Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
| Download

William Stein -- Talk for Mathematics is a long conversation: a celebration of Barry Mazur

Views: 2342
1
\documentclass{beamer}
2
3
\usepackage{fix-cm}
4
\usepackage{soul}
5
\usepackage{float}
6
\usepackage{tikz}
7
8
\usepackage{color}
9
\definecolor{dblackcolor}{rgb}{0.0,0.0,0.0}
10
\definecolor{dbluecolor}{rgb}{.01,.02,0.7}
11
\definecolor{dredcolor}{rgb}{0.8,0,0}
12
\definecolor{dgraycolor}{rgb}{0.30,0.3,0.30}
13
\usepackage{listings}
14
\lstdefinelanguage{Sage}[]{Python}
15
{morekeywords={True,False,sage,singular},
16
sensitive=true}
17
\lstset{frame=none,
18
showtabs=False,
19
showspaces=False,
20
showstringspaces=False,
21
commentstyle={\ttfamily\color{dredcolor}},
22
keywordstyle={\ttfamily\color{dbluecolor}\bfseries},
23
stringstyle ={\ttfamily\color{dgraycolor}\bfseries},
24
language = Sage,
25
basicstyle={\scriptsize \ttfamily},
26
aboveskip=.3em,
27
belowskip=.1em
28
}
29
30
\usepackage{fancybox}
31
\usepackage{graphicx}
32
\usepackage{amsmath}
33
\usepackage{amsfonts}
34
\usepackage{amssymb}
35
\usepackage{amsthm}
36
\usepackage{url}
37
38
39
\DeclareMathOperator{\Gap}{Gap}
40
\DeclareMathOperator{\Li}{Li}
41
\DeclareGraphicsRule{.tif}{png}{.png}{`convert #1 `dirname #1`/`basename #1 .tif`.png}
42
43
\newcommand{\mycaption}[1]{\begin{quote}{\bf Figure: } \large #1\end{quote}}
44
45
\newcommand{\ill}[3]{%
46
\begin{figure}[H]%
47
\vspace{-2ex}
48
\centering%
49
\includegraphics[width=#2\textwidth]{illustrations/#1}%
50
\caption{#3}%
51
\vspace{-2ex}
52
\end{figure}}
53
54
\newcommand{\illtwo}[4]{%
55
\begin{figure}[H]\centering%
56
\includegraphics[width=#3\textwidth]{illustrations/#1}$\qquad$\includegraphics[width=#3\textwidth]{illustrations/#2}%
57
\caption{#4}%
58
\end{figure}}
59
60
\newcommand{\illthree}[5]{%
61
\begin{figure}[H]%
62
\centering%
63
\includegraphics[width=#4\textwidth]{illustrations/#1}$\qquad$\includegraphics[width=#4\textwidth]{illustrations/#2}$\qquad$\includegraphics[width=#4\textwidth]{illustrations/#3}%
64
\caption{#5}%
65
\end{figure}}
66
67
68
69
70
\def\GL{\mathrm{GL}}
71
\def\PGL{\mathrm{PGL}}
72
\def\PSL{\mathrm{PSL}}
73
\def\GSP{\mathrm{GSP}}
74
\def\Z{\mathrm{Z}}
75
\def\Q{\mathrm{Q}}
76
\def\Gal{\mathrm{Gal}}
77
\def\Hom{\mathrm{Hom}}
78
\def\Ind{\mathrm{Ind}}
79
\def\End{\mathrm{End}}
80
\def\Aut{\mathrm{Aut}}
81
\def\loc{\mathrm{loc}}
82
\def\glob{\mathrm{glob}}
83
\def\Kbar{{\bar K}}
84
\def\D{{\mathcal D}}
85
\def\L{{\mathcal L}}
86
\def\R{{\mathcal R}}
87
\def\G{{\mathcal G}}
88
\def\W{{\mathcal W}}
89
\def\H{{\mathcal H}}
90
\def\OH{{\mathcal OH}}
91
92
93
94
\newcommand{\RH}{Riemann Hypothesis\index{Riemann Hypothesis}}
95
96
97
\title{PRIMES}
98
\author{Barry Mazur}
99
\date{\today}
100
101
\begin{document}
102
103
\begin{frame}
104
\titlepage
105
106
{\it (A discussion of `Primes: What is Riemann's Hypothesis?,' the book I'm currently writing with William Stein)}
107
\end{frame}
108
109
\begin{frame}
110
\frametitle{William:}
111
\begin{center}\LARGE
112
\url{https://vimeo.com/90380011}
113
\end{center}
114
\ill{steinbsair}{0.7}{William}
115
\end{frame}
116
\begin{frame}
117
118
\frametitle{The impact of the Riemann Hypothesis}
119
\ill{sarnak}{0.20}{Peter Sarnak}
120
121
\begin{quote}
122
``The Riemann hypothesis is the central problem and it implies many,
123
many things. One thing that makes it rather unusual in mathematics
124
today is that there must be over five hundred papers---somebody should
125
go and count---which start `Assume the Riemann hypothesis,' and
126
the conclusion is fantastic. And those [conclusions] would then become
127
theorems ... With this one solution you would have proven five hundred
128
theorems or more at once.''
