Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

Asymptotic 5-dimensional Kerr-AdS metric with b=0 in light-cone coordinates

Project: KerrAdS
Views: 116
License: GPL3
Image: ubuntu2004
Kernel: SageMath 9.3

Asymptotic 5D Kerr-AdS metric with b=0 in light-cone coordinates

This SageMath notebook is relative to the article Heavy quarks in rotating plasma via holography by Anastasia A. Golubtsova, Eric Gourgoulhon and Marina K. Usova, arXiv:2107.11672.

The involved differential geometry computations are based on tools developed through the SageManifolds project.

version()
'SageMath version 9.3, Release Date: 2021-05-09'
%display latex
Parallelism().set(nproc=8)
M = Manifold(5, 'M', r'\mathcal{M}', structure='Lorentzian', metric_name='G') print(M)
5-dimensional Lorentzian manifold M

Asymptotically AdS coordinates

AdSc.<T,y,Th,Ph,Ps> = M.chart(r'T y:(0,+oo) Th:(0,pi/2):\Theta Ph:(0,2*pi):\Phi Ps:(0,2*pi):\Psi') AdSc
(M,(T,y,Θ,Φ,Ψ))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathcal{M},(T, y, {\Theta}, {\Phi}, {\Psi})\right)
var('m a b', domain='real')
(m,a,b)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(m, a, b\right)
b = 0 # assumed in Sec. 5
keep_Delta = True # change to False to provide explicit expression for Delta
if keep_Delta: Delta = var('Delta', latex_name=r'\Delta', domain='real') else: Delta = 1 - a^2*sin(Th)^2 - b^2*cos(Th)^2
G = M.metric() G[0,0] = - (1 + y^2) + 2*m/(Delta^3*y^2) G[0,3] = -2*a*m*sin(Th)^2/(Delta^3*y^2) G[0,4] = -2*b*m*cos(Th)^2/(Delta^3*y^2) G[1,1] = 1/(1 + y^2 - 2*m/(Delta^2*y^2)) G[2,2] = y^2 G[3,3] = y^2*sin(Th)^2 + 2*a^2*m*sin(Th)^4/(Delta^3*y^2) G[3,4] = 2*a*b*m*sin(Th)^2*cos(Th)^2/(Delta^3*y^2) G[4,4] = y^2*cos(Th)^2 + 2*b^2*m*cos(Th)^4/(Delta^3*y^2)

Check of Eq. (5.38):

