The Maximum Size of Weak (k, [)-Sum-Free Sets

Peter Francis

Department of Mathematics, Gettysburg College
Gettysburg, PA 17325-1486 USA
E-mail: franpe02@gettysburg.edu

May 22, 2019

Abstract

A subset A of a given finite abelian group G is called weakly (k,()-sum-free
if the set of all sums of k distinct elements of A is disjoint with set of all sums of
I distinct elements of A. We are interested in finding the size p°(G, {k,}) of the
largest weak (k,[)-sum-free subset in G. Here, we provide a new upper bound
for ©*(G,{k,1}) as well as present new constructions for weak (2,1)-sum-free
sets in some noncyclic groups.

1 Introduction

Suppose that A = {a1,as,...,a,;,} is a subset of an abelian group G, with m € N.
Let h be a non-negative integer.

We will write hA for the (ordinary) h-fold sumset of A, which consists of sums
of exactly h (not necessarily distinct) terms of A. More formally,

hA = {i)\laz ‘ Al,...,)\mENo,i)\i:h}.
=1

i=1
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For positive integers k > [, a subset A of a given finite abelian group G is
(k,l)-sum-free if and only if
kANIA=0.

We denote the maximum size of a (k,[)-sum-free subset of G as u(G, {k,l}). That
is,

W(G, Tk, 1Y) = max{|A| | A C G, (KA)N (A = 0.

Similarly, we will write h"A for the restricted h-fold sumset of A, which consists of
sums of exactly h distinct terms of A:

hAA—{i)\iai Al,...,AmG{O,l},i)\i_h}.
i=1 i=1

For positive integers k > [, a subset A of a given finite abelian group G is weakly
(k,l)-sum-free if and only if

EKANTA=0.

We denote the maximum size of a weak (k,[)-sum-free subset of G as u'(G, {k,1}).
That is,
p (G, {k,1}) = max{|A| | AC G, (KA) N (I"A) = 0}.

In this paper, we will be mainly interested in p". The following have been
established.

Theorem 1 (Bajnok; [2] (G.63)) Suppose that G is an abelian group of order n
and exponent k. Then, for all positive integers k and | with k > | we have

WG k1Y) 2 p(G k1) = (k41 -

Theorem 2 (Green and Ruzsa; [2] (G.18)) Let k be the exponent of G. Then

WG A2 1Y) = p(Z {2,1)) - = = v1(r,3) -

Theorem 3 (Zannier; [2] (G.67)) For all positive integers we have

(1 + %) 5 if n has prime divisors congruent to 2 mod 3,

p(Zn,{2,1}) = and p is the smallest such divisor;
L%J +1 otherwise.
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Theorem 4 (Bajnok; [2] (G.21)) For all positive integers v, k, and l with k > I,
we have

0 if kK =1 mod 2;

2r=1 otherwise.

M(Z£7 {k7 l}) = {

The following lemma will be useful in Section 3. We denote the sum of all of the
elements of a group G to be s(G).

Lemma 5 (Bajnok and Edwards; [3]) Suppose that G is a finite abelian group
with L as the subgroup of involutions; let |L| = 1.

1. If 1 =2 with L = {0, e}, then the sum s(G) of the elements of G equals e.
2. If 1 # 2, then s(G) = 0.

2 A New Upper Bound
Lemma 6 For any set A and positive integer h < |A|, |[W"A| > |A] — h + 1.

PROOF. Write A = {ag,ai,...,an}. Then observe that

b =ao+ - +ap—1+ ap,
bhy1 =ao+ -+ ap—1 + apta,

bp—1=ap+ -+ ap-1+ am_1,
by =ao+---+ap—1+am

are all distinct since ay, ..., a,, are all distinct. Since,
{bn,bh+1,- -+, bm—1,bm} C h°A,
WAl >m—(h—1)=|Al—h+1. O

Proposition 7 For all groups G with order n, and for all positive integers k > I,

1w (G, {k,1}) < {n—?;rlJrkJ |
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PROOF. Write A for a (k,[)-sum-free subset of G where |A| = m = p'(G,{k,[})
and n = |G|. Using Lemma 6,

n> kAl + Al

>m—k+1+m—-1+1
>2m— (k+1)+2.

Therefore,
n—2+k+1
m< —
- 2
and so o b
- n—2+k+
(G A 1}) < [2J .

