Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 1501
1
\documentclass{beamer}
2
3
\mode<presentation> {
4
\usecolortheme{wolverine}
5
\setbeamertemplate{footline}[page number]
6
\setbeamertemplate{navigation symbols}{}
7
}
8
9
10
11
\usepackage{graphicx}
12
\usepackage{booktabs}
13
\usepackage{amsmath}
14
\usepackage{sage}
15
16
\newcommand{\C}{\mathbb{C}}
17
\newcommand{\F}{\mathbb{F}}
18
\renewcommand{\P}{\mathbb{P}}
19
\newcommand{\Q}{\mathbb{Q}}
20
\newcommand{\R}{\mathbb{R}}
21
\newcommand{\Z}{\mathbb{Z}}
22
23
\newcommand{\isom}{\cong}
24
\newcommand{\ncisom}{\approx} % noncanonical isomorphism
25
\newcommand{\union}{\cup}
26
27
\usepackage{amsthm}
28
\theoremstyle{plain}
29
\newtheorem{proposition}[theorem]{Proposition}
30
\newtheorem{claim}[theorem]{Claim}
31
\newtheorem{hypothesis}[theorem]{Hypothesis}
32
\newtheorem{conjecture}[theorem]{Conjecture}
33
\theoremstyle{definition}
34
\newtheorem{question}[theorem]{Question}
35
36
37
\title[Modular Symbols]{Modular Symbols Statistics}
38
39
\author{William Stein\footnote{Joint work-in-progress with Barry Mazur and Karl Rubin.}}
40
\institute[UW]
41
{
42
University of Washington \\
43
\medskip
44
\textit{wstein@uw.edu}
45
}
46
\date{30m talk on May 17, 2015 in Eugene, Oregon\\
47
Slides at \url{http://tinyurl.com/modsymdist}\\
48
Video at \url{http://youtu.be/mSGiSCLGug8}}
49
50
\begin{document}
51
52
\begin{frame}
53
\titlepage
54
\end{frame}
55
56
\begin{frame}
57
\frametitle{Overview}
58
\tableofcontents
59
\end{frame}
60
61
\section{Modular symbols and $L$-functions}
62
63
64
\begin{frame}
65
\frametitle{Modular symbols associated to an elliptic curve}
66
\begin{itemize}
67
\item {\em Elliptic curve:} $E/\Q$, modular form $f=f_E=\sum a_n q^n$.
68
\item {\em Period mapping:} integration defines a map $\P^1(\Q)=\Q\union\{i\infty\} \to \C$ given
69
by $\alpha \mapsto \int_{i\infty}^{\alpha} 2\pi i f(z) dz$.
70
\item {\em Homology:} $H_1(E,\Z)\isom \Lambda_E \subset \C$ is the image of all integrals of closed paths in the upper half plane, and
71
$E(\C)\isom \C/\Lambda_E$.
72
\item {\em Complex conjugation:}
73
$\Lambda_E^+ \oplus \Lambda_E^- \subset \Lambda_E$
74
has index $1$ or $2$.
75
Write $\Lambda_E^+ = \Z \omega^+$, where $\omega^+>0$ is well defined.
76
\item {\em Modular symbols:}
77
$
78
[\alpha]^+_E:\P^1(\Q) \to \Q
79
$
80
$$
81
\{\alpha\}^+_E = \frac{1}{2}\left( \int_{i\infty}^{\alpha} 2\pi i f(z) dz
82
+ \int_{i\infty}^{-\alpha} 2\pi i f(z) dz\right)
83
= [\alpha]_E^+ \cdot \omega^+
84
$$
85
{\em WARNING:} Cannot evaluate by switching order of summation and integration!
86
\end{itemize}
87
88
\end{frame}
89
90
\begin{frame}[fragile]
91
\frametitle{Example}
92
93
We compute some modular symbols using SageMath.
94
Despite the numerical definitions above, the following computations
95
are entirely algebraic.