129
\end{quote}
130
131
\end{frame}
132
\begin{frame}
133
\frametitle{An expository challenge}
134
The approach you take when you try to explain anything depends upon your intended audience(s). In our case we wanted to reach two quite different kinds of readers (at the same time):
135
\vskip20pt
136
\begin{itemize} \item High School students who are already keen on mathematics,
137
\vskip20pt
138
\item A somewhat older crowd of scientists (e.g., engineers) who have a nonprofessional interest in mathematics.
139
\end{itemize}
140
\end{frame}
141
\begin{frame}\frametitle{\bf\large What {\em sort} of Hypothesis is the \RH{}?}
142
\begin{center}
143
\shadowbox{ \begin{minipage}{0.91\textwidth}
144
\mbox{} \vspace{0.2ex}
145
146
Consider the seemingly innocuous series of questions:
147
148
\begin{quote}
149
\begin{itemize}
150
\item How many primes (2, 3, 5, 7, 11, 13, $\ldots$) are there less than 100?
151
\item How many less than 10,000?
152
\item How many less than 1,000,000?
153
\end{itemize}
154
155
More generally, how many primes are there less than any given number $X$?
156
\end{quote}
157
158
Riemann's Hypothesis tells us that a strikingly
159
simple-to-describe function is a ``very good approximation'' to the number of
160
primes less than a given number $X$. We now
161
see that if we could prove this {\em Hypothesis of Riemann} we would have
162
the key to a wealth of powerful mathematics. Mathematicians are eager
163
to find that key.
164
165
166
\vspace{1ex}
167
\end{minipage}}\end{center}
168
\end{frame}
169
\begin{frame}\frametitle{An expository frame---and goal}\vskip10pt
170
\ill{raoulbott}{0.20}{Raoul Bott (1923--2005)\label{fig:bott}}
171
172
Raoul Bott, once
173
said---giving advice to some young mathematicians---that whenever one
174
reads a mathematics book or article, or goes to a math lecture, one
175
should aim to come home with something very specific (it can be small,
176
but should be {\em specific}) that has application to a wider class of
177
mathematical problem than was the focus of the text or lecture.
178
179
\end{frame}
180
181
\begin{frame}\frametitle{Setting the frame}
182
If we
183
were to suggest some possible {\em specific} items to come home with,
184
after reading our book, three key phrases -- {\bf prime numbers}, {\bf
185
square-root accurate}, and {\bf spectrum} -- would head the
186
list.