3 Some n-dependent values of £

Here we will explore where k is dependent on n and [ = 1. The following useful
corollary follows immediately from Lemma 5.

Corollary 8 For any G = Zy, X L, X -+ - X L, (written invariently), with |G| = n,
the sum of the elements of G is,

@) 0,...,0,%) ifn, =0mod 2, withn,_1 =1mod2 orr = 1;
S =
0 otherwise.

Proposition 9 For all G = Zy, X ZLiny X -+ X Ly, (written invariently) with |G| =
n>2,
n—2 if s(G) #0 and n, =2 mod 4

n—1 otherwise.

p(G {n—1,1}) = {

PROOF. First note that trivially, u~ > n — 2. By Proposition 7,

/ﬂG&n—L1H<{”_2+n_1+w-f"_2J=n—L

2 o 2
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Let A= G\ {{} for some £ € G, s0 |[A| =n—1. Then (n —1)AN1TA=10is
only satisfied if the sum of the elements of A is {. Thus, ¢ (G,{n—1,1}) =n—1if
only if there exists some £ € G such that s(G) — & = €. In other words, there must
be some ¢ € G such that

s(G) = 2¢.

1. s(G) = 0. Then 0 = s(G) = 2¢ is satisfied with £ = 0, so ©*(G,{n—1,1}) = n—1.
2. 5(G) #0.

in,=0mod4. Then % = s(G) = 2 is satisfied with & = 7. Thus,
w(G,{n—-1,1}) =n—1.
ii n, =2 mod 4. Since 2 does not divide % = 1 mod 2, there is no such £ € G.
For all A C G such that |A| =n — 2, we have
(n=1yANTA=0NA=0,

so ' (G,{n —1,1}) =n—2. O

Proposition 10 For all G = Zy, X Ly X + -+ X Ly, (written invariently) with |G| =
n >3,
n—3 ifn,=3;

n —2 otherwise.

1w (G, {n -2, 1}) = {

PROOF. By Proposition 7,

1 (T {1 — 2,1}) < {"‘“Z‘z“J - {n—;’J —

Let A= G\ {1, &} for some distinct &1,& € G. So, |[A| =n — 2. Then
(n—2)ANTA=1
is only satisfied if the sum of the elements of A is &, WLOG. Then,
(G, {n—2,1}) =n—2

if only if there exists some distinct 1,8 € G such that s(G) — & — & = &. That
is, there must be some distinct &1, & € G such that

5(G) = 261 + &a.
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1. s(G)=0.

i.

ii.

iii.

n, > 3. Then 0 = s(G) = 2§ + & is satisfied with & = (0,...,0,1) and
& =1(0,...,0,n, —2) (if G = Zy, & =1 and {& = n — 2) which are distinct
since n, —2 # 1 mod n, for all n, > 3. Thus, ¢’ (G,{n —2,1}) =n — 2.

n, = 3. (This is the case where G = Z§ with r > 2). Imagine there exists
such &; and &. Then, since &5 = —2& mod 3, we have that 0 = & + 2&; =

&1 — &9, which implies that &1 = &, a contradiction. Thus, there are no such
&1,& € G. For all A C G such that |A| = n — 3, we have

(n—2)AN1TA=0nA=0,

so ' (G,{n —2,1}) =n—3.

n, = 2. (This is the case where G = Zj with r > 2). 0 = s(G) = 2§ + &2 is
satisfied with & = (0,...,0,1) and & = (0,...,0)

2. 5(G) #0.

i

ii.

n, # 6.

(oo%) — 5(Q) =26, + &

is satisfied with & = (0,...,0,1) and §& = (0,...,0,% —2) (if G = Zy,
§1 =1 and {& = § — 2) which are distinct since % — 2 # 1 for all n, # 6.

n, = 6. Take & = (0,...,0,5) and & = (0,...,0,2) (if G 2 Z,, & = 5 and
€ =2). Thus, ' (G,{n—2,1}) =n—2. O

4 Weak (2, 1)-sum-fee sets in general finite abelian groups

Proposition 11 For any G with |G| =n = 0 mod 2,

(G A21}) = 3.