G.display()
G=(y2+2mΔ3y21)dTdT2amsin(Θ)2Δ3y2dTdΦ+(1y22mΔ2y2+1)dydy+y2dΘdΘ2amsin(Θ)2Δ3y2dΦdT+(y2sin(Θ)2+2a2msin(Θ)4Δ3y2)dΦdΦ+y2cos(Θ)2dΨdΨ\renewcommand{\Bold}[1]{\mathbf{#1}}G = \left( -y^{2} + \frac{2 \, m}{{\Delta}^{3} y^{2}} - 1 \right) \mathrm{d} T\otimes \mathrm{d} T -\frac{2 \, a m \sin\left({\Theta}\right)^{2}}{{\Delta}^{3} y^{2}} \mathrm{d} T\otimes \mathrm{d} {\Phi} + \left( \frac{1}{y^{2} - \frac{2 \, m}{{\Delta}^{2} y^{2}} + 1} \right) \mathrm{d} y\otimes \mathrm{d} y + y^{2} \mathrm{d} {\Theta}\otimes \mathrm{d} {\Theta} -\frac{2 \, a m \sin\left({\Theta}\right)^{2}}{{\Delta}^{3} y^{2}} \mathrm{d} {\Phi}\otimes \mathrm{d} T + \left( y^{2} \sin\left({\Theta}\right)^{2} + \frac{2 \, a^{2} m \sin\left({\Theta}\right)^{4}}{{\Delta}^{3} y^{2}} \right) \mathrm{d} {\Phi}\otimes \mathrm{d} {\Phi} + y^{2} \cos\left({\Theta}\right)^{2} \mathrm{d} {\Psi}\otimes \mathrm{d} {\Psi}
G.display_comp(only_nonredundant=True)
GTTTT=y2+2mΔ3y21GTΦTΦ=2amsin(Θ)2Δ3y2Gyyyy=1y22mΔ2y2+1GΘΘΘΘ=y2GΦΦΦΦ=y2sin(Θ)2+2a2msin(Θ)4Δ3y2GΨΨΨΨ=y2cos(Θ)2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, T \, T }^{ \phantom{\, T}\phantom{\, T} } & = & -y^{2} + \frac{2 \, m}{{\Delta}^{3} y^{2}} - 1 \\ G_{ \, T \, {\Phi} }^{ \phantom{\, T}\phantom{\, {\Phi}} } & = & -\frac{2 \, a m \sin\left({\Theta}\right)^{2}}{{\Delta}^{3} y^{2}} \\ G_{ \, y \, y }^{ \phantom{\, y}\phantom{\, y} } & = & \frac{1}{y^{2} - \frac{2 \, m}{{\Delta}^{2} y^{2}} + 1} \\ G_{ \, {\Theta} \, {\Theta} }^{ \phantom{\, {\Theta}}\phantom{\, {\Theta}} } & = & y^{2} \\ G_{ \, {\Phi} \, {\Phi} }^{ \phantom{\, {\Phi}}\phantom{\, {\Phi}} } & = & y^{2} \sin\left({\Theta}\right)^{2} + \frac{2 \, a^{2} m \sin\left({\Theta}\right)^{4}}{{\Delta}^{3} y^{2}} \\ G_{ \, {\Psi} \, {\Psi} }^{ \phantom{\, {\Psi}}\phantom{\, {\Psi}} } & = & y^{2} \cos\left({\Theta}\right)^{2} \end{array}

Light cone coordinates

LC.<xp,xm,y,Th,Ps> = M.chart(r'xp:x^+ xm:x^- y:(0,+oo) Th:(0,pi/2):\Theta Ps:(0,2*pi):\Psi') LC
(M,(x+,x,y,Θ,Ψ))\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\mathcal{M},({x^+}, {x^-}, y, {\Theta}, {\Psi})\right)

The transformation from AdS coordinates to light cone coordinates is defined by Eq. (5.40) of the paper:

AdSc_to_LC = AdSc.transition_map(LC, [T - a*Ph, T + a*Ph, y, Th, Ps]) AdSc_to_LC.display()
{x+=Φa+Tx=Φa+Ty=yΘ=ΘΨ=Ψ\renewcommand{\Bold}[1]{\mathbf{#1}}\left\{\begin{array}{lcl} {x^+} & = & -{\Phi} a + T \\ {x^-} & = & {\Phi} a + T \\ y & = & y \\ {\Theta} & = & {\Theta} \\ {\Psi} & = & {\Psi} \end{array}\right.
AdSc_to_LC.inverse().display()
{T=12x+12x+y=yΘ=ΘΦ=xx+2aΨ=Ψ\renewcommand{\Bold}[1]{\mathbf{#1}}\left\{\begin{array}{lcl} T & = & \frac{1}{2} \, {x^-} + \frac{1}{2} \, {x^+} \\ y & = & y \\ {\Theta} & = & {\Theta} \\ {\Phi} & = & \frac{{x^-} - {x^+}}{2 \, a} \\ {\Psi} & = & {\Psi} \end{array}\right.
G.display(LC)
G=(Δ3a2y2+(Δ3a2Δ3sin(Θ)2)y42(sin(Θ)4+2sin(Θ)2+1)a2m4Δ3a2y2)dx+dx++(Δ3a2y2+(Δ3a2+Δ3sin(Θ)2)y4+2(sin(Θ)41)a2m4Δ3a2y2)dx+dx+(Δ3a2y2+(Δ3a2+Δ3sin(Θ)2)y4+2(sin(Θ)41)a2m4Δ3a2y2)dxdx++(Δ3a2y22a2mcos(Θ)4+(Δ3a2+Δ3cos(Θ)2Δ3)y44Δ3a2y2)dxdx+(Δ2y2Δ2y4+Δ2y22m)dydy+y2dΘdΘ+y2cos(Θ)2dΨdΨ\renewcommand{\Bold}[1]{\mathbf{#1}}G = \left( -\frac{{\Delta}^{3} a^{2} y^{2} + {\left({\Delta}^{3} a^{2} - {\Delta}^{3} \sin\left({\Theta}\right)^{2}\right)} y^{4} - 2 \, {\left(\sin\left({\Theta}\right)^{4} + 2 \, \sin\left({\Theta}\right)^{2} + 1\right)} a^{2} m}{4 \, {\Delta}^{3} a^{2} y^{2}} \right) \mathrm{d} {x^+}\otimes \mathrm{d} {x^+} + \left( -\frac{{\Delta}^{3} a^{2} y^{2} + {\left({\Delta}^{3} a^{2} + {\Delta}^{3} \sin\left({\Theta}\right)^{2}\right)} y^{4} + 2 \, {\left(\sin\left({\Theta}\right)^{4} - 1\right)} a^{2} m}{4 \, {\Delta}^{3} a^{2} y^{2}} \right) \mathrm{d} {x^+}\otimes \mathrm{d} {x^-} + \left( -\frac{{\Delta}^{3} a^{2} y^{2} + {\left({\Delta}^{3} a^{2} + {\Delta}^{3} \sin\left({\Theta}\right)^{2}\right)} y^{4} + 2 \, {\left(\sin\left({\Theta}\right)^{4} - 1\right)} a^{2} m}{4 \, {\Delta}^{3} a^{2} y^{2}} \right) \mathrm{d} {x^-}\otimes \mathrm{d} {x^+} + \left( -\frac{{\Delta}^{3} a^{2} y^{2} - 2 \, a^{2} m \cos\left({\Theta}\right)^{4} + {\left({\Delta}^{3} a^{2} + {\Delta}^{3} \cos\left({\Theta}\right)^{2} - {\Delta}^{3}\right)} y^{4}}{4 \, {\Delta}^{3} a^{2} y^{2}} \right) \mathrm{d} {x^-}\otimes \mathrm{d} {x^-} + \left( \frac{{\Delta}^{2} y^{2}}{{\Delta}^{2} y^{4} + {\Delta}^{2} y^{2} - 2 \, m} \right) \mathrm{d} y\otimes \mathrm{d} y + y^{2} \mathrm{d} {\Theta}\otimes \mathrm{d} {\Theta} + y^{2} \cos\left({\Theta}\right)^{2} \mathrm{d} {\Psi}\otimes \mathrm{d} {\Psi}
G.display_comp(chart=LC, only_nonredundant=True)
Gx+x+x+x+=Δ3a2y2+(Δ3a2Δ3sin(Θ)2)y42(sin(Θ)4+2sin(Θ)2+1)a2m4Δ3a2y2Gx+xx+x=Δ3a2y2+(Δ3a2+Δ3sin(Θ)2)y4+2(sin(Θ)41)a2m4Δ3a2y2Gxxxx=Δ3a2y22a2mcos(Θ)4+(Δ3a2+Δ3cos(Θ)2Δ3)y44Δ3a2y2Gyyyy=Δ2y2Δ2y4+Δ2y22mGΘΘΘΘ=y2GΨΨΨΨ=y2cos(Θ)2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, {x^+} \, {x^+} }^{ \phantom{\, {x^+}}\phantom{\, {x^+}} } & = & -\frac{{\Delta}^{3} a^{2} y^{2} + {\left({\Delta}^{3} a^{2} - {\Delta}^{3} \sin\left({\Theta}\right)^{2}\right)} y^{4} - 2 \, {\left(\sin\left({\Theta}\right)^{4} + 2 \, \sin\left({\Theta}\right)^{2} + 1\right)} a^{2} m}{4 \, {\Delta}^{3} a^{2} y^{2}} \\ G_{ \, {x^+} \, {x^-} }^{ \phantom{\, {x^+}}\phantom{\, {x^-}} } & = & -\frac{{\Delta}^{3} a^{2} y^{2} + {\left({\Delta}^{3} a^{2} + {\Delta}^{3} \sin\left({\Theta}\right)^{2}\right)} y^{4} + 2 \, {\left(\sin\left({\Theta}\right)^{4} - 1\right)} a^{2} m}{4 \, {\Delta}^{3} a^{2} y^{2}} \\ G_{ \, {x^-} \, {x^-} }^{ \phantom{\, {x^-}}\phantom{\, {x^-}} } & = & -\frac{{\Delta}^{3} a^{2} y^{2} - 2 \, a^{2} m \cos\left({\Theta}\right)^{4} + {\left({\Delta}^{3} a^{2} + {\Delta}^{3} \cos\left({\Theta}\right)^{2} - {\Delta}^{3}\right)} y^{4}}{4 \, {\Delta}^{3} a^{2} y^{2}} \\ G_{ \, y \, y }^{ \phantom{\, y}\phantom{\, y} } & = & \frac{{\Delta}^{2} y^{2}}{{\Delta}^{2} y^{4} + {\Delta}^{2} y^{2} - 2 \, m} \\ G_{ \, {\Theta} \, {\Theta} }^{ \phantom{\, {\Theta}}\phantom{\, {\Theta}} } & = & y^{2} \\ G_{ \, {\Psi} \, {\Psi} }^{ \phantom{\, {\Psi}}\phantom{\, {\Psi}} } & = & y^{2} \cos\left({\Theta}\right)^{2} \end{array}
M.set_default_chart(LC) M.set_default_frame(LC.frame())