187
188
\end{frame}
189
190
\begin{frame}\frametitle{PRIMES: order appearing random }
191
\vskip10pt
192
\ill{zagier}{.15}{Don Zagier}
193
194
195
\begin{quote}
196
197
``{\bf [Primes]}
198
\begin{itemize}\item are the most arbitrary and ornery objects studied by mathematicians:
199
they grow like weeds among the natural numbers, seeming to obey no
200
other law than that of chance, and nobody can predict where the next
201
one will sprout. \item exhibit stunning
202
regularity $\dots$
203
they obey their laws with almost military precision.''\end{itemize}
204
\end{quote}
205
\end{frame}
206
207
\begin{frame}\frametitle{How to nudge readers to feel the orneriness of primes }
208
209
There is something compelling about `physically' hunting for a species of mathematical object, and collecting specimens of it. Our book emphasizes this approach for our readers. Here are some routes that allow you to 'pan' (in different ways) for primes:
210
211
\vskip20pt
212
213
214
\centerline{ {\bf Factor trees} and {\bf Sieves}}
215
216
217
\vskip10pt
218
219
220
\centerline{and}
221
222
223
\vskip10pt
224
225
226
\centerline{\bf Euclid's Proof of the Infinitude of Primes.}
227
\end{frame}
228
229
\begin{frame}\frametitle{\bf Factor trees}
230
231
\illtwo{factor_tree_300_a}{factor_tree_300_b}{.47}
232
233
234
\end{frame}
235
236
\begin{frame}\frametitle{\bf Sieves}
237
\includegraphics[width=\textwidth]{illustrations/circled_primes}
238
\end{frame}
239
240
\begin{frame}\frametitle{\bf The ubiquity of primes}
241
\vskip10pt
242
\ill{dulcinea1}{.2}{Don Quixote and ``his'' Dulcinea del Toboso}
243
\vskip10pt
244
Numbers are obstreperous things. Don Quixote encountered this when he
245
requested that the ``bachelor'' compose a poem to his lady Dulcinea del
246
Toboso, the first letters of each line spelling out her name.
247
\end{frame}
248
249
\begin{frame}\frametitle{\bf The stubbornness of primes and knights}
250
The
251
``bachelor'' found
252
\vskip10pt
253
254
\begin{quote}
255
``a great difficulty in their composition because the number of
256
letters in her name was $17$, and if he made four Castilian stanzas
257
of four octosyllabic lines each, there would be one letter too many,
258
and if he made the stanzas of five octosyllabic lines each, the ones
259
called {\em d{\'e}cimas} or {\em redondillas,} there would be three
260
letters too few...''
261
\end{quote}
262
263
``It must fit in, however, you do it,'' pleaded Quixote, not willing to
264
grant the imperviousness of the number $17$ to division.
265
\end{frame}
266
\begin{frame}\frametitle{\bf The Art of asking questions}
267
\vskip10pt
268
269
{\Huge
270
271
\centerline{Questions anyone might ask}
272
\vskip10pt
273
\centerline{\it spawning}
274
\vskip10pt
275
\centerline{Questions that shape the field}}
276
\end{frame}
277
278
\begin{frame}\frametitle{\bf Gaps: an example of a `question anyone might ask'}
279
\vskip10pt
280
281
\ill{zhang}{0.15}{Yitang Zhang\label{fig:zhang}}
282
283
{\Huge
284
In celebration of Yitang Zhang's recent result, consider the {\em gaps} between one prime and the next.}
285
\end{frame}\begin{frame}\frametitle{\bf Twin Primes}
286
{\Huge
287
\begin{quote} As of 2014, the largest known twin primes are \vskip10pt
288
$$3756801695685\cdot 2^{666669} \pm 1$$ \vskip10pt
289
These enormous primes have $200700$ digits each.
290
\end{quote}}
291
\end{frame}
292
\begin{frame}\frametitle{\bf Gaps of width $k$}
293
Define
294
{\Huge $$
295
\Gap_{k}(X):=
296
$$
297
number of pairs of {\em consecutive} primes $(p,q)$ with
298
$q<X$ that have ``gap $k$'' (i.e., such that their difference $q-p$ is
299
$k$).