96
97
98
\begin{sagecell}
99
E = EllipticCurve('11a')
100
s = E.modular_symbol()
101
s(17/13)
102
\end{sagecell}
103
\begin{sageout}
104
-4/5
105
\end{sageout}
106
107
Let's compute more symbols:
108
\begin{sagecell}
109
[s(n/13) for n in [-13..13]]
110
\end{sagecell}
111
\begin{sageout}
112
[1/5, -4/5, 17/10, 17/10, -4/5, -4/5, -4/5, -4/5, -4/5,
113
-4/5, 17/10, 17/10, -4/5, 1/5, -4/5, 17/10, 17/10, -4/5,
114
-4/5, -4/5, -4/5, -4/5, -4/5, 17/10, 17/10, -4/5, 1/5]
115
\end{sageout}
116
117
Lots of random-looking rational numbers... patterns...?
118
119
Symmetry: $[a/M]^+ = [-a/M]^+$ and $[1 + (a/M)]^+ = [a/M]^+$.
120
121
\end{frame}
122
123
124
\begin{frame}
125
\frametitle{A motivation for considering modular symbols: $L$-functions}
126
$L$-series of $E$:
127
$L(E,s) = \sum a_n n^{-s}$,
128
where $a_p = p+1-\#E(\F_p)$.
129
130
\vspace{1ex}
131
132
For each Dirichlet character
133
$\chi:(\Z/M\Z)^* \to \C^*$ there is
134
a twisted $L$-function $L(E,\chi,s) = \sum \chi(n) a_n n^{-s}$.
135
Moreover,
136
137
$$
138
\frac{L(E,\chi,1)}{\omega_\chi} = \text{explicit sum involving $\left[\frac{a}{M}\right]^{\pm}$ and Gauss sums}
139
$$
140
141
\vfill
142
143
So... statistical properties of the set of numbers
144
$$
145
Z(M) = \left\{\left[\frac{a}{M}\right]^+ : a = 0,\ldots,M-1 \right\}
146
$$
147
are relevant to understanding special values of twists.
148
149
\vfill
150
151
(\small Note:
152
$[a/M]^+ = [1-a/M]^+$, but we
153
leave in this
154
redundant data as a double-check
155
on our calculations below!)
156
\end{frame}
157
158
\section{Statistics of modular symbols}
159
160
161
\begin{frame}[fragile]
162
\frametitle{Frequency histogram: $M=100$}
163
\begin{sagecell}
164
E = EllipticCurve('11a'); s = E.modular_symbol()
165
M = 100; v = [s(a/M) for a in range(M)]; print(v)
166
stats.TimeSeries(v).plot_histogram()
167
\end{sagecell}
168
{\small \begin{sageout}
169
[1/5, 1/5, 6/5, 1/5, -3/10, -4/5, 6/5, 1/5, -3/10, 1/5,
170
1/5, 1/5, -3/10, 1/5, 6/5, 17/10, 11/5, 27/10, 6/5, 1/5,
171
6/5, 27/10, 6/5, 27/10, -3/10, 7/10, 6/5, 1/5, -3/10,
172
27/10, 1/5, -23/10, -3/10, 1/5, -13/10, -4/5, -3/10,
173
-23/10, 6/5, -23/10, -13/10, -23/10, -19/5, -23/10,
174
-3/10, -4/5, -13/10, -23/10, -3/10, -23/10, -4/5,
175
-23/10, -3/10, -23/10, -13/10, -4/5, -3/10, -23/10,
176
-19/5, -23/10, -13/10, -23/10, 6/5, -23/10, -3/10,
177
-4/5, -13/10, 1/5, -3/10, -23/10, 1/5, 27/10, -3/10,
178
1/5, 6/5, 7/10, -3/10, 27/10, 6/5, 27/10, 6/5, 1/5,
179
6/5, 27/10, 11/5, 17/10, 6/5, 1/5, -3/10, 1/5, 1/5,
180
1/5, -3/10, 1/5, 6/5, -4/5, -3/10, 1/5, 6/5, 1/5]
181
\end{sageout}}
182
\begin{center}
183
\includegraphics[width=.4\textwidth]{plots/11a-Z100}
184
\end{center}
185
186
\end{frame}
187
188
189
\begin{frame}[fragile]
190
\frametitle{Frequency histogram: $M=1000$}
191
\begin{sagecell}
192
E = EllipticCurve('11a')
193
s = E.modular_symbol()
194
M = 1000
195
stats.TimeSeries([s(a/M) for a in range(M)]).plot_histogram()
196
\end{sagecell}
197
\includegraphics[width=\textwidth]{plots/11a-Z1000}
198
199
200
\end{frame}
201
202
203
\begin{frame}[fragile]
204
\frametitle{Frequency histogram: $M=10000$}
205
\begin{sagecell}
206
E = EllipticCurve('11a')
207
s = E.modular_symbol()
208
M = 10000
209
stats.TimeSeries([s(a/M) for a in range(M)]).plot_histogram()
210
\end{sagecell}
211
\includegraphics[width=\textwidth]{plots/11a-Z10000}
212
213
We quickly want {\bf\em much} larger $M$ in order to see
214
what might happen in the limit, and the code in Sage
215
is way too slow for this...
