isomorphic.

Exercise16

Find the order of each of the following elements.

  1. (3,4)(3, 4) in Z4×Z6{\mathbb Z}_4 \times {\mathbb Z}_6

  2. (6,15,4)(6, 15, 4) in Z30×Z45×Z24{\mathbb Z}_{30} \times {\mathbb Z}_{45} \times {\mathbb Z}_{24}

  3. (5,10,15)(5, 10, 15) in Z25×Z25×Z25{\mathbb Z}_{25} \times {\mathbb Z}_{25} \times {\mathbb Z}_{25}

  4. (8,8,8)(8, 8, 8) in Z10×Z24×Z80{\mathbb Z}_{10} \times {\mathbb Z}_{24} \times {\mathbb Z}_{80}

Hint

(a) 12; (c) 5.

Exercise19

Prove that S3×Z2S_3 \times {\mathbb Z}_2 is isomorphic to D6.D_6\text{.} Can you make a conjecture about D2n?D_{2n}\text{?} Prove your conjecture.

Hint

Draw the picture.

Exercise20

Prove or disprove: Every abelian group of order divisible by 3 contains a subgroup of order 3.

Hint

True.

Exercise25

Prove or disprove: There is a noncyclic abelian group of order 52.

Hint

True.

Exercise27

Let GH.G \cong H\text{.} Show that if GG is cyclic, then so is H.H\text{.}

Hint

Let aa be a generator for G.G\text{.} If ϕ:GH\phi :G \rightarrow H is an isomorphism, show that ϕ(a)\phi(a) is a generator for H.H\text{.}

Exercise38

Find Aut(Z6).\aut( {\mathbb Z}_6)\text{.}

Hint

Any automorphism of Z6{\mathbb Z}_6 must send 1 to another generator of Z6.{\mathbb Z}_6\text{.}

Exercise45

Let GG be the internal direct product of subgroups HH and K.K\text{.} Show that the map ϕ:GH×K\phi : G \rightarrow H \times K defined by ϕ(g)=(h,k)\phi(g) = (h,k) for g=hk,g =hk\text{,} where hHh \in H and kK,k \in K\text{,} is one-to-one and onto.

Hint

To show that ϕ\phi is one-to-one, let g1=h1k1g_1 = h_1 k_1 and g2=h2k2g_2 = h_2 k_2 and consider ϕ(g1)=ϕ(g2).\phi(g_1) = \phi(g_2)\text{.}

Exercises10.3Exercises

Exercise1

For each of the following groups G,G\text{,} determine whether HH is a normal subgroup of G.G\text{.} If HH is a normal subgroup, write out a Cayley table for the factor group G/H.G/H\text{.}

  1. G=S4G = S_4 and H=A4H = A_4

  2. G=A5G = A_5 and H={(1),(123),(132)}H = \{ (1), (123), (132) \}

  3. G=S4G = S_4 and H=D4H = D_4

  4. G=Q8G = Q_8 and H={1,1,I,I}H = \{ 1, -1, I, -I \}

  5. G=ZG = {\mathbb Z} and H=5ZH = 5 {\mathbb Z}

Hint

(a)

A4(12)A4A4A4(12)A4(12)A4(12)A4A4\begin{equation*} \begin{array}{c|cc} & A_4 & (12)A_4 \\ \hline A_4 & A_4 & (12) A_4 \\ (12) A_4 & (12) A_4 & A_4 \end{array} \end{equation*}

(c) D4D_4 is not normal in S4.S_4\text{.}

Exercise8

If GG is cyclic, prove that G/HG/H must also be cyclic.

Hint

If aGa \in G is a generator for G,G\text{,} then aHaH is a generator for G/H.G/H\text{.}

Exercise11

If a group GG has exactly one subgroup HH of order k,k\text{,} prove that HH is normal in G.G\text{.}

Hint

For any gG,g \in G\text{,} show that the map ig:GGi_g : G \to G defined by ig:xgxg1i_g : x \mapsto gxg^{-1} is an isomorphism of GG with itself. Then consider ig(H).i_g(H)\text{.}

Exercise12

Define the of an element gg in a group GG to be the set

C(g)={xG:xg=gx}.\begin{equation*} C(g) = \{ x \in G : xg = gx \}. \end{equation*}

Show that C(g)C(g) is a subgroup of G.G\text{.} If gg generates a normal subgroup of G,G\text{,} prove that C(g)C(g) is normal in G.G\text{.}

Hint

Suppose that g\langle g \rangle is normal in GG and let yy be an arbitrary element of G.G\text{.} If xC(g),x \in C(g)\text{,} we must show that yxy1y x y^{-1} is also in C(g).C(g)\text{.} Show that (yxy1)g=g(yxy1).(y x y^{-1}) g = g (y x y^{-1})\text{.}

Exercise14

Let GG be a group and let G=aba1b1;G' = \langle aba^{- 1} b^{-1} \rangle\text{;} that is, GG' is the subgroup of all finite products of elements in GG of the form aba1b1.aba^{-1}b^{-1}\text{.} The subgroup GG' is called the of G.G\text{.}

  1. Show that GG' is a normal subgroup of G.G\text{.}

  2. Let NN be a normal subgroup of G.G\text{.} Prove that G/NG/N is abelian if and only if NN contains the commutator subgroup of G.G\text{.}

Hint

(a) Let gGg \in G and hG.h \in G'\text{.} If h=aba1b1,h = aba^{-1}b^{-1}\text{,} then

ghg1=gaba1b1g1=(gag1)(gbg1)(ga1g1)(gb1g1)=(gag1)(gbg1)(gag1)1(gbg1)1.\begin{align*} ghg^{-1} & = gaba^{-1}b^{-1}g^{-1}\\ & = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1})\\ & = (gag^{-1})(gbg^{-1})(gag^{-1})^{-1}(gbg^{-1})^{-1}. \end{align*}

We also need to show that if h=h1hnh = h_1 \cdots h_n with hi=aibiai1bi1,h_i = a_i b_i a_i^{-1} b_i^{-1}\text{,} then ghg1ghg^{-1} is a product of elements of the same type. However, ghg1=gh1hng1=(gh1g1)(gh2g1)(ghng1).ghg^{-1} = g h_1 \cdots h_n g^{-1} = (gh_1g^{-1})(gh_2g^{-1}) \cdots (gh_ng^{-1})\text{.}

Exercises11.3Exercises

Exercise2

Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?

  1. ϕ:RGL2(R)\phi : {\mathbb R}^\ast \rightarrow GL_2 ( {\mathbb R}) defined by

    ϕ(a)=(100a)\begin{equation*} \phi( a ) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \end{equation*}
  2. ϕ:RGL2(R)\phi : {\mathbb R} \rightarrow GL_2 ( {\mathbb R}) defined by

    ϕ(a)=(10a1)\begin{equation*} \phi( a ) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \end{equation*}
  3. ϕ:GL2(R)R\phi : GL_2 ({\mathbb R}) \rightarrow {\mathbb R} defined by

    ϕ((abcd))=a+d\begin{equation*} \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = a + d \end{equation*}
  4. ϕ:GL2(R)R\phi : GL_2 ( {\mathbb R}) \rightarrow {\mathbb R}^\ast defined by

    ϕ((abcd))=adbc\begin{equation*} \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = ad - bc \end{equation*}
  5. ϕ:M2(R)R\phi : {\mathbb M}_2( {\mathbb R}) \rightarrow {\mathbb R} defined by

    ϕ((abcd))=b,\begin{equation*} \phi \left( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = b, \end{equation*}

    where M2(R){\mathbb M}_2( {\mathbb R}) is the additive group of 2×22 \times 2 matrices with entries in R.{\mathbb R}\text{.}

Hint

(a) is a homomorphism with kernel {1};\{ 1 \}\text{;} (c) is not a homomorphism.

Exercise4

Let ϕ:ZZ\phi : {\mathbb Z} \rightarrow {\mathbb Z} be given by ϕ(n)=7n.\phi(n) = 7n\text{.} Prove that ϕ\phi is a group homomorphism. Find the kernel and the image of ϕ.\phi\text{.}

Hint

Since ϕ(m+n)=7(m+n)=7m+7n=ϕ(m)+ϕ(n),\phi(m + n) = 7(m+n) = 7m + 7n = \phi(m) + \phi(n)\text{,} ϕ\phi is a homomorphism.

Exercise5

Describe all of the homomorphisms from Z24{\mathbb Z}_{24} to Z18.{\mathbb Z}_{18}\text{.}

Hint

For any homomorphism ϕ:Z24Z18,\phi : {\mathbb Z}_{24} \rightarrow {\mathbb Z}_{18}\text{,} the kernel of ϕ\phi must be a subgroup of Z24{\mathbb Z}_{24} and the image of ϕ\phi must be a subgroup of Z18.{\mathbb Z}_{18}\text{.} Now use the fact that a generator must map to a generator.

Exercise9

If ϕ:GH\phi : G \rightarrow H is a group homomorphism and GG is abelian, prove that ϕ(G)\phi(G) is also abelian.