300
301
\vskip20pt
302
303
{\bf NOTE:} $\Gap_{4}(10)=0$.}\end{frame}
304
\begin{frame}\frametitle{\bf Gap statistics}
305
306
307
\begin{table}[H]\centering
308
\caption{Values of $\Gap_{k}(X)$ \label{tab:gap}}
309
\vspace{1em}
310
311
{\small
312
\begin{tabular}{|l|c|c|c|c|c|c|}\hline
313
$X$ & $\Gap_{2}(X)$ & $\Gap_{4}(X)$& $\Gap_{6}(X)$ & $\Gap_{8}(X)$ &
314
$\Gap_{100}(X)$ & $\Gap_{252}(X)$\\\hline
315
316
$10$ & 2 & 0 & 0 & 0 & 0 & 0\\\hline
317
$10^{2}$ & 8 & 7 & 7 & 1 & 0 & 0\\\hline
318
$10^{3}$ & 35 & 40 & 44 & 15 & 0 & 0\\\hline
319
$10^{4}$ & 205 & 202 & 299 & 101 & 0 & 0\\\hline
320
$10^{5}$ & 1224 & 1215 & 1940 & 773 & 0 & 0\\\hline
321
$10^{6}$ & 8169 & 8143 & 13549 & 5569 & 2 & 0\\\hline
322
$10^{7}$ & 58980 & 58621 & 99987 & 42352 & 36 & 0\\\hline
323
$10^{8}$ & 440312 & 440257 & 768752 & 334180 & 878 & 0\\\hline
324
325
\end{tabular}
326
}
327
\end{table}
328
\end{frame}
329
330
331
\begin{frame}\frametitle{\bf How many primes are there?}
332
\vskip20pt
333
334
{\Huge $\pi(X):=$ \# of primes $\le X$}
335
\vskip10pt
336
337
\ill{prime_pi_25_aspect1}{.8}{Staircase of primes up to 25\label{fig:staircase25}}\end{frame}
338
\begin{frame}\frametitle{\bf How many primes are there?}
339
\vskip20pt
340
\ill{prime_pi_100_aspect1}{.8}{Staircase of primes up to 100\label{fig:staircase100a}}
341
342
\end{frame}
343
344
345
\begin{frame}\frametitle{\bf Prime numbers viewed from a distance}
346
\vskip10pt
347
{\Huge{\it Pictures of data magically become smooth curves as you telescope to greater and greater ranges.}}
348
\vskip20pt
349
350
351
\illtwo{prime_pi_1000}{prime_pi_10000}{0.4}{Staircases of primes up to 1,000 and 10,000\label{fig:staircases2}}
352
\end{frame}
353
354
355
\begin{frame}\frametitle{\bf Proportion of Primes}\vskip10pt
356
\ill{proportion_primes_100}{1}{Graph of the proportion of primes up to $X$ for each integer $X\leq 100$}
357
\end{frame}
358
359
360
\begin{frame}\frametitle{\bf Proportion of Primes at greater distance}\vskip10pt
361
362
\illtwo{proportion_primes_1000}{proportion_primes_10000}{0.46}{Proportion of primes for $X$ up to $1{,}000$ (left) and $10{,}000$ (right)}
363
\end{frame}
364
365
366
367
368
\begin{frame}\frametitle{\bf Gauss}\vskip10pt
369
370
\ill{gauss_tables_half}{.9}{A Letter of Gauss\label{fig:gauss_letter}}\end{frame}
371
372
\begin{frame}\frametitle{\bf Gauss' guess}\vskip10pt
373
374
{\Huge The `probability' that a number $N$ is a prime is proportional to the reciprocal of its number of digits; more precisely the probability is
375
\vskip10pt $$1/\log(N).$$}\end{frame}
376
377
\begin{frame}
378
379
{\Huge This would lead us to this guess for the approximate value of $\pi(X)$: \vskip10pt
380
$$\Li(X):=\ \ \ \int_2^XdX/\log(X).$$}\end{frame}
381
382
\begin{frame}\frametitle{\bf Approximating $\pi(X)$}\vskip10pt
383
384
385
386
\ill{three_plots}{1.0}{Plots of $\Li(X)$ (top), $\pi(X)$ (in the middle), and $X/\log(X)$ (bottom).\label{fig:threeplots}}\end{frame}
387
388
\begin{frame}\frametitle{\bf The Prime Number Theorem}\vskip10pt
389
\ill{three_plots}{0.5}{Plots of $\Li(X)$ (top), $\pi(X)$ (in the middle), and $X/\log(X)$ (bottom).\label{fig:threeplots}}\vskip10pt
390
391
{\Huge All three graphs {\it tend to $\infty$} at the same rate.}\end{frame}
392
\begin{frame}\frametitle{\bf Ratios }
393
\vskip30pt
394
{\Huge \centerline{\bf PNT:}\vskip10pt
395
\centerline{ The ratios}
396
$${\frac{\pi(X)}{Li(X)}}\ \ \ {\rm and}\ \ \ {\frac{\pi(X)}{X/\log(X))}}$$\vskip10pt tend to $1$ as $X$ goes to $\infty$.}
397
\vskip10pt\end{frame}
398
\begin{frame}\frametitle{\bf Ratios versus Differences}
399
\vskip10pt
400
401
{\Huge Much subtler question: what about their differences?