Check of Eq. (5.41)

G.apply_map(expand, keep_other_components=True) G.display()
G=(14y2+y2sin(Θ)24a2+msin(Θ)42Δ3y2+msin(Θ)2Δ3y2+m2Δ3y214)dx+dx++(14y2y2sin(Θ)24a2msin(Θ)42Δ3y2+m2Δ3y214)dx+dx+(14y2y2sin(Θ)24a2msin(Θ)42Δ3y2+m2Δ3y214)dxdx++(14y2y2cos(Θ)24a2+y24a2+mcos(Θ)42Δ3y214)dxdx+(Δ2y2Δ2y4+Δ2y22m)dydy+y2dΘdΘ+y2cos(Θ)2dΨdΨ\renewcommand{\Bold}[1]{\mathbf{#1}}G = \left( -\frac{1}{4} \, y^{2} + \frac{y^{2} \sin\left({\Theta}\right)^{2}}{4 \, a^{2}} + \frac{m \sin\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} + \frac{m \sin\left({\Theta}\right)^{2}}{{\Delta}^{3} y^{2}} + \frac{m}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \right) \mathrm{d} {x^+}\otimes \mathrm{d} {x^+} + \left( -\frac{1}{4} \, y^{2} - \frac{y^{2} \sin\left({\Theta}\right)^{2}}{4 \, a^{2}} - \frac{m \sin\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} + \frac{m}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \right) \mathrm{d} {x^+}\otimes \mathrm{d} {x^-} + \left( -\frac{1}{4} \, y^{2} - \frac{y^{2} \sin\left({\Theta}\right)^{2}}{4 \, a^{2}} - \frac{m \sin\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} + \frac{m}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \right) \mathrm{d} {x^-}\otimes \mathrm{d} {x^+} + \left( -\frac{1}{4} \, y^{2} - \frac{y^{2} \cos\left({\Theta}\right)^{2}}{4 \, a^{2}} + \frac{y^{2}}{4 \, a^{2}} + \frac{m \cos\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \right) \mathrm{d} {x^-}\otimes \mathrm{d} {x^-} + \left( \frac{{\Delta}^{2} y^{2}}{{\Delta}^{2} y^{4} + {\Delta}^{2} y^{2} - 2 \, m} \right) \mathrm{d} y\otimes \mathrm{d} y + y^{2} \mathrm{d} {\Theta}\otimes \mathrm{d} {\Theta} + y^{2} \cos\left({\Theta}\right)^{2} \mathrm{d} {\Psi}\otimes \mathrm{d} {\Psi}
G.display_comp()
Gx+x+x+x+=14y2+y2sin(Θ)24a2+msin(Θ)42Δ3y2+msin(Θ)2Δ3y2+m2Δ3y214Gx+xx+x=14y2y2sin(Θ)24a2msin(Θ)42Δ3y2+m2Δ3y214Gxx+xx+=14y2y2sin(Θ)24a2msin(Θ)42Δ3y2+m2Δ3y214Gxxxx=14y2y2cos(Θ)24a2+y24a2+mcos(Θ)42Δ3y214Gyyyy=Δ2y2Δ2y4+Δ2y22mGΘΘΘΘ=y2GΨΨΨΨ=y2cos(Θ)2\renewcommand{\Bold}[1]{\mathbf{#1}}\begin{array}{lcl} G_{ \, {x^+} \, {x^+} }^{ \phantom{\, {x^+}}\phantom{\, {x^+}} } & = & -\frac{1}{4} \, y^{2} + \frac{y^{2} \sin\left({\Theta}\right)^{2}}{4 \, a^{2}} + \frac{m \sin\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} + \frac{m \sin\left({\Theta}\right)^{2}}{{\Delta}^{3} y^{2}} + \frac{m}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \\ G_{ \, {x^+} \, {x^-} }^{ \phantom{\, {x^+}}\phantom{\, {x^-}} } & = & -\frac{1}{4} \, y^{2} - \frac{y^{2} \sin\left({\Theta}\right)^{2}}{4 \, a^{2}} - \frac{m \sin\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} + \frac{m}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \\ G_{ \, {x^-} \, {x^+} }^{ \phantom{\, {x^-}}\phantom{\, {x^+}} } & = & -\frac{1}{4} \, y^{2} - \frac{y^{2} \sin\left({\Theta}\right)^{2}}{4 \, a^{2}} - \frac{m \sin\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} + \frac{m}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \\ G_{ \, {x^-} \, {x^-} }^{ \phantom{\, {x^-}}\phantom{\, {x^-}} } & = & -\frac{1}{4} \, y^{2} - \frac{y^{2} \cos\left({\Theta}\right)^{2}}{4 \, a^{2}} + \frac{y^{2}}{4 \, a^{2}} + \frac{m \cos\left({\Theta}\right)^{4}}{2 \, {\Delta}^{3} y^{2}} - \frac{1}{4} \\ G_{ \, y \, y }^{ \phantom{\, y}\phantom{\, y} } & = & \frac{{\Delta}^{2} y^{2}}{{\Delta}^{2} y^{4} + {\Delta}^{2} y^{2} - 2 \, m} \\ G_{ \, {\Theta} \, {\Theta} }^{ \phantom{\, {\Theta}}\phantom{\, {\Theta}} } & = & y^{2} \\ G_{ \, {\Psi} \, {\Psi} }^{ \phantom{\, {\Psi}}\phantom{\, {\Psi}} } & = & y^{2} \cos\left({\Theta}\right)^{2} \end{array}

The above components fully agree with Eq. (5.41).