Hint

Let a,bG.a, b \in G\text{.} Then ϕ(a)ϕ(b)=ϕ(ab)=ϕ(ba)=ϕ(b)ϕ(a).\phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a)\text{.}

Exercise17

Let ϕ:G1G2\phi : G_1 \rightarrow G_2 be a surjective group homomorphism. Let H1H_1 be a normal subgroup of G1G_1 and suppose that ϕ(H1)=H2.\phi(H_1) = H_2\text{.} Prove or disprove that G1/H1G2/H2.G_1/H_1 \cong G_2/H_2\text{.}

Hint

Find a counterexample.

Exercises12.3Exercises

Exercise1

Prove the identity

x,y=12[x+y2x2y2].\begin{equation*} \langle {\mathbf x}, {\mathbf y} \rangle = \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]. \end{equation*}
Hint
12[x+y2+x2y2]=12[x+y,x+yx2y2]=12[x2+2x,y+y2x2y2]=x,y.\begin{align*} \frac{1}{2} \left[ \|{\mathbf x} + {\mathbf y}\|^2 + \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right] & = \frac{1}{2} \left[ \langle x + y, x + y \rangle - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]\\ & = \frac{1}{2} \left[ \| {\mathbf x}\|^2 + 2 \langle x, y \rangle + \| {\mathbf y}\|^2 - \|{\mathbf x}\|^2 - \| {\mathbf y}\|^2 \right]\\ & = \langle {\mathbf x}, {\mathbf y} \rangle. \end{align*}
Exercise3

Prove that the following matrices are orthogonal. Are any of these matrices in SO(n)?SO(n)\text{?}

  1. (1/21/21/21/2)\begin{equation*} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \end{equation*}
  2. (1/52/52/51/5)\begin{equation*} \begin{pmatrix} 1 / \sqrt{5} & 2 / \sqrt{5} \\ - 2 /\sqrt{5} & 1/ \sqrt{5} \end{pmatrix} \end{equation*}
  3. (4/503/53/504/5010)\begin{equation*} \begin{pmatrix} 4/ \sqrt{5} & 0 & 3 / \sqrt{5} \\ -3 / \sqrt{5} & 0 & 4 / \sqrt{5} \\ 0 & -1 & 0 \end{pmatrix} \end{equation*}
  4. (1/32/32/32/32/31/32/31/32/3)\begin{equation*} \begin{pmatrix} 1/3 & 2/3 & - 2/3 \\ - 2/3 & 2/3 & 1/3 \\ -2/3 & 1/3 & 2/3 \end{pmatrix} \end{equation*}
Hint

(a) is in SO(2);SO(2)\text{;} (c) is not in O(3).O(3)\text{.}

Exercise5

Let x,{\mathbf x}\text{,} y,{\mathbf y}\text{,} and w{\mathbf w} be vectors in Rn{\mathbb R}^n and αR.\alpha \in {\mathbb R}\text{.} Prove each of the following properties of inner products.

  1. x,y=y,x.\langle {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf y}, {\mathbf x} \rangle\text{.}

  2. x,y+w=x,y+x,w.\langle {\mathbf x}, {\mathbf y} + {\mathbf w} \rangle = \langle {\mathbf x}, {\mathbf y} \rangle + \langle {\mathbf x}, {\mathbf w} \rangle\text{.}

  3. αx,y=x,αy=αx,y.\langle \alpha {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf x}, \alpha {\mathbf y} \rangle = \alpha \langle {\mathbf x}, {\mathbf y} \rangle\text{.}

  4. x,x0\langle {\mathbf x}, {\mathbf x} \rangle \geq 0 with equality exactly when x=0.{\mathbf x} = 0\text{.}

  5. If x,y=0\langle {\mathbf x}, {\mathbf y} \rangle = 0 for all x{\mathbf x} in Rn,{\mathbb R}^n\text{,} then y=0.{\mathbf y} = 0\text{.}

Hint

(a) x,y=y,x.\langle {\mathbf x}, {\mathbf y} \rangle = \langle {\mathbf y}, {\mathbf x} \rangle\text{.}

Exercise7

Prove that {(2,1),(1,1)}\{ (2,1), (1,1) \} and {(12,5),(7,3)}\{ ( 12, 5), ( 7, 3) \} are bases for the same lattice.

Hint

Use the unimodular matrix

(5221).\begin{equation*} \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}. \end{equation*}
Exercise10

Prove that SO(n)SO(n) is a normal subgroup of O(n).O(n)\text{.}

Hint

Show that the kernel of the map det:O(n)R\det : O(n) \rightarrow {\mathbb R}^* is SO(n).SO(n)\text{.}

Exercise13

Prove or disprove: There exists an infinite abelian subgroup of O(n).O(n)\text{.}

Hint

True.

Exercise17

Determine which of the 17 wallpaper groups preserves the symmetry of the pattern in Figure 12.26.

Hint

p6mp6m

Exercises13.3Exercises

Exercise1

Find all of the abelian groups of order less than or equal to 40 up to isomorphism.

Hint

There are three possible groups.

Exercise4

Find all of the composition series for each of the following groups.

  1. Z12{\mathbb Z}_{12}

  2. Z48{\mathbb Z}_{48}

  3. The quaternions, Q8Q_8

  4. D4D_4

  5. S3×Z4S_3 \times {\mathbb Z}_4

  6. S4S_4

  7. Sn,S_n\text{,} n5n \geq 5

  8. Q{\mathbb Q}

Hint

(a) {0}63Z12;\{ 0 \} \subset \langle 6 \rangle \subset \langle 3 \rangle \subset {\mathbb Z}_{12}\text{;} (e) {(1)}×{0}{(1),(123),(132)}×{0}S3×{0}S3×2S3×Z4.\{ (1) \} \times \{ 0 \} \subset \{ (1), (123), (132) \} \times \{ 0 \} \subset S_3 \times \{ 0 \} \subset S_3 \times \langle 2 \rangle\subset S_3 \times {\mathbb Z}_4\text{.}

Exercise7

A group GG is a if every element of GG has finite order. Prove that a finitely generated abelian torsion group must be finite.

Hint

Use the Fundamental Theorem of Finitely Generated Abelian Groups.

Exercise12

Let NN be a normal subgroup of G.G\text{.} If NN and G/NG/N are solvable groups, show that GG is also a solvable group.

Hint

If NN and G/NG/N are solvable, then they have solvable series

N=NnNn1N1N0={e}G/N=Gn/NGn1/NG1/NG0/N={N}.\begin{gather*} N = N_n \supset N_{n - 1} \supset \cdots \supset N_1 \supset N_0 = \{ e \}\\ G/N = G_n/N \supset G_{n - 1}/N \supset \cdots G_1/N \supset G_0/N = \{ N \}. \end{gather*}
Exercise16

Prove that DnD_n is solvable for all integers n.n\text{.}

Hint

Use the fact that DnD_n has a cyclic subgroup of index 2.

Exercise21

Suppose that GG is a solvable group with order n2.n \geq 2\text{.} Show that GG contains a normal nontrivial abelian factor group.

Hint

G/GG/G' is abelian.

Exercises14.4Exercises

Exercise1

Examples 14.114.5 in the first section each describe an action of a group GG on a set X,X\text{,} which will give rise to the equivalence relation defined by GG-equivalence. For each example, compute the equivalence classes of the equivalence relation, the GG-.

Hint

Example 14.1: 0,0\text{,} R2{0}.{\mathbb R}^2 \setminus \{ 0 \}\text{.} Example 14.2: X={1,2,3,4}.X = \{ 1, 2, 3, 4 \}\text{.}

Exercise2

Compute all XgX_g and all GxG_x for each of the following permutation groups.

  1. X={1,2,3},X= \{1, 2, 3\}\text{,} G=S3={(1),(12),(13),(23),(123),(132)}G=S_3=\{(1), (12), (13), (23), (123), (132) \}

  2. X={1,2,3,4,5,6},X = \{1, 2, 3, 4, 5, 6\}\text{,} G={(1),(12),(345),(354),(12)(345),(12)(354)}G = \{(1), (12), (345), (354), (12)(345), (12)(354) \}

Hint

(a) X(1)={1,2,3},X_{(1)} = \{1, 2, 3 \}\text{,} X(12)={3},X_{(12)} = \{3 \}\text{,} X(13)={2},X_{(13)} = \{ 2 \}\text{,} X(23)={1},X_{(23)} = \{1 \}\text{,} X(123)=X(132)=.X_{(123)} = X_{(132)} = \emptyset\text{.} G1={(1),(23)},G_1 = \{ (1), (23) \}\text{,} G2={(1),(13)},G_2 = \{(1), (13) \}\text{,} G3={(1),(12)}.G_3 = \{ (1), (12)\}\text{.}

Exercise3

Compute the GG-equivalence classes of XX for each of the GG-sets in Exercise 14.4.2. For each xXx \in X verify that G=OxGx.|G|=|{\mathcal O}_x| \cdot |G_x|\text{.}

Hint

(a) O1=O2=O3={1,2,3}.{\mathcal O}_1 = {\mathcal O}_2 = {\mathcal O}_3 = \{ 1, 2, 3\}\text{.}

Exercise6

Find the conjugacy classes and the class equation for each of the following groups.