PROOF. Write G = Zy,, X Zy, X - -+ X Ly, . By Proposition 7,

WGy {21} < V““j“lj -
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If n =0mod 2, n, =0 mod 2, so we can take A C G to be the set with all the
elements of G whose rth element is congruent to 1 mod 2. The rth entry of the sum
of any two elements in A will be congruent to 0 mod 2, so 2°AN1°A = (). Thus,

n. n

WG Z (Al = = 2

O

NOTE: This means that by Proposition 4, ;"(Z5, {2,1}) = 2"~! = u(Z5, {2,1}).

Conjecture 12 (Bajnok [1]) For all positive integers ny < ng (n = ninz),

R 7 if n has prime divisors congruent to 2 mod 3;
K (an X Ly {2? 1}) = .
w—+1  otherwise.

Note that when ged(ni,ne) = 1, Zy, X Zpn, = Zy, so by Theorem G.67, and
Theorem G.18,
1
(1 + 5)

p(Zn,{2,1}) = and p is the smallest such divisor;
L%J +1 otherwise

if n has prime divisors congruent to 2 mod 3,

|3

~Joui(n,3) - % if n has prime divisors congruent to 2 mod 3,
| w(n,3) - ~+1 otherwise.

2 ) i(Zn,{2,1}) if n has prime divisors congruent to 2 mod 3;
| w(Z, {2,1}) 41 otherwise.

When ged(ni,n2) > 1 and n = 0 mod 2, clearly the smallest prime divisor of n
congruent to 2 mod 3 is 2, so by Proposition 11 and Theorem 2,

N 1nn 1\ n n 2
s % Ty 21D B 5 = (14 3) 5 =00008) 2 2 p(Eoy % 2o 2.1D)

Now we should consider when ged(ni,n2) > 1 and n = 1 mod 2.

Theorem 13 For any positive integer w = 1 mod 2,

,lf(Zg X Z3w, {2, 1}) > 3w+ 1.
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PROOF. Consider the sets

A ={0} x {—~w,—w+2,...,w —2,w},
Ay = {1} x {0,2,...,2w — 4,2w — 2}, and
Ay = {2} x {—2w+2,—2w+4,...,-2,0},

and let A = AgU A U As. Observe that Ag, A1, and As are disjoint, so

|A| = |Ao|+]A1]+]|A2] = <w_§_w) + 1>+(w —1-0+ 1)+ (w—1-0+1) = 3w+1.

We can recognize the elements in Ay, A1, and A as arithmetic sequences (with a
common difference of 2), so we can easily write

2°A) = {0} x {—2w+ 2, 2w +4,...,2w — 4,2w — 2},
Ap+ Ay = {0} x {—20w +2,—2w +4,..., 20 — 4, 2w — 2},
2 Ay = {1} x {—4w + 6, —dw + 8, ..., —4, —2},
Ag+ A = {1} x {~w,—w+2,...,3w —4,3w — 2},
2A; ={2} x{2,4,...,4w — 8,4w — 6}, and
Ag+ Ay =2} x {-3w+2,-3w+4,...,w—2w}.

Notice that since —4w = —w mod 3w and —3w = 0 mod 3w, 2°"Ag = A1 + Ao,
2"As C Ag + Ay, and 2°A; C Ag + As. Now we only must show that

A0m<A1—|—A2):®, Alﬂ(Ao—l-Al):@, andAgﬂ(Ao—i-Ag):@.

In Zsy, —2w = w, so we can recognize that the elements of A; + As follow as the
next terms of the arithmetic sequence in Ag and since 2w = —w, the elements of
Ay follow as the next terms of the arithmetic sequence in A; + As. The same is
true for Ag + Ay with Ay, and Ay + Ay with A,. The three sequences are the same,
since they all contain 0 and have a common difference of 2, and repeat in 3w terms
(because 3w = 1 mod 2). Because the sequence has 3w unique terms, our claims
hold. O

NOTE: By Theorem 2, if w has no prime divisor congruent to 2 mod 3,
MA(Zg X L, {2, 1}) >3w+1

3w
=|—1-3+1
7] e

9
= v1(3w, 3) - % +1

= M(Zg X Zgw, {2, 1}) + 1.
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Theorem 14 For all positive k = 1 mod 6,

—1
W72, {2,1)) > HT kL

PROOF. Write

k—1 k—1 k—1 k—1
B=<1- 33— -3 -1
{ 3 M 3 ) ) ) }

and consider the sets

Am:m}x<BU{K31+1}»
Ar ={1} x B,
Ay ={2} x B,

Ai—o={k—2} x B, and
AR,1 = {K,— 1} X B,

and take A = |J{Z) A;. We can see that

|4 = (’?)+1+<n—1>(ﬁ;1) :H(“;)H.