216
217
\end{frame}
218
219
\begin{frame}[fragile]
220
\frametitle{More frequency histograms: use Cython...}
221
\begin{sagecell}
222
%load modular_symbol_map.pyx
223
def ms(E, sign=1):
224
g = E.modular_symbol(sign=sign)
225
h = ModularSymbolMap(g)
226
d = float(h.denom) # otherwise get int division!
227
return lambda a,b: h._eval1(a,b)[0]/d
228
s = ms(EllipticCurve('11a'))
229
M = 100000 # the following takes about 1 second
230
stats.TimeSeries([s(a, M) for a in range(M)]).plot_histogram()
231
\end{sagecell}
232
\includegraphics[width=.9\textwidth]{plots/11a-Z100000}
233
234
235
\end{frame}
236
237
238
\begin{frame}[fragile]
239
\frametitle{More frequency histograms (Cython)}
240
\begin{sagecell}
241
s = ms(EllipticCurve('11a'))
242
M = 1000000 # the following takes about 1 second
243
stats.TimeSeries([s(a, M) for a in range(M)]).plot_histogram()
244
\end{sagecell}
245
\includegraphics[width=\textwidth]{plots/11a-Z1000000}
246
247
Note that there are only $38$ distinct values in $Z(10^6)$
248
and $40$ in $Z(1500000)$.
249
250
\vfill
251
252
\end{frame}
253
254
\begin{frame}
255
\frametitle{Sorry...}
256
\Large
257
\begin{itemize}
258
\item But I can't tell you ``the answer'' yet.
259
\item Not sure {\em this} is a good question.
260
\item So let's consider another question...
261
\end{itemize}
262
\end{frame}
263
264
265
\section{Random walks?}
266
267
268
\begin{frame}[fragile]
269
\frametitle{Return to $M=13$ and make a ``random walk''}
270
\begin{sagecell}
271
E = EllipticCurve('11a')
272
s = E.modular_symbol()
273
M = 13; v = [s(a/M) for a in range(M)]; print(v)
274
w = stats.TimeSeries(v).sums()
275
w.plot() + points(enumerate(w), pointsize=30, color='black')
276
\end{sagecell}
277
\begin{sageout}
278
[1/5, -4/5, 17/10, 17/10, -4/5, -4/5, -4/5, -4/5,
279
-4/5, -4/5, 17/10, 17/10, -4/5]
280
\end{sageout}
281
\includegraphics[width=\textwidth]{plots/walk-11a-Z13}
282
\end{frame}
283
284
\begin{frame}[fragile]
285
\frametitle{How about $M=20$?}
286
\begin{sagecell}
287
s = EllipticCurve('11a').modular_symbol()
288
M = 20; v = [s(a/M) for a in range(M)]
289
w = stats.TimeSeries(v).sums()
290
w.plot() + points(enumerate(w), pointsize=30, color='black')
291
\end{sagecell}
292
\includegraphics[width=\textwidth]{plots/walk-11a-Z20}
293
\end{frame}
294
295
\begin{frame}[fragile]
296
\frametitle{How about $M=50$?}
297
\includegraphics[width=\textwidth]{plots/walk-11a-Z50}
298
\end{frame}
299
300
\begin{frame}[fragile]
301
\frametitle{How about $M=100$?}
302
\includegraphics[width=\textwidth]{plots/walk-11a-Z100}