  1. S4S_4

  2. D5D_5

  3. Z9{\mathbb Z}_9

  4. Q8Q_8

Hint

The conjugacy classes for S4S_4 are

O(1)={(1)},O(12)={(12),(13),(14),(23),(24),(34)},O(12)(34)={(12)(34),(13)(24),(14)(23)},O(123)={(123),(132),(124),(142),(134),(143),(234),(243)},O(1234)={(1234),(1243),(1324),(1342),(1423),(1432)}.\begin{gather*} {\mathcal O}_{(1)} = \{ (1) \},\\ {\mathcal O}_{(12)} = \{ (12), (13), (14), (23), (24), (34) \},\\ {\mathcal O}_{(12)(34)} = \{ (12)(34), (13)(24), (14)(23) \},\\ {\mathcal O}_{(123)} = \{ (123), (132), (124), (142), (134), (143), (234), (243) \},\\ {\mathcal O}_{(1234)} = \{ (1234), (1243), (1324), (1342), (1423), (1432) \}. \end{gather*}

The class equation is 1+3+6+6+8=24.1 + 3 + 6 + 6 + 8 = 24\text{.}

Exercise8

If a square remains fixed in the plane, how many different ways can the corners of the square be colored if three colors are used?

Hint

(34+31+32+31+32+32+33+33)/8=21.(3^4 + 3^1 + 3^2 + 3^1 + 3^2 + 3^2 + 3^3 + 3^3)/8 = 21\text{.}

Exercise11

Up to a rotation, how many ways can the faces of a cube be colored with three different colors?

Hint

The group of rigid motions of the cube can be described by the allowable permutations of the six faces and is isomorphic to S4.S_4\text{.} There are the identity cycle, 6 permutations with the structure (abcd)(abcd) that correspond to the quarter turns, 3 permutations with the structure (ab)(cd)(ab)(cd) that correspond to the half turns, 6 permutations with the structure (ab)(cd)(ef)(ab)(cd)(ef) that correspond to rotating the cube about the centers of opposite edges, and 8 permutations with the structure (abc)(def)(abc)(def) that correspond to rotating the cube about opposite vertices.

Exercise15

Suppose that the vertices of a regular hexagon are to be colored either red or white. How many ways can this be done up to a symmetry of the hexagon?

Hint

(126+324+423+222+221)/12=13.(1 \cdot 2^6 + 3 \cdot 2^4 + 4 \cdot 2^3 + 2 \cdot 2^2 + 2 \cdot 2^1)/12 = 13\text{.}

Exercise17

How many equivalence classes of switching functions are there if the input variables x1,x_1\text{,} x2,x_2\text{,} and x3x_3 can be permuted by any permutation in S3?S_3\text{?} What if the input variables x1,x_1\text{,} x2,x_2\text{,} x3,x_3\text{,} and x4x_4 can be permuted by any permutation in S4?S_4\text{?}

Hint

(128+326+224)/6=80.(1 \cdot 2^8 + 3 \cdot 2^6 + 2 \cdot 2^4)/6 = 80\text{.}

Exercise22

Let aG.a \in G\text{.} Show that for any gG,g \in G\text{,} gC(a)g1=C(gag1).gC(a) g^{-1} = C(gag^{-1})\text{.}

Hint

Use the fact that xgC(a)g1x \in g C(a) g^{-1} if and only if g1xgC(a).g^{-1}x g \in C(a)\text{.}

Exercises15.3Exercises

Exercise1

What are the orders of all Sylow pp-subgroups where GG has order 18, 24, 54, 72, and 80?

Hint

If G=18=232,|G| = 18 = 2 \cdot 3^2\text{,} then the order of a Sylow 2-subgroup is 2, and the order of a Sylow 3-subgroup is 9.

Exercise2

Find all the Sylow 3-subgroups of S4S_4 and show that they are all conjugate.

Hint

The four Sylow 3-subgroups of S4S_4 are P1={(1),(123),(132)},P_1 = \{ (1), (123), (132) \}\text{,} P2={(1),(124),(142)},P_2 = \{ (1), (124), (142) \}\text{,} P3={(1),(134),(143)},P_3 = \{ (1), (134), (143) \}\text{,} P4={(1),(234),(243)}.P_4 = \{ (1), (234), (243) \}\text{.}

Exercise5

Prove that no group of order 96 is simple.

Hint

Since G=96=253,|G| = 96 = 2^5 \cdot 3\text{,} GG has either one or three Sylow 2-subgroups by the Third Sylow Theorem. If there is only one subgroup, we are done. If there are three Sylow 2-subgroups, let HH and KK be two of them. Therefore, HK16;|H \cap K| \geq 16\text{;} otherwise, HKHK would have (3232)/8=128(32 \cdot 32)/8 = 128 elements, which is impossible. Thus, HKH \cap K is normal in both HH and KK since it has index 2 in both groups.

Exercise8

Let GG be a group of order p2q2,p^2 q^2\text{,} where pp and qq are distinct primes such that qp21q \nmid p^2 - 1 and pq21.p \nmid q^2 - 1\text{.} Prove that GG must be abelian. Find a pair of primes for which this is true.

Hint

Show that GG has a normal Sylow pp-subgroup of order p2p^2 and a normal Sylow qq-subgroup of order q2.q^2\text{.}

Exercise10

Let HH be a subgroup of a group G.G\text{.} Prove or disprove that the normalizer of HH is normal in G.G\text{.}

Hint

False.

Exercise17

Show that every group of order 255255 is cyclic.

Hint

If GG is abelian, then GG is cyclic, since G=3517.|G| = 3 \cdot 5 \cdot 17\text{.} Now look at Example 15.14.

Exercise23

Prove that the number of distinct conjugates of a subgroup HH of a finite group GG is [G:N(H)].[G : N(H) ]\text{.}

Hint

Define a mapping between the right cosets of N(H)N(H) in GG and the conjugates of HH in GG by N(H)gg1Hg.N(H) g \mapsto g^{-1} H g\text{.} Prove that this map is a bijection.

Exercise26

Let GG be a group. Prove that G=aba1b1:a,bGG' = \langle a b a^{-1} b^{-1} : a, b \in G \rangle is a normal subgroup of GG and G/GG/G' is abelian. Find an example to show that {aba1b1:a,bG}\{ a b a^{-1} b^{-1} : a, b \in G \} is not necessarily a group.

Hint

Let aG,bGG/G.a G', b G' \in G/G'\text{.} Then (aG)(bG)=abG=ab(b1a1ba)G=(abb1a1)baG=baG.(a G')( b G') = ab G' = ab(b^{-1}a^{-1}ba) G' = (abb^{-1}a^{-1})ba G' = ba G'\text{.}

Exercises16.6Exercises

Exercise1

Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?

  1. 7Z7 {\mathbb Z}

  2. Z18{\mathbb Z}_{18}

  3. Q(2)={a+b2:a,bQ}{\mathbb Q} ( \sqrt{2}\, ) = \{a + b \sqrt{2} : a, b \in {\mathbb Q}\}

  4. Q(2,3)={a+b2+c3+d6:a,b,c,dQ}{\mathbb Q} ( \sqrt{2}, \sqrt{3}\, ) = \{a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6} : a, b, c, d \in {\mathbb Q}\}

  5. Z[3]={a+b3:a,bZ}{\mathbb Z}[\sqrt{3}\, ] = \{ a + b \sqrt{3} : a, b \in {\mathbb Z} \}

  6. R={a+b33:a,bQ}R = \{a + b \sqrt[3]{3} : a, b \in {\mathbb Q} \}

  7. Z[i]={a+bi:a,bZ and i2=1}{\mathbb Z}[ i ] = \{ a + b i : a, b \in {\mathbb Z} \text{ and } i^2 = -1 \}

  8. Q(33)={a+b33+c93:a,b,cQ}{\mathbb Q}( \sqrt[3]{3}\, ) = \{ a + b \sqrt[3]{3} + c \sqrt[3]{9} : a, b, c \in {\mathbb Q} \}

Hint

(a) 7Z7 {\mathbb Z} is a ring but not a field; (c) Q(2){\mathbb Q}(\sqrt{2}\, ) is a field; (f) RR is not a ring.

Exercise3

List or characterize all of the units in each of the following rings.

  1. Z10{\mathbb Z}_{10}

  2. Z12{\mathbb Z}_{12}

  3. Z7{\mathbb Z}_{7}

  4. M2(Z),{\mathbb M}_2( {\mathbb Z} )\text{,} the 2×22 \times 2 matrices with entries in Z{\mathbb Z}

  5. M2(Z2),{\mathbb M}_2( {\mathbb Z}_2 )\text{,} the 2×22 \times 2 matrices with entries in Z2{\mathbb Z}_2

Hint

(a) {1,3,7,9};\{1, 3, 7, 9 \}\text{;} (c) {1,2,3,4,5,6};\{ 1, 2, 3, 4, 5, 6 \}\text{;} (e)

{(1001),(1101),(1011),(0110),(1110),(0111),}.\begin{equation*} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \right\}. \end{equation*}
Exercise4

Find all of the ideals in each of the following rings. Which of these ideals are maximal and which are prime?