We will show that A is weak (2,1)-sum-free. Notice that elements of B form an
arithmetic sequence with a common difference of 2, so any two elements of

Af—A\{(QR;1>}—ZHxB

will sum to an element whose second coordinate is in

W—2  2W—2  2m—2  2k—2
C=1Jg -2, H7=2 ETE 4T
3 3 3 3

2k — 2 2k — 2 2k — 2 4k — 4
={2— 2 — 2),...,2— —4
{ e e +( . )}

whose elements also form an arithmetic sequence with a common difference of 2.
Observe that the first term in the sequence in C' is 2 more than “T_l + 1, which is 2
more than the last term in the sequence in B, and that the sequence in C has

4k—4
M_i_l:zﬂ_z
2 3

-1
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terms, while the sequence in B has £z terms. The full sequence, 0,2,...,k—4,k—
2), repeats in a minimum of & terms (since k = 1 mod 2), and because

k—1 2rk—2 3k — 3
B Cl= —1= —1=k—-29
Bl +10] = o=+ = 5 k-2 <k,

we know that BN C = ). This shows that (A* + A*) N A = (). Now we just must

show that )
(A“+{<QK;+J>}>0A_®,

or equivalently, that for all 4 € {0,1,...,xk — 2,k — 1}, for all z € (A; N A*),

x+<&ﬁgl+1>¢A%

2k — 2 2k — 2
D=<24,... -2
{77 M 3 ) 3 }7

and observe that for all such i, for all x € {i} x B = (A; N A*),

1:+(0,H;1+1> e({i}xB)+{<o,”;1+1>}:{i}xD.

The elements of D also form an arithmetic sequence with a common difference
of 2 and the elements of B follow as the next terms of the sequence in D since
% +2=1- ’"“T_l Again, the full sequence, (0,2,...,k — 4,k — 2), repeats in a
minimum of £ terms (since £ = 1 mod 2), and because

Write

k—1 ~xr-—1 2k — 2
B|+ |D| = + =
|B| + | D] 3 3 3 < K,

we know that BN D = (). Lastly, COHSlderlng 1 = 0, we must show that {Tl + 1} N
= (: recognize that —1 — 3 = 2( ) mod « and since £ = 1 mod 6, *5= =
0 mod 2. This means that

2(ﬁ_1>—’€_1—/€_1€D.

3 3 3
Since |D| = 551 <k, 521 + 1 ¢ D, so we are done. O

NOTE: By Theorem 2, for all x with no prime divisors congruent to 2 mod 3,

W(Z2,{2, 1})>/<;<H31>+1—vl(/<c 3) - i2+1iu(zi,{2,1})+1
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5 Future work

The upper bound in Proposition 7 has been very useful for {k,i} = {2,1}. We
should try to find a different construction to establish a new upper bound that
would be useful for different k£ and [.

The technique of using arithmetic sequences to construct weak (2,1)-sum-free
sets used in the Proofs of Theorems 13 and 14 should be further developed and used
for other cases of niny =1 mod 2 for i (Zy, X Zn,,{k,1}) to prove Conjecture 12.

Specifically, u"(Z7 x Za21,{2,1}) is of interest. The group Z2 has 98 weak (2, 1)-
sum-free subsets with arithmetic sequences, so a weak (2, 1)-sum-free subset in Z7 x
Z21 could provide insight for generalizing a weak (2, 1)-sum-free subsets of Z7 x Zoy,
and this prove a new lower bound for p*(Z7 X Zzy,{2,1}), similarly to Proposition
13. This will most likely involve using a computer to check for all possible subsets
of Z7 x Zo1 with arithmetic sequences similar to those for Z%.

The same technique could be useful for finding new constructions of weak (k,[)-
sum free subsets of cyclic groups for k > 2, by treating the cyclic group as noncyclic.

Another area of interest is constructing tables of discrepancies between p and p”.
It is also of interest to construct a table of the maximum of all of the lower bounds
that are established for u” and compare with the computer generated table on page
300 of [2].
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