402
403
$$|\Li(X)-\pi(X)|?$$}\end{frame}
404
405
\begin{frame}\frametitle{\bf Riemann's
406
Hypothesis}
407
408
{\Huge \begin{center}
409
\shadowbox{ \begin{minipage}{0.9\textwidth}
410
\mbox{} \vspace{0.2ex}
411
\begin{center}{\bf\large The {\bf \RH{}} (first formulation)}\end{center}
412
\medskip
413
414
$\pi(X)$ is approximated by $\Li(X)$, with {\bf essentially square-root} accuracy.
415
416
\vspace{1ex}
417
\end{minipage}}
418
\end{center}}
419
\end{frame}
420
\begin{frame}\frametitle{\bf More precisely $\dots$}
421
{\Huge {\bf RH} is equivalent to:
422
423
\vskip10pt
424
$$|\Li(X) - \pi(X)| \leq \sqrt{X}\log(X)$$
425
426
\vskip10pt
427
428
for all $X\geq 2.01$.}\end{frame}
429
430
431
\begin{frame}\frametitle{\bf Square-root accuracy}
432
433
{\Huge {\bf The gold standard for empirical data accuracy} \vskip10pt
434
435
Discussion of random error, and random walks
436
437
438
\illtwo{random_walks-1000}{random_walks-1000-mean}{.45}{One Thousand Random Walks\label{fig:random_walks_1000}}}\end{frame}
439
\begin{frame}\frametitle{\bf {The mystery moves to the error term}}
440
441
{\Huge $${\it Mysterious\ quantity}(X)\ \ = \ \ $$
442
443
$$\ \ =\ \ {\it Simple \ expression}(X) \ + \ $$
444
445
$$ \ + \ {\it Error}(X).$$}\end{frame}
446
\begin{frame}\frametitle{\bf {Our mystery moves to our error term}}
447
448
{\Huge $${\rm Mystery}\ \ = \ {\rm Simple} \ + \ {\rm Error}.$$
449
450
$${\pi}(X)\ \ = \ {Li}(X) \ - \ \big({Li}(X)-\pi(X)\big).$$}\end{frame}
451
452
453
454
\begin{frame}\frametitle{\bf That `error term'}
455
\ill{li-minus-pi-250000}{.9}{$\Li(x)-\pi(x)$ (blue middle), its C{\'e}saro smoothing (red bottom), and
456
$\sqrt{\frac{2}{\pi}}\cdot \sqrt{x/\log(x)}$ (top), all for $x\leq 250{,}000$\label{fig:li-minus-pi-250000}}\end{frame}
457
\begin{frame}\frametitle{\bf The tension between data and long-range behavior}
458
459
\ill{li-minus-pi-250000}{.3}
460
461
The wiggly blue curve which seems to be growing nicely `like ${\sqrt X}$' will descend below the $X$-axis, for some value of $X > 10^{14}$.