  1. Z18{\mathbb Z}_{18}

  2. Z25{\mathbb Z}_{25}

  3. M2(R),{\mathbb M}_2( {\mathbb R} )\text{,} the 2×22 \times 2 matrices with entries in R{\mathbb R}

  4. M2(Z),{\mathbb M}_2( {\mathbb Z} )\text{,} the 2×22 \times 2 matrices with entries in Z{\mathbb Z}

  5. Q{\mathbb Q}

Hint

(a) {0},\{0 \}\text{,} {0,9},\{0, 9 \}\text{,} {0,6,12},\{0, 6, 12 \}\text{,} {0,3,6,9,12,15},\{0, 3, 6, 9, 12, 15 \}\text{,} {0,2,4,6,8,10,12,14,16};\{0, 2, 4, 6, 8, 10, 12, 14, 16 \}\text{;} (c) there are no nontrivial ideals.

Exercise7

Prove that R{\mathbb R} is not isomorphic to C.{\mathbb C}\text{.}

Hint

Assume there is an isomorphism ϕ:CR\phi: {\mathbb C} \rightarrow {\mathbb R} with ϕ(i)=a.\phi(i) = a\text{.}

Exercise8

Prove or disprove: The ring Q(2)={a+b2:a,bQ}{\mathbb Q}( \sqrt{2}\, ) = \{ a + b \sqrt{2} : a, b \in {\mathbb Q} \} is isomorphic to the ring Q(3)={a+b3:a,bQ}.{\mathbb Q}( \sqrt{3}\, ) = \{a + b \sqrt{3} : a, b \in {\mathbb Q} \}\text{.}

Hint

False. Assume there is an isomorphism ϕ:Q(2)Q(3)\phi: {\mathbb Q}(\sqrt{2}\, ) \rightarrow {\mathbb Q}(\sqrt{3}\, ) such that ϕ(2)=a.\phi(\sqrt{2}\, ) = a\text{.}

Exercise13

Solve each of the following systems of congruences.

  1. x2(mod5)x6(mod11)\begin{align*} x & \equiv 2 \pmod{5}\\ x & \equiv 6 \pmod{11} \end{align*}
  2. x3(mod7)x0(mod8)x5(mod15)\begin{align*} x & \equiv 3 \pmod{7}\\ x & \equiv 0 \pmod{8}\\ x & \equiv 5 \pmod{15} \end{align*}
  3. x2(mod4)x4(mod7)x7(mod9)x5(mod11)\begin{align*} x & \equiv 2 \pmod{4}\\ x & \equiv 4 \pmod{7}\\ x & \equiv 7 \pmod{9}\\ x & \equiv 5 \pmod{11} \end{align*}
  4. x3(mod5)x0(mod8)x1(mod11)x5(mod13)\begin{align*} x & \equiv 3 \pmod{5}\\ x & \equiv 0 \pmod{8}\\ x & \equiv 1 \pmod{11}\\ x & \equiv 5 \pmod{13} \end{align*}
Hint

(a) x17(mod55);x \equiv 17 \pmod{55}\text{;} (c) x214(mod2772).x \equiv 214 \pmod{2772}\text{.}

Exercise16

If RR is a field, show that the only two ideals of RR are {0}\{ 0 \} and RR itself.

Hint

If I{0},I \neq \{ 0 \}\text{,} show that 1I.1 \in I\text{.}

Exercise18

Let ϕ:RS\phi : R \rightarrow S be a ring homomorphism. Prove each of the following statements.

  1. If RR is a commutative ring, then ϕ(R)\phi(R) is a commutative ring.

  2. ϕ(0)=0.\phi( 0 ) = 0\text{.}

  3. Let 1R1_R and 1S1_S be the identities for RR and S,S\text{,} respectively. If ϕ\phi is onto, then ϕ(1R)=1S.\phi(1_R) = 1_S\text{.}

  4. If RR is a field and ϕ(R)0,\phi(R) \neq 0\text{,} then ϕ(R)\phi(R) is a field.

Hint

(a) ϕ(a)ϕ(b)=ϕ(ab)=ϕ(ba)=ϕ(b)ϕ(a).\phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b) \phi(a)\text{.}

Exercise26

Let RR be an integral domain. Show that if the only ideals in RR are {0}\{ 0 \} and RR itself, RR must be a field.

Hint

Let aRa \in R with a0.a \neq 0\text{.} Then the principal ideal generated by aa is R.R\text{.} Thus, there exists a bRb \in R such that ab=1.ab =1\text{.}

Exercise28

A ring RR is a if for every aR,a \in R\text{,} a2=a.a^2 = a\text{.} Show that every Boolean ring is a commutative ring.

Hint

Compute (a+b)2(a+b)^2 and (ab)2.(-ab)^2\text{.}

Exercise34

Let pp be prime. Prove that

Z(p)={a/b:a,bZ and gcd(b,p)=1}\begin{equation*} {\mathbb Z}_{(p)} = \{ a / b : a, b \in {\mathbb Z} \text{ and } \gcd( b,p) = 1 \} \end{equation*}

is a ring. The ring Z(p){\mathbb Z}_{(p)} is called the p.p\text{.}

Hint

Let a/b,c/dZ(p).a/b, c/d \in {\mathbb Z}_{(p)}\text{.} Then a/b+c/d=(ad+bc)/bda/b + c/d = (ad + bc)/bd and (a/b)(c/d)=(ac)/(bd)(a/b) \cdot (c/d) = (ac)/(bd) are both in Z(p),{\mathbb Z}_{(p)}\text{,} since gcd(bd,p)=1.\gcd(bd,p) = 1\text{.}

Exercise38

An element xx in a ring is called an if x2=x.x^2 = x\text{.} Prove that the only idempotents in an integral domain are 00 and 1.1\text{.} Find a ring with a idempotent xx not equal to 0 or 1.

Hint

Suppose that x2=xx^2 = x and x0.x \neq 0\text{.} Since RR is an integral domain, x=1.x = 1\text{.} To find a nontrivial idempotent, look in M2(R).{\mathbb M}_2({\mathbb R})\text{.}

Exercises17.4Exercises

Exercise2

Compute each of the following.

  1. (5x2+3x4)+(4x2x+9)(5x^2 + 3x - 4) + (4x^2 - x + 9) in Z12{\mathbb Z}_{12}

  2. (5x2+3x4)(4x2x+9)(5x^2 + 3x - 4) (4x^2 - x + 9) in Z12{\mathbb Z}_{12}

  3. (7x3+3x2x)+(6x28x+4)(7x^3 + 3x^2 - x) + (6x^2 - 8x + 4) in Z9{\mathbb Z}_9

  4. (3x2+2x4)+(4x2+2)(3x^2 + 2x - 4) + (4x^2 + 2) in Z5{\mathbb Z}_5

  5. (3x2+2x4)(4x2+2)(3x^2 + 2x - 4) (4x^2 + 2) in Z5{\mathbb Z}_5

  6. (5x2+3x2)2(5x^2 + 3x - 2)^2 in Z12{\mathbb Z}_{12}

Hint

(a) 9x2+2x+5;9x^2 + 2x + 5\text{;} (b) 8x4+7x3+2x2+7x.8x^4 + 7x^3 + 2x^2 + 7x\text{.}

Exercise3

Use the division algorithm to find q(x)q(x) and r(x)r(x) such that a(x)=q(x)b(x)+r(x)a(x) = q(x) b(x) + r(x) with degr(x)<degb(x)\deg r(x) \lt \deg b(x) for each of the following pairs of polynomials.

  1. a(x)=5x3+6x23x+4a(x) = 5 x^3 + 6x^2 - 3 x + 4 and b(x)=x2b(x) = x - 2 in Z7[x]{\mathbb Z}_7[x]

  2. a(x)=6x42x3+x23x+1a(x) = 6 x^4 - 2 x^3 + x^2 - 3 x + 1 and b(x)=x2+x2b(x) = x^2 + x - 2 in Z7[x]{\mathbb Z}_7[x]

  3. a(x)=4x5x3+x2+4a(x) = 4 x^5 - x^3 + x^2 + 4 and b(x)=x32b(x) = x^3 - 2 in Z5[x]{\mathbb Z}_5[x]

  4. a(x)=x5+x3x2xa(x) = x^5 + x^3 -x^2 - x and b(x)=x3+xb(x) = x^3 + x in Z2[x]{\mathbb Z}_2[x]

Hint

(a) 5x3+6x23x+4=(5x2+2x+1)(x2)+6;5 x^3 + 6 x^2 - 3 x + 4 = (5 x^2 + 2x + 1)(x -2) + 6\text{;} (c) 4x5x3+x2+4=(4x2+4)(x3+3)+4x2+2.4x^5 - x^3 + x^2 + 4 = (4x^2 + 4)(x^3 + 3) + 4x^2 + 2\text{.}

Exercise5

Find all of the zeros for each of the following polynomials.

  1. 5x3+4x2x+95x^3 + 4x^2 - x + 9 in Z12{\mathbb Z}_{12}

  2. 3x34x2x+43x^3 - 4x^2 - x + 4 in Z5{\mathbb Z}_{5}

  3. 5x4+2x235x^4 + 2x^2 - 3 in Z7{\mathbb Z}_{7}

  4. x3+x+1x^3 + x + 1 in Z2{\mathbb Z}_2

Hint

(a) No zeros in Z12;{\mathbb Z}_{12}\text{;} (c) 3, 4.