303
\end{frame}
304
305
\begin{frame}[fragile]
306
\frametitle{How about $M=1000$?}
307
\includegraphics[width=.9\textwidth]{plots/walk-11a-Z1000}
308
\end{frame}
309
310
\begin{frame}[fragile]
311
\frametitle{How about $M=10000$?}
312
\includegraphics[width=\textwidth]{plots/walk-11a-Z10000}
313
\end{frame}
314
315
\begin{frame}[fragile]
316
\frametitle{How about $M=100000$?}
317
\includegraphics[width=\textwidth]{plots/walk-11a-Z100000}
318
\end{frame}
319
320
\begin{frame}[fragile]
321
\frametitle{How about $M=100003$ next prime after $100000$?}
322
\includegraphics[width=\textwidth]{plots/walk-11a-Z100003}
323
\end{frame}
324
325
\begin{frame}
326
\frametitle{Notice Anything?}
327
328
\begin{itemize}
329
\item The pictures {\bf all look almost the same}, as if they are converging
330
to some limiting function.
331
332
\item Similar observation about other elliptic
333
curves (with a {\bf different picture}).
334
335
%\item There's a similar pattern for the
336
%$-1$ modular symbol $[\alpha]_E^{-}$.
337
338
\item Similar definition for modular symbols
339
attached to newforms with Fourier coefficients
340
in a number field, or of {\bf higher weight} (we
341
get a multi-dimensional random walk).
342
\begin{center}
343
\includegraphics[width=.5\textwidth]{plots/level7-weight3-1000}
344
\end{center}
345
\end{itemize}
346
347
\end{frame}
348
349
\begin{frame}
350
\vfill
351
{\Large Several different elliptic curves}
352
\vfill
353
\end{frame}
354
355
\begin{frame}
356
\frametitle{Sum for $M=10^6$ and $E=11a$ (rank 0)}
357
\includegraphics[width=.9\textwidth]{plots/walk-11a-Z1000000}
358
359
\end{frame}
360
361
\begin{frame}
362
\frametitle{Sum for $M=10^6$ and $E=37a$ (rank 1)}
363
\includegraphics[width=.9\textwidth]{plots/walk-37a-Z1000000}
364
365
\end{frame}
366
367
\begin{frame}
368
\frametitle{Sum for $M=10^6$ and $E=389a$ (rank 2)}
369
\includegraphics[width=.9\textwidth]{plots/walk-389a-Z1000000}
370
\end{frame}
371
372
373
374
\begin{frame}
375
\frametitle{Taking the limit}
376
\begin{itemize}
377
\item
378
{\em Normalize} the ``not so random walk''
379
so it is comparable for different values of $M$.
380
Consider
381
$f_M:[0,1] \to \Q$
382
given by
383
$$
384
f_M(x) = \frac{1}{M}\cdot \sum_{a=1}^{Mx} \left[\frac{a}{M}\right]^+,
385
\qquad\text{(write on board)}
386
$$
387
where, by
388
$\sum_{a=1}^{Mx}$ we mean
389
$\sum_{a=1}^{\lfloor M x \rfloor}$.
390
391
\item
392
\begin{conjecture}[-]
393
\begin{center}
394
The limit $f(x) = \lim_{m\to\infty} f_M(x)$ exists.