462
\vskip20pt
463
\centerline{\bf Skewes Number}\end{frame}
464
\begin{frame}\frametitle{\bf The tension between data and long-range behavior}
465
466
\hskip100pt \includegraphics[width=0.4\textwidth]{illustrations/littlewood}
467
{
468
$$
469
10^{14}\ \ \ \le\ \ \ {\rm Skewes\ Number}\ \ \ <\ \ \ 10^{317}
470
$$} \end{frame}
471
472
\begin{frame}\frametitle{\bf Spectrum}
473
474
\hskip100pt \includegraphics[width=0.13\textwidth]{illustrations/rainbow}
475
476
\vskip10pt
477
{\Huge From Latin:\vskip10pt ``image," or ``appearance."}\end{frame}
478
\begin{frame}\frametitle{\bf Spectra and the Fourier transform}
479
480
(The essential miracle of the theory of the Fourier transform:)
481
\vskip10pt
482
{\Huge $$ G(t) \ \ \ \leftrightarrow \ \ \ F(s)$$
483
484
\vskip10pt
485
486
Each behaves as if it were the \vskip5pt {\it 'spectral analysis'} of the other.}\end{frame}
487
\begin{frame}\frametitle{\bf packaging the information given by prime powers}
488
{\Huge $$ g(t)\ \ =\ \ $$
489
490
\vskip10pt
491
492
$$\ \ \ = \ \ \ -\sum_{p^n}{\frac{\log(p)}{p^{n/2}}}\cos(t\log(p^n).)
493
$$}\end{frame}
494
\begin{frame}\frametitle{\bf $p^n \leq 5$}
495
{\Huge
496
\ill{phihat_even-5}{1}{Plot of $-\sum_{p^n\leq 5}{\frac{\log(p)}{p^{n/2}}}\cos(t\log(p^n))$ with
497
arrows pointing to the spectrum of the primes\label{fig:pnsum5}}
498
}\end{frame}
499
\begin{frame}\frametitle{\bf $p^n \leq 20$}
500
{\Huge
501
\ill{phihat_even-20}{1}{Plot of $-\sum_{p^n\leq 20}{\frac{\log(p)}{p^{n/2}}}\cos(t\log(p^n))$ with arrows pointing to the spectrum of the primes}}\end{frame}
502
\begin{frame}\frametitle{\bf $p^n \leq 50$}
503
{\Huge
504
505
\ill{phihat_even-50}{1}{Plot of $-\sum_{p^n\leq 50}{\frac{\log(p)}{p^{n/2}}}\cos(t\log(p^n))$ with arrows pointing to the spectrum of the primes}}\end{frame}
506
507
508
\begin{frame}\frametitle{\bf $p^n \leq 500$}
509
{\Huge \ill{phihat_even-500}{1}{Plot of $-\sum_{p^n\leq
510
500}{\frac{\log(p)}{p^{n/2}}}\cos(t\log(p^n))$ with arrows
511
pointing to the spectrum of the primes\label{fig:pnsum500}}}\end{frame}
512
513
\begin{frame}\frametitle{\bf From primes to the Riemann Spectrum}
514
{\Huge Conditional on RH, $g(t)$ converges to a distribution with singular spikes at the red vertical lines: the Riemann spectrum,
515
516
$$\theta_1, \theta_2, \theta_3,\dots $$} \end{frame}
517
\begin{frame}\frametitle{\bf From the Riemann Spectrum to primes}
518
{\Huge
519
520
$$f(s)\ \ = $$
521
522
$$\ \ = \ \ 1+ \sum_{i}\cos(\theta_i\cdot \log(s))).$$} \end{frame}
523
\begin{frame}\frametitle{\bf From the Riemann Spectrum to primes}
524
{\Huge
525
526
527
528
\ill{phi_cos_sum_2_30_1000}{.8}{Illustration of $-\sum_{i=1}^{1000}
529
\cos(\log(s)\theta_i)$, where $\theta_1 \sim 14.13, \ldots$ are the
530
first $1000$ contributions to the Riemann spectrum. The spikes
531
are at the prime powers $p^n$, whose size is proportional to
532
$\log(p)$.}} \end{frame}
533
\begin{frame}\frametitle{\bf From the Riemann Spectrum to primes}
534
{\Huge
535
536
\ill{phi_cos_sum_26_34_1000}{.8}{Illustration of $-\sum_{i=1}^{1000}
537
\cos(\log(s)\theta_i)$ in the neighborhood of a twin prime. Notice
538
how the two primes $29$ and $31$ are separated out by the Fourier
539
series, and how the prime powers $3^3$ and $2^5$ also appear.}} \end{frame}
540
\begin{frame}\frametitle{\bf From the Riemann Spectrum to primes}
541
{\Huge
542
543
\ill{phi_cos_sum_1010_1026_15000}{.7}{Fourier series from $1,000$ to
544
$1,030$ using 15,000 of the numbers $\theta_i$. Note the twin
545
primes $1019$ and $1021$ and that $1024=2^{10}$.}} \end{frame}
546
\begin{frame}\frametitle{\bf Information and Structure}
547
548
{\Huge The Riemann spectrum holds the key to the position of prime numbers on the number line.