Exercise7

Find a unit p(x)p(x) in Z4[x]{\mathbb Z}_4[x] such that degp(x)>1.\deg p(x) \gt 1\text{.}

Hint

Look at (2x+1).(2x + 1)\text{.}

Exercise8

Which of the following polynomials are irreducible over Q[x]?{\mathbb Q}[x]\text{?}

  1. x42x3+2x2+x+4x^4 - 2x^3 + 2x^2 + x + 4

  2. x45x3+3x2x^4 - 5x^3 + 3x - 2

  3. 3x54x36x2+63x^5 - 4x^3 - 6x^2 + 6

  4. 5x56x43x2+9x155x^5 - 6x^4 - 3x^2 + 9 x - 15

Hint

(a) Reducible; (c) irreducible.

Exercise10

Give two different factorizations of x2+x+8x^2 + x + 8 in Z10[x].{\mathbb Z}_{10}[x]\text{.}

Hint

One factorization is x2+x+8=(x+2)(x+9).x^2 + x + 8 = (x + 2)(x + 9)\text{.}

Exercise13

Show that the division algorithm does not hold for Z[x].{\mathbb Z}[x]\text{.} Why does it fail?

Hint

The integers Z\mathbb Z do not form a field.

Exercise14

Prove or disprove: xp+ax^p + a is irreducible for any aZp,a \in {\mathbb Z}_p\text{,} where pp is prime.

Hint

False.

Exercise16

Suppose that RR and SS are isomorphic rings. Prove that R[x]S[x].R[x] \cong S[x]\text{.}

Hint

Let ϕ:RS\phi : R \rightarrow S be an isomorphism. Define ϕ:R[x]S[x]\overline{\phi} : R[x] \rightarrow S[x] by ϕ(a0+a1x++anxn)=ϕ(a0)+ϕ(a1)x++ϕ(an)xn.\overline{\phi}(a_0 + a_1 x + \cdots + a_n x^n) = \phi(a_0) + \phi(a_1) x + \cdots + \phi(a_n) x^n\text{.}

Exercise20Cyclotomic Polynomials

The polynomial

Φn(x)=xn1x1=xn1+xn2++x+1\begin{equation*} \Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1 \end{equation*}

is called the Show that Φp(x)\Phi_p(x) is irreducible over Q{\mathbb Q} for any prime p.p\text{.}

Hint

The polynomial

Φn(x)=xn1x1=xn1+xn2++x+1\begin{equation*} \Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1 \end{equation*}

is called the Show that Φp(x)\Phi_p(x) is irreducible over Q{\mathbb Q} for any prime p.p\text{.}

Exercise26

Let FF be a field. Show that F[x]F[x] is never a field.

Hint

Find a nontrivial proper ideal in F[x].F[x]\text{.}

Exercises18.3Exercises

Exercise1

Let z=a+b3iz = a + b \sqrt{3}\, i be in Z[3i].{\mathbb Z}[ \sqrt{3}\, i]\text{.} If a2+3b2=1,a^2 + 3 b^2 = 1\text{,} show that zz must be a unit. Show that the only units of Z[3i]{\mathbb Z}[ \sqrt{3}\, i ] are 1 and 1.-1\text{.}

Hint

Note that z1=1/(a+b3i)=(ab3i)/(a2+3b2)z^{-1} = 1/(a + b\sqrt{3}\, i) = (a -b \sqrt{3}\, i)/(a^2 + 3b^2) is in Z[3i]{\mathbb Z}[\sqrt{3}\, i] if and only if a2+3b2=1.a^2 + 3 b^2 = 1\text{.} The only integer solutions to the equation are a=±1,b=0.a = \pm 1, b = 0\text{.}

Exercise2

The Gaussian integers, Z[i],{\mathbb Z}[i]\text{,} are a UFD. Factor each of the following elements in Z[i]{\mathbb Z}[i] into a product of irreducibles.

  1. 5

  2. 1+3i1 + 3i

  3. 6+8i6 + 8i

  4. 2

Hint

(a) 5=i(1+2i)(2+i);5 = -i(1 + 2i)(2 + i)\text{;} (c) 6+8i=i(1+i)2(2+i)2.6 + 8i = -i(1 + i)^2(2 + i)^2\text{.}

Exercise4

Prove or disprove: Any subring of a field FF containing 1 is an integral domain.

Hint

True.

Exercise9

Prove that the field of fractions of the Gaussian integers, Z[i],{\mathbb Z}[i]\text{,} is

Q(i)={p+qi:p,qQ}.\begin{equation*} {\mathbb Q}(i) = \{ p + q i : p, q \in {\mathbb Q} \}. \end{equation*}
Hint

Let z=a+biz = a + bi and w=c+di0w = c + di \neq 0 be in Z[i].{\mathbb Z}[i]\text{.} Prove that z/wQ(i).z/w \in {\mathbb Q}(i)\text{.}

Exercise15

Let DD be a Euclidean domain with Euclidean valuation ν.\nu\text{.} If aa and bb are associates in D,D\text{,} prove that ν(a)=ν(b).\nu(a) = \nu(b)\text{.}

Hint

Let a=uba = ub with uu a unit. Then ν(b)ν(ub)ν(a).\nu(b) \leq \nu(ub) \leq \nu(a)\text{.} Similarly, ν(a)ν(b).\nu(a) \leq \nu(b)\text{.}

Exercise16

Show that Z[5i]{\mathbb Z}[\sqrt{5}\, i] is not a unique factorization domain.

Hint

Show that 21 can be factored in two different ways.

Exercises19.4Exercises

Exercise2

Draw the diagram for the set of positive integers that are divisors of 30. Is this poset a Boolean algebra?

Exercise5

Prove or disprove: Z{\mathbb Z} is a poset under the relation aba \preceq b if ab.a \mid b\text{.}

Hint

False.

Exercise6

Draw the switching circuit for each of the following Boolean expressions.

  1. (aba)a(a \vee b \vee a') \wedge a

  2. (ab)(ab)(a \vee b)' \wedge (a \vee b)

  3. a(ab)a \vee (a \wedge b)

  4. (cab)c(ab)(c \vee a \vee b) \wedge c' \wedge (a \vee b)'

Hint

(a) (aba)a(a \vee b \vee a') \wedge a

(c) a(ab)a \vee (a \wedge b)

Exercise8

Prove or disprove that the two circuits shown are equivalent.

Hint

Not equivalent.

Exercise10

For each of the following circuits, write a Boolean expression. If the circuit can be replaced by one with fewer switches, give the Boolean expression and draw a diagram for the new circuit.

Hint

(a) a[(ab)b]=a(ab).a' \wedge [(a \wedge b') \vee b] = a \wedge (a \vee b) \text{.}

Exercise14

Let RR be a ring and suppose that XX is the set of ideals of R.R\text{.} Show that XX is a poset ordered by set-theoretic inclusion, .\subset\text{.} Define the meet of two ideals II and JJ in XX by IJI \cap J and the join of II and JJ by I+J.I + J\text{.} Prove that the set of ideals of RR is a lattice under these operations.

Hint

Let I,JI, J be ideals in R.R\text{.} We need to show that I+J={r+s:rI and sJ}I + J = \{ r + s : r \in I \text{ and } s \in J \} is the smallest ideal in RR containing both II and J.J\text{.} If r1,r2Ir_1, r_2 \in I and s1,s2J,s_1, s_2 \in J\text{,} then (r1+s1)+(r2+s2)=(r1+r2)+(s1+s2)(r_1 + s_1) + (r_2 + s_2) = (r_1 + r_2) +(s_1 + s_2) is in I+J.I + J\text{.} For aR,a \in R\text{,} a(r1+s1)=ar1+as1I+J;a(r_1 + s_1) = ar_1 + as_1 \in I + J\text{;} hence, I+JI + J is an ideal in R.R\text{.}

Exercise18

Let XX be a poset such that for every aa and bb in X,X\text{,} either aba \preceq b or ba.b \preceq a\text{.} Then XX is said to be a .

  1. Is aba \mid b a total order on N?{\mathbb N}\text{?}

  2. Prove that N,{\mathbb N}\text{,} Z,{\mathbb Z}\text{,} Q,{\mathbb Q}\text{,} and R{\mathbb R} are totally ordered sets under the usual ordering .\leq\text{.}

Hint

(a) No.