395
\end{center}
396
\end{conjecture}
397
\end{itemize}
398
399
\begin{center}
400
\small
401
(all conjectures in this talk are by Mazur-Rubin-Stein)
402
\end{center}
403
404
\end{frame}
405
406
407
\begin{frame}
408
\frametitle{What is the limit?}
409
\begin{itemize}
410
\item
411
Let $\omega^+$ be the least real period as before. (NOTE: This need
412
not be the $\Omega_E$ in the BSD conjecture, since
413
when the period lattice is rectangular then $\Omega_E=2\omega^+$.)
414
415
\item Let $\sum a_n q^n$ be the newform attached to the elliptic
416
curve $E$. Then:
417
418
\begin{conjecture}[-]
419
$$
420
f(x) =
421
\frac{1}{2\pi \omega^+} \cdot
422
\sum_{n=1}^{\infty} \frac{a_n \sin(2\pi n x)}{n^2}.
423
$$
424
\end{conjecture}
425
\end{itemize}
426
427
\end{frame}
428
429
430
\begin{frame}
431
\frametitle{Mazur's {\bf Heuristic} Argument}
432
433
\begin{itemize}
434
\item Define $\{\alpha\}^+$ exactly as before, but for {\em any} $\alpha\in \mathfrak{h}^*$:
435
$$
436
\{\alpha\}^+ = \frac{1}{2}\left( \int_{i\infty}^{\alpha} 2\pi i f(z) dz
437
+ \int_{i\infty}^{-\overline{\alpha}} 2\pi i f(z) dz\right)
438
\in \R.
439
$$
440
\item When $\alpha=x+i\eta$, with $x\in\R$ and $\eta > 0$, evaluate $\{\alpha\}^+$
441
by switching summation
442
and integration (can since $\alpha\not \in\Q$!):
443
$$
444
\{\alpha\}^+ = \{x+i\eta \}^+ =
445
\sum_{n=1}^{\infty} \frac{a_n e^{-2\pi \eta n}}{n} \cos(2\pi n x)
446
\in \R.
447
$$
448
\item Fix $\eta>0$ and $b\in [0,1]$ and integrate the real function $x\mapsto \{x + i \eta\}^+$
449
above from $0$ to $b$:
450
$$
451
\int_{0}^b
452
\{x+i\eta\}^+ dx =
453
\frac{1}{2\pi} \cdot
454
\sum_{n=1}^{\infty} \frac{a_n e^{-2\pi \eta n}}{n^2}
455
\cdot \sin(2\pi n b).
456
$$
457
\end{itemize}
458
459
\end{frame}
460
461
462
\begin{frame}
463
\frametitle{Mazur's {\bf Heuristic} Argument (continued)}
464
465
Previous slide:
466
$$
467
\int_{0}^b
468
\{x+i\eta\}^+ dx =
469
\frac{1}{2\pi} \cdot
470
\sum_{n=1}^{\infty} \frac{a_n e^{-2\pi \eta n}}{n^2}
471
\cdot \sin(2\pi n b).
472
$$
473
474
475
Riemann sum approximation to this integral
476
at points $a/M$, and divide by
477
$\omega^+$ to get (heuristic!):
478
$$
479
f_M(x) = \frac{1}{M}\cdot \sum_{a=1}^{Mx} \left[\frac{a}{M}\right]^+
480
\sim
481
\frac{1}{2\pi \omega^+} \cdot
482
\sum_{n=1}^{\infty} \frac{a_n e^{-2\pi \eta n}}{n^2}
483
\cdot \sin(2\pi n x).
484
$$
485
486
Take the limit as $\eta\to 0$ and $M\to\infty$ to
487
``deduce'' our conjecture that
488
$
489
f(x) =
490
\frac{1}{2\pi \omega^+} \cdot
491
\sum_{n=1}^{\infty} \frac{a_n \sin(2\pi n x)}{n^2}.
492
$
493
494
\vfill
495
(Show worksheet and plots if time permits...)
496
\end{frame}
497
498
499
500
\begin{frame}
501
502
\Huge{\centerline{The End}}
503
\end{frame}
504
505
\end{document}
506
507
508
%------------------------------------------------
509
510
%sagemathcloud={"latex_command":"pdflatex -synctex=1 -interact=nonstopmode slides.tex"}
511