549
\vspace{1em}
550
551
What even deeper structure of primes can they reveal to us?}\end{frame}
552
\begin{frame}
553
\frametitle{Riemann}
554
\ill{riemann}{.2}{Bernhard Riemann (1826--1866)}
555
556
\ill{riemann_zoom}{1}{From Riemann's 1859 Manuscript\label{fig:riemamn}}
557
\end{frame}
558
\begin{frame}
559
\frametitle{William}
560
\begin{center}\LARGE
561
\url{https://vimeo.com/90380011}
562
\end{center}
563
\ill{steinbsair}{0.7}{William}
564
\end{frame}
565
\end{document}
566
567
568
569
%\ill{riemann}{.2}{Bernhard Riemann (1826--1866)}
570
571
572
\centerline{1853: His theory of trigonometric sums}
573
\centerline{1859: His number theory}
574
575
\ill{riemann_zoom}{1}{From Riemann's 1859 Manuscript\label{fig:riemamn}}
576
577
578
579
There are 455,052,512 primes less than ten billion; i.e.,
580
10,000,000,000 (so we might say that the chances are down to roughly
581
$1$ in $22$).
582
583
Primes, then, seem to be thinning out. We return to the sifting process
584
we carried out earlier, and take a look at a few graphs, to get a sense of why
585
that might be so. There are a $100$ numbers less than or equal to
586
$100$, a thousand numbers less than or equal to $1000$, etc.: the
587
shaded graph in Figure~\ref{fig:sieve_2_100} that looks like a regular staircase, each step the
588
same length as each riser, climbing up at, so to speak, a 45 degree
589
angle, counts all numbers up to and including~$X$.
590
591
Fol
592
593
594
595
596
597
598
\end{document}
599
The recent results of Zhang as sharpened by Maynard (and others) we mentioned above tell us that for at least one even number $k$ among the even numbers $k \le 252$, $\Gap_{k}(X)$ goes to infinity as $X$ goes to infinity. One expects that this happens for {\it all} even numbers $k$. We expect this as well, of course, for $\Gap_{252}(X)$ despite what might be misconstrued as discouragement by the above data.
600
601
\ill{primegapdist}{1}{Frequency histogram showing the distribution of
602
prime gaps of size $\leq 50$ for all primes up to $10^7$. Six is
603
the most popular gap in this data. The vertical axis labels
604
such as ``6e4'' mean $6\cdot 10^4=60{,}000$.
605
\label{fig:primegapdist}}
606
607
608
\ill{primegap_race}{1}{Plots of $\Gap_k(X)$ for $k=2,4,6,8$. Which wins?}
609
610
Here is yet another question that deals with the spacing of prime
611
numbers that we do not know the answer to:
612
613
{\em Racing Gap $2$, Gap $4$, Gap $6$, and Gap $8$ against each other:}
614
615
\begin{quote}
616
Challenge: As $X$ tends to infinity which of $\Gap_2(X)$,
617
$\Gap_4(X)$,
618
$\Gap_6(X),$ or $\Gap_8(X)$ do you think will grow faster? How
619
much would you bet on the truth of your guess? \bibnote{%
620
Hardy and Littlewood give a nice conjectural answer to such
621
questions about gaps between primes. See Problem {\bf A8} of
622
Guy's book {\em Unsolved Problems in Number Theory} (2004).
623
Note that Guy's book discusses counting the number $P_k(X)$ of pairs of
624
primes up to $X$ that differ by a fixed even number $k$; we have
625
$P_k(X)\geq \Gap_k(X)$, since for $P_k(X)$ there is no requirement
626
that the pairs of primes be consecutive.}
627
\end{quote}
628
629
630
\end{document}
631
%sagemathcloud={"zoom_width":95}
632