Exercise20

Let BB be a Boolean algebra. Prove that a=ba = b if and only if (ab)(ab)=O(a \wedge b') \vee ( a' \wedge b) = O for a,bB.a, b \in B\text{.}

Hint

().( \Rightarrow)\text{.} a=b(ab)(ab)=(aa)(aa)=OO=O.a = b \Rightarrow (a \wedge b') \vee (a' \wedge b) = (a \wedge a') \vee (a' \wedge a) = O \vee O = O\text{.} ().( \Leftarrow)\text{.} (ab)(ab)=Oab=(aa)b=a(ab)=a[I(ab)]=a[(aa)(ab)]=[a(ab)][a(ab)]=a[(ab)(ab)]=a0=a.( a \wedge b') \vee (a' \wedge b) = O \Rightarrow a \vee b = (a \vee a) \vee b = a \vee (a \vee b) = a \vee [I \wedge (a \vee b)] = a \vee [(a \vee a') \wedge (a \vee b)] = [a \vee (a \wedge b')] \vee [a \vee (a' \wedge b)] = a \vee [(a \wedge b') \vee (a' \wedge b)] = a \vee 0 = a\text{.} A symmetric argument shows that ab=b.a \vee b = b\text{.}

Exercises20.4Exercises

Exercise3

Let Q(2,3){\mathbb Q }( \sqrt{2}, \sqrt{3}\, ) be the field generated by elements of the form a+b2+c3+d6,a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6}\text{,} where a,b,c,da, b, c, d are in Q.{\mathbb Q}\text{.} Prove that Q(2,3){\mathbb Q }( \sqrt{2}, \sqrt{3}\, ) is a vector space of dimension 4 over Q.{\mathbb Q}\text{.} Find a basis for Q(2,3).{\mathbb Q }( \sqrt{2}, \sqrt{3}\, )\text{.}

Hint

Q(2,3){\mathbb Q}(\sqrt{2}, \sqrt{3}\, ) has basis {1,2,3,6}\{ 1, \sqrt{2}, \sqrt{3}, \sqrt{6}\, \} over Q.{\mathbb Q}\text{.}

Exercise5

Prove that the set PnP_n of all polynomials of degree less than nn form a subspace of the vector space F[x].F[x]\text{.} Find a basis for PnP_n and compute the dimension of Pn.P_n\text{.}

Hint

The set {1,x,x2,,xn1}\{ 1, x, x^2, \ldots, x^{n-1} \} is a basis for Pn.P_n\text{.}

Exercise7

Which of the following sets are subspaces of R3?{\mathbb R}^3\text{?} If the set is indeed a subspace, find a basis for the subspace and compute its dimension.

  1. {(x1,x2,x3):3x12x2+x3=0}\{ (x_1, x_2, x_3) : 3 x_1 - 2 x_2 + x_3 = 0 \}

  2. {(x1,x2,x3):3x1+4x3=0,2x1x2+x3=0}\{ (x_1, x_2, x_3) : 3 x_1 + 4 x_3 = 0, 2 x_1 - x_2 + x_3 = 0 \}

  3. {(x1,x2,x3):x12x2+2x3=2}\{ (x_1, x_2, x_3) : x_1 - 2 x_2 + 2 x_3 = 2 \}

  4. {(x1,x2,x3):3x12x22=0}\{ (x_1, x_2, x_3) : 3 x_1 - 2 x_2^2 = 0 \}

Hint

(a) Subspace of dimension 2 with basis {(1,0,3),(0,1,2)};\{(1, 0, -3), (0, 1, 2) \}\text{;} (d) not a subspace

Exercise10

Let VV be a vector space over F.F\text{.} Prove that (αv)=(α)v=α(v)-(\alpha v) = (-\alpha)v = \alpha(-v) for all αF\alpha \in F and all vV.v \in V\text{.}

Hint

Since 0=α0=α(v+v)=α(v)+αv,0 = \alpha 0 = \alpha(-v + v) = \alpha(-v) + \alpha v\text{,} it follows that αv=α(v).- \alpha v = \alpha(-v)\text{.}

Exercise12

Prove that any set of vectors containing 0{\mathbf 0} is linearly dependent.

Hint

Let v0=0,v1,,vnVv_0 = 0, v_1, \ldots, v_n \in V and α00,α1,,αnF.\alpha_0 \neq 0, \alpha_1, \ldots, \alpha_n \in F\text{.} Then α0v0++αnvn=0.\alpha_0 v_0 + \cdots + \alpha_n v_n = 0\text{.}

Exercise15Linear Transformations

Let VV and WW be vector spaces over a field F,F\text{,} of dimensions mm and n,n\text{,} respectively. If T:VWT: V \rightarrow W is a map satisfying

T(u+v)=T(u)+T(v)T(αv)=αT(v)\begin{align*} T( u+ v ) & = T(u ) + T(v)\\ T( \alpha v ) & = \alpha T(v) \end{align*}

for all αF\alpha \in F and all u,vV,u, v \in V\text{,} then TT is called a from VV into W.W\text{.}

  1. Prove that the of T,T\text{,} ker(T)={vV:T(v)=0},\ker(T) = \{ v \in V : T(v) = {\mathbf 0} \}\text{,} is a subspace of V.V\text{.} The kernel of TT is sometimes called the of T.T\text{.}

  2. Prove that the or of T,T\text{,} R(V)={wW:T(v)=w for some vV},R(V) = \{ w \in W : T(v) = w \text{ for some } v \in V \}\text{,} is a subspace of W.W\text{.}

  3. Show that T:VWT : V \rightarrow W is injective if and only if ker(T)={0}.\ker(T) = \{ \mathbf 0 \}\text{.}

  4. Let {v1,,vk}\{ v_1, \ldots, v_k \} be a basis for the null space of T.T\text{.} We can extend this basis to be a basis {v1,,vk,vk+1,,vm}\{ v_1, \ldots, v_k, v_{k + 1}, \ldots, v_m\} of V.V\text{.} Why? Prove that {T(vk+1),,T(vm)}\{ T(v_{k + 1}), \ldots, T(v_m) \} is a basis for the range of T.T\text{.} Conclude that the range of TT has dimension mk.m-k\text{.}

  5. Let dimV=dimW.\dim V = \dim W\text{.} Show that a linear transformation T:VWT : V \rightarrow W is injective if and only if it is surjective.

Hint

(a) Let u,vker(T)u, v \in \ker(T) and αF.\alpha \in F\text{.} Then

T(u+v)=T(u)+T(v)=0T(αv)=αT(v)=α0=0.\begin{gather*} T(u +v) = T(u) + T(v) = 0\\ T(\alpha v) = \alpha T(v) = \alpha 0 = 0. \end{gather*}

Hence, u+v,αvker(T),u + v, \alpha v \in \ker(T)\text{,} and ker(T)\ker(T) is a subspace of V.V\text{.}

(c) The statement that T(u)=T(v)T(u) = T(v) is equivalent to T(uv)=T(u)T(v)=0,T(u-v) = T(u) - T(v) = 0\text{,} which is true if and only if uv=0u-v = 0 or u=v.u = v\text{.}

Exercise17Direct Sums

Let UU and VV be subspaces of a vector space W.W\text{.} The sum of UU and V,V\text{,} denoted U+V,U + V\text{,} is defined to be the set of all vectors of the form u+v,u + v\text{,} where uUu \in U and vV.v \in V\text{.}

  1. Prove that U+VU + V and UVU \cap V are subspaces of W.W\text{.}

  2. If U+V=WU + V = W and UV=0,U \cap V = {\mathbf 0}\text{,} then WW is said to be the In this case, we write W=UV.W = U \oplus V\text{.} Show that every element wWw \in W can be written uniquely as w=u+v,w = u + v\text{,} where uUu \in U and vV.v \in V\text{.}

  3. Let UU be a subspace of dimension kk of a vector space WW of dimension n.n\text{.} Prove that there exists a subspace VV of dimension nkn-k such that W=UV.W = U \oplus V\text{.} Is the subspace VV unique?

  4. If UU and VV are arbitrary subspaces of a vector space W,W\text{,} show that

    dim(U+V)=dimU+dimVdim(UV).\begin{equation*} \dim( U + V) = \dim U + \dim V - \dim( U \cap V). \end{equation*}
Hint

(a) Let u,uUu, u' \in U and v,vV.v, v' \in V\text{.} Then

(u+v)+(u+v)=(u+u)+(v+v)U+Vα(u+v)=αu+αvU+V.\begin{align*} (u + v) + (u' + v') & = (u + u') + (v + v') \in U + V\\ \alpha(u + v) & = \alpha u + \alpha v \in U + V. \end{align*}

Exercises21.4Exercises

Exercise1

Show that each of the following numbers is algebraic over Q{\mathbb Q} by finding the minimal polynomial of the number over Q.{\mathbb Q}\text{.}

  1. 1/3+7\sqrt{ 1/3 + \sqrt{7} }

  2. 3+53\sqrt{ 3} + \sqrt[3]{5}

  3. 3+2i\sqrt{3} + \sqrt{2}\, i

  4. cosθ+isinθ\cos \theta + i \sin \theta for θ=2π/n\theta = 2 \pi /n with nNn \in {\mathbb N}

  5. 23i\sqrt{ \sqrt[3]{2} - i }

Hint

(a) x4(2/3)x262/9;x^4 - (2/3) x^2 - 62/9\text{;} (c) x42x2+25.x^4 - 2 x^2 + 25\text{.}

Exercise2

Find a basis for each of the following field extensions. What is the degree of each extension?

  1. Q(3,6){\mathbb Q}( \sqrt{3}, \sqrt{6}\, ) over Q{\mathbb Q}

  2. Q(23,33){\mathbb Q}( \sqrt[3]{2}, \sqrt[3]{3}\, ) over Q{\mathbb Q}

  3. Q(2,i){\mathbb Q}( \sqrt{2}, i) over Q{\mathbb Q}

  4. Q(3,5,7){\mathbb Q}( \sqrt{3}, \sqrt{5}, \sqrt{7}\, ) over Q{\mathbb Q}

  5. ParseError: KaTeX parse error: Undefined control sequence: \root at position 24: … Q}( \sqrt{2}, \̲r̲o̲o̲t̲ ̲3 \of{2}\, ) over Q{\mathbb Q}

  6. Q(8){\mathbb Q}( \sqrt{8}\, ) over Q(2){\mathbb Q}(\sqrt{2}\, )

  7. Q(i,2+i,3+i){\mathbb Q}(i, \sqrt{2} +i, \sqrt{3} + i ) over Q{\mathbb Q}

  8. Q(2+5){\mathbb Q}( \sqrt{2} + \sqrt{5}\, ) over Q(5){\mathbb Q} ( \sqrt{5}\, )

  9. Q(2,6+10){\mathbb Q}( \sqrt{2}, \sqrt{6} + \sqrt{10}\, ) over Q(3+5){\mathbb Q} ( \sqrt{3} + \sqrt{5}\, )

Hint

(a) {1,2,3,6};\{ 1, \sqrt{2}, \sqrt{3}, \sqrt{6}\, \}\text{;} (c) {1,i,2,2i};\{ 1, i, \sqrt{2}, \sqrt{2}\, i \}\text{;} (e) {1,21/6,21/3,21/2,22/3,25/6}.\{1, 2^{1/6}, 2^{1/3}, 2^{1/2}, 2^{2/3}, 2^{5/6} \}\text{.}

Exercise3

Find the splitting field for each of the following polynomials.

  1. x410x2+21x^4 - 10 x^2 + 21 over Q{\mathbb Q}

  2. x4+1x^4 + 1 over Q{\mathbb Q}

  3. x3+2x+2x^3 + 2x + 2 over Z3{\mathbb Z}_3

  4. x33x^3 - 3 over Q{\mathbb Q}

Hint

(a) Q(3,7).{\mathbb Q}(\sqrt{3}, \sqrt{7}\, )\text{.}

Exercise5

Show that Z2[x]/x3+x+1{\mathbb Z}_2[x] / \langle x^3 + x + 1 \rangle is a field with eight elements. Construct a multiplication table for the multiplicative group of the field.

Hint

Use the fact that the elements of Z2[x]/x3+x+1{\mathbb Z}_2[x]/ \langle x^3 + x + 1 \rangle are 0, 1, α,\alpha\text{,} 1+α,1 + \alpha\text{,} α2,\alpha^2\text{,} 1+α2,1 + \alpha^2\text{,} α+α2,\alpha + \alpha^2\text{,} 1+α+α21 + \alpha + \alpha^2 and the fact that α3+α+1=0.\alpha^3 + \alpha + 1 = 0\text{.}

Exercise8

Can a cube be constructed with three times the volume of a given cube?

Hint

False.

Exercise14

Let KK be an algebraic extension of E,E\text{,} and EE an algebraic extension of F.F\text{.} Prove that KK is algebraic over F.F\text{.} [Caution: Do not assume that the extensions are finite.]

Hint

Suppose that EE is algebraic over FF and KK is algebraic over E.E\text{.} Let αK.\alpha \in K\text{.} It suffices to show that α\alpha is algebraic over some finite extension of F.F\text{.} Since α\alpha is algebraic over E,E\text{,} it must be the zero of some polynomial p(x)=β0+β1x++βnxnp(x) = \beta_0 + \beta_1 x + \cdots + \beta_n x^n in E[x].E[x]\text{.} Hence α\alpha is algebraic over F(β0,,βn).F(\beta_0, \ldots, \beta_n)\text{.}

Exercise22

Show that Q(3,7)=Q(3+7).{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) = {\mathbb Q}( \sqrt{3} + \sqrt{7}\, )\text{.} Extend your proof to show that Q(a,b)=Q(a+b),{\mathbb Q}( \sqrt{a}, \sqrt{b}\, ) = {\mathbb Q}( \sqrt{a} + \sqrt{b}\, )\text{,} where gcd(a,b)=1.\gcd(a, b) = 1\text{.}

Hint

Since {1,3,7,21}\{ 1, \sqrt{3}, \sqrt{7}, \sqrt{21}\, \} is a basis for Q(3,7){\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) over Q,{\mathbb Q}\text{,} Q(3,7)Q(3+7).{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) \supset {\mathbb Q}( \sqrt{3} +\sqrt{7}\, )\text{.} Since [Q(3,7):Q]=4,[{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) : {\mathbb Q}] = 4\text{,} [Q(3+7):Q]=2[{\mathbb Q}( \sqrt{3} + \sqrt{7}\, ) : {\mathbb Q}] = 2 or 4. Since the degree of the minimal polynomial of 3+7\sqrt{3} +\sqrt{7} is 4, Q(3,7)=Q(3+7).{\mathbb Q}( \sqrt{3}, \sqrt{7}\, ) = {\mathbb Q}( \sqrt{3} +\sqrt{7}\, )\text{.}

Exercise27

Let EE be an extension field of FF and αE\alpha \in E be transcendental over F.F\text{.} Prove that every element in F(α)F(\alpha) that is not in FF is also transcendental over F.F\text{.}

Hint

Let βF(α)\beta \in F(\alpha) not in F.F\text{.} Then β=p(α)/q(α),\beta = p(\alpha)/q(\alpha)\text{,} where pp and qq are polynomials in α\alpha with q(α)0q(\alpha) \neq 0 and coefficients in F.F\text{.} If β\beta is algebraic over F,F\text{,} then there exists a polynomial f(x)F[x]f(x) \in F[x] such that f(β)=0.f(\beta) = 0\text{.} Let f(x)=a0+a1x++anxn.f(x) = a_0 + a_1 x + \cdots + a_n x^n\text{.} Then

0=f(β)=f(p(α)q(α))=a0+a1(p(α)q(α))++an(p(α)q(α))n.\begin{equation*} 0 = f(\beta) = f\left( \frac{p(\alpha)}{q(\alpha)} \right) = a_0 + a_1 \left( \frac{p(\alpha)}{q(\alpha)} \right) + \cdots + a_n \left( \frac{p(\alpha)}{q(\alpha)} \right)^n. \end{equation*}

Now multiply both sides by q(α)nq(\alpha)^n to show that there is a polynomial in F[x]F[x] that has α\alpha as a zero.

Exercise28

Let α\alpha be a root of an irreducible monic polynomial p(x)F[x],p(x) \in F[x]\text{,} with degp=n.\deg p = n\text{.} Prove that [F(α):F]=n.[F(\alpha) : F] = n\text{.}

Hint

See the comments following Theorem 21.13.

Exercises22.3Exercises

Exercise1

Calculate each of the following.

  1. [GF(36):GF(33)][\gf(3^6) : \gf(3^3)]

  2. [GF(128):GF(16)][\gf(128): \gf(16)]

  3. [GF(625):GF(25)][\gf(625) : \gf(25) ]

  4. [GF(p12):GF(p2)][\gf(p^{12}): \gf(p^2)]

Hint

Make sure that you have a field extension.

Exercise4

Let α\alpha be a zero of x3+x2+1x^3 + x^2 + 1 over Z2.{\mathbb Z}_2\text{.} Construct a finite field of order 8. Show that x3+x2+1x^3 + x^2 + 1 splits in Z2(α).{\mathbb Z}_2(\alpha)\text{.}

Hint

There are eight elements in Z2(α).{\mathbb Z}_2(\alpha)\text{.} Exhibit two more zeros of x3+x2+1x^3 + x^2 + 1 other than α\alpha in these eight elements.

Exercise5

Construct a finite field of order 27.

Hint

Find an irreducible polynomial p(x)p(x) in Z3[x]{\mathbb Z}_3[x] of degree 3 and show that Z3[x]/p(x){\mathbb Z}_3[x]/ \langle p(x) \rangle has 27 elements.

Exercise7

Factor each of the following polynomials in Z2[x].{\mathbb Z}_2[x]\text{.}

  1. x51x^5- 1

  2. x6+x5+x4+x3+x2+x+1x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

  3. x91x^9 - 1

  4. x4+x3+x2+x+1x^4 +x^3 + x^2 + x + 1

Hint

(a) x51=(x+1)(x4+x3+x2+x+1);x^5 -1 = (x+1)(x^4+x^3 + x^2 + x+ 1)\text{;} (c) x91=(x+1)(x2+x+1)(x6+x3+1).x^9 -1 = (x+1)( x^2 + x+ 1)(x^6+x^3+1)\text{.}

Exercise8

Prove or disprove: Z2[x]/x3+x+1Z2[x]/x3+x2+1.{\mathbb Z}_2[x] / \langle x^3 + x + 1 \rangle \cong {\mathbb Z}_2[x] / \langle x^3 + x^2 + 1 \rangle\text{.}

Hint

True.

Exercise11

Construct all BCH codes of

  1. length 7.

  2. length 15.

Hint

(a) Use the fact that x71=(x+1)(x3+x+1)(x3+x2+1).x^7 -1 = (x+1)( x^3 + x+ 1)(x^3+x^2+1)\text{.}

Exercise12

Prove or disprove: There exists a finite field that is algebraically closed.

Hint

False.

Exercise17

Let FEKF \subset E \subset K be fields. If KK is a separable extension of F,F\text{,} show that KK is also separable extension of E.E\text{.}

Hint

If p(x)F[x],p(x) \in F[x]\text{,} then p(x)E[x].p(x) \in E[x]\text{.}

Exercise18

Let EE be an extension of a finite field F,F\text{,} where FF has qq elements. Let αE\alpha \in E be algebraic over FF of degree n.n\text{.} Prove that F(α)F( \alpha ) has qnq^n elements.

Hint

Since α\alpha is algebraic over FF of degree n,n\text{,} we can write any element βF(α)\beta \in F(\alpha) uniquely as β=a0+a1α++an1αn1\beta = a_0 + a_1 \alpha + \cdots + a_{n-1} \alpha^{n-1} with aiF.a_i \in F\text{.} There are qnq^n possible nn-tuples (a0,a1,,an1).(a_0, a_1, \ldots, a_{n-1})\text{.}

Exercise24Wilson's Theorem

Let pp be prime. Prove that (p1)!1(modp).(p-1)! \equiv -1 \pmod{p}\text{.}

Hint

Factor xp11x^{p-1} - 1 over Zp.{\mathbb Z}_p\text{.}

Exercises23.4Exercises

Exercise1

Compute each of the following Galois groups. Which of these field extensions are normal field extensions? If the extension is not normal, find a normal extension of Q{\mathbb Q} in which the extension field is contained.

  1. G(Q(30)/Q)G({\mathbb Q}(\sqrt{30}\, ) / {\mathbb Q})

  2. G(Q(54)/Q)G({\mathbb Q}(\sqrt[4]{5}\, ) / {\mathbb Q})

  3. G(Q(2,3,5)/Q)G( {\mathbb Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}\, )/ {\mathbb Q} )

  4. G(Q(2,23,i)/Q)G({\mathbb Q}(\sqrt{2}, \sqrt[3]{2}, i) / {\mathbb Q})

  5. G(Q(6,i)/Q)G({\mathbb Q}(\sqrt{6}, i) / {\mathbb Q})

Hint

(a) Z2;{\mathbb Z}_2\text{;} (c) Z2×Z2×Z2.{\mathbb Z}_2 \times {\mathbb Z}_2 \times {\mathbb Z}_2\text{.}

Exercise2

Determine the separability of each of the following polynomials.

  1. x3+2x2x2x^3 + 2 x^2 - x - 2 over Q{\mathbb Q}

  2. x4+2x2+1x^4 + 2 x^2 + 1 over Q{\mathbb Q}

  3. x4+x2+1x^4 + x^2 + 1 over Z3{\mathbb Z}_3

  4. x3+x2+1x^3 +x^2 + 1 over Z2{\mathbb Z}_2

Hint

(a) Separable over Q\mathbb Q since x3+2x2x2=(x1)(x+1)(x+2);x^3 + 2 x^2 - x - 2 = (x - 1)(x + 1)(x + 2)\text{;} (c) not separable over Z3\mathbb Z_3 since x4+x2+1=(x+1)2(x+2)2.x^4 + x^2 + 1 = (x + 1)^2 (x + 2)^2 \text{.}

Exercise3

Give the order and describe a generator of the Galois group of GF(729)\gf(729) over GF(9).\gf(9)\text{.}

Hint

If

[GF(729):GF(9)]=[GF(729):GF(3)]/[GF(9):GF(3)]=6/2=3,\begin{equation*} [\gf(729): \gf(9)] = [\gf(729): \gf(3)] /[\gf(9): \gf(3)] = 6/2 = 3, \end{equation*}

then G(GF(729)/GF(9))Z3.G(\gf(729)/ \gf(9)) \cong {\mathbb Z}_3\text{.} A generator for G(GF(729)/GF(9))G(\gf(729)/ \gf(9)) is σ,\sigma\text{,} where σ36(α)=α36=α729\sigma_{3^6}( \alpha) = \alpha^{3^6} = \alpha^{729} for αGF(729).\alpha \in \gf(729)\text{.}

Exercise4

Determine the Galois groups of each of the following polynomials in Q[x];{\mathbb Q}[x]\text{;} hence, determine the solvability by radicals of each of the polynomials.

  1. x512x2+2x^5 - 12 x^2 + 2

  2. x54x4+2x+2x^5 - 4 x^4 + 2 x + 2

  3. x35x^3 - 5

  4. x4x26x^4 - x^2 - 6

  5. x5+1x^5 + 1

  6. (x22)(x2+2)(x^2 - 2)(x^2 + 2)

  7. x81x^8 - 1

  8. x8+1x^8 + 1

  9. x43x210x^4 - 3 x^2 -10

Hint

(a) S5;S_5\text{;} (c) S3;S_3\text{;} (g) see Example 23.10.

Exercise5

Find a primitive element in the splitting field of each of the following polynomials in Q[x].{\mathbb Q}[x]\text{.}

  1. x41x^4 - 1

  2. x48x2+15x^4 - 8 x^2 + 15

  3. x42x215x^4 - 2 x^2 - 15

  4. x32x^3 - 2

Hint

(a) Q(i){\mathbb Q}(i)

Exercise7

Prove that the Galois group of an irreducible cubic polynomial is isomorphic to S3S_3 or Z3.{\mathbb Z}_3\text{.}

Hint

Let EE be the splitting field of a cubic polynomial in F[x].F[x]\text{.} Show that [E:F][E:F] is less than or equal to 6 and is divisible by 3. Since G(E/F)G(E/F) is a subgroup of S3S_3 whose order is divisible by 3, conclude that this group must be isomorphic to Z3{\mathbb Z}_3 or S3.S_3\text{.}

Exercise9

Let GG be the Galois group of a polynomial of degree n.n\text{.} Prove that G|G| divides n!.n!\text{.}

Hint

GG is a subgroup of Sn.S_n\text{.}

Exercise16

Let KK be the splitting field of x3+x2+1Z2[x].x^3 + x^2 + 1 \in {\mathbb Z}_2[x]\text{.} Prove or disprove that KK is an extension by radicals.

Hint

True.

Exercise20

We know that the cyclotomic polynomial

Φp(x)=xp1x1=xp1+xp2++x+1\begin{equation*} \Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \cdots + x + 1 \end{equation*}

is irreducible over Q{\mathbb Q} for every prime p.p\text{.} Let ω\omega be a zero of Φp(x),\Phi_p(x)\text{,} and consider the field Q(ω).{\mathbb Q}(\omega)\text{.}

  1. Show that ω,ω2,,ωp1\omega, \omega^2, \ldots, \omega^{p-1} are distinct zeros of Φp(x),\Phi_p(x)\text{,} and conclude that they are all the zeros of Φp(x).\Phi_p(x)\text{.}

  2. Show that G(Q(ω)/Q)G( {\mathbb Q}( \omega ) / {\mathbb Q} ) is abelian of order p1.p - 1\text{.}

  3. Show that the fixed field of G(Q(ω)/Q)G( {\mathbb Q}( \omega ) / {\mathbb Q} ) is Q.{\mathbb Q}\text{.}

Hint
  1. Clearly ω,ω2,,ωp1\omega, \omega^2, \ldots, \omega^{p - 1} are distinct since ω1\omega \neq 1 or 0. To show that ωi\omega^i is a zero of Φp,\Phi_p\text{,} calculate Φp(ωi).\Phi_p( \omega^i)\text{.}

  2. The conjugates of ω\omega are ω,ω2,,ωp1.\omega, \omega^2, \ldots, \omega^{p - 1}\text{.} Define a map ϕi:Q(ω)Q(ωi)\phi_i: {\mathbb Q}(\omega) \rightarrow {\mathbb Q}(\omega^i) by

    ϕi(a0+a1ω++ap2ωp2)=a0+a1ωi++cp2(ωi)p2,\begin{equation*} \phi_i(a_0 + a_1 \omega + \cdots + a_{p - 2} \omega^{p - 2}) = a_0 + a_1 \omega^i + \cdots + c_{p - 2} (\omega^i)^{p - 2}, \end{equation*}

    where aiQ.a_i \in {\mathbb Q}\text{.} Prove that ϕi\phi_i is an isomorphism of fields. Show that ϕ2\phi_2 generates G(Q(ω)/Q).G({\mathbb Q}(\omega)/{\mathbb Q})\text{.}

  3. Show that {ω,ω2,,ωp1}\{ \omega, \omega^2, \ldots, \omega^{p - 1} \} is a basis for Q(ω){\mathbb Q}( \omega ) over Q,{\mathbb Q}\text{,} and consider which linear combinations of ω,ω2,,ωp1\omega, \omega^2, \ldots, \omega^{p - 1} are left fixed by all elements of G(Q(ω)/Q).G( {\mathbb Q}( \omega ) / {\mathbb Q})\text{.}