Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 27
t1,t2,t3,t4,p,q=var('t1,t2,t3,t4,p,q') m = matrix(SR,[[t1^4+p*t1^2,t1^3+q*t1^2,t1,1], [t2^4+p*t2^2,t2^3+q*t2^2,t2,1], [t3^4+p*t3^2,t3^3+q*t3^2,t3,1], [t4^4+p*t4^2,t4^3+q*t4^2,t4,1]]) (m.determinant().factor()/((t1-t2)*(t1-t3)*(t1-t4)*(t2-t3)*(t2-t4)*(t3-t4))).show()
qt1+qt2+t1t2+qt3+t1t3+t2t3+qt4+t1t4+t2t4+t3t4p\displaystyle q t_{1} + q t_{2} + t_{1} t_{2} + q t_{3} + t_{1} t_{3} + t_{2} t_{3} + q t_{4} + t_{1} t_{4} + t_{2} t_{4} + t_{3} t_{4} - p
p,q,r=var('p,q,r') m = matrix(SR,[[2,0,0,1], [0,1,0,r], [0,0,2,r^2], [p,q,r,0]]) (m.determinant()/(-2)).show()
r3+2qr+p\displaystyle r^{3} + 2 \, q r + p
t1,t2,t3,t4,p,q,r=var('t1,t2,t3,t4,p,q,r') m = matrix(SR,[[t1^4+p*t1,t1^3-q*t1,t1^2+r*t1,1], [t2^4+p*t2,t2^3-q*t2,t2^2+r*t2,1], [t3^4+p*t3,t3^3-q*t3,t3^2+r*t3,1], [t4^4+p*t4,t4^3-q*t4,t4^2+r*t4,1]]) (m.determinant().factor()/((t1-t2)*(t1-t3)*(t1-t4)*(t2-t3)*(t2-t4)*(t3-t4))).show()
rt1t2+rt1t3+rt2t3+t1t2t3+rt1t4+rt2t4+t1t2t4+rt3t4+t1t3t4+t2t3t4+qt1+qt2+qt3+qt4+p\displaystyle r t_{1} t_{2} + r t_{1} t_{3} + r t_{2} t_{3} + t_{1} t_{2} t_{3} + r t_{1} t_{4} + r t_{2} t_{4} + t_{1} t_{2} t_{4} + r t_{3} t_{4} + t_{1} t_{3} t_{4} + t_{2} t_{3} t_{4} + q t_{1} + q t_{2} + q t_{3} + q t_{4} + p
p,q,r,s=var('p,q,r,s') #a14,a23,a24,a33,a34,a44 m = matrix(SR,[[1,1,0,0,0,0], [2*s,0,2,1,0,0], [0,r,s,0,1,0], [0,2*q,0,2*r,2*s,1], [p,0,q,0,r,s], [2*p*s,2*q*r,2*q*s,r^2,2*r*s,s^2]]) (m.determinant().factor()/2).show()
(r32qrs+ps2q2+pr)(s2+r)\displaystyle {\left(r^{3} - 2 \, q r s + p s^{2} - q^{2} + p r\right)} {\left(s^{2} + r\right)}
p,q,r,s=var('p,q,r,s') #a13,a22,a24,a33,a34,a44 m = matrix(SR,[[2,1,0,0,0,0], [2*r,0,2,1,0,0], [0,q,s,0,1,0], [2*p,0,0,2*r,2*s,1], [0,0,q,0,r,s], [2*p*r,q^2,2*q*s,r^2,2*r*s,s^2]]) (m.determinant().factor()/2).show()
(r32qrs+ps2q2+pr)(rs+q)\displaystyle {\left(r^{3} - 2 \, q r s + p s^{2} - q^{2} + p r\right)} {\left(r s + q\right)}
t1,t2,t3,t4,p,q,r,s=var('t1,t2,t3,t4,p,q,r,s') m = matrix(SR,[[t1^4-p,t1^3+q,t1^2-r,t1+s], [t2^4-p,t2^3+q,t2^2-r,t2+s], [t3^4-p,t3^3+q,t3^2-r,t3+s], [t4^4-p,t4^3+q,t4^2-r,t4+s]]) (m.determinant().factor()/((t1-t2)*(t1-t3)*(t1-t4)*(t2-t3)*(t2-t4)*(t3-t4))).show()
st1t2t3+st1t2t4+st1t3t4+st2t3t4+t1t2t3t4+rt1t2+rt1t3+rt2t3+rt1t4+rt2t4+rt3t4+qt1+qt2+qt3+qt4+p\displaystyle s t_{1} t_{2} t_{3} + s t_{1} t_{2} t_{4} + s t_{1} t_{3} t_{4} + s t_{2} t_{3} t_{4} + t_{1} t_{2} t_{3} t_{4} + r t_{1} t_{2} + r t_{1} t_{3} + r t_{2} t_{3} + r t_{1} t_{4} + r t_{2} t_{4} + r t_{3} t_{4} + q t_{1} + q t_{2} + q t_{3} + q t_{4} + p
p,q,r,s=var('p,q,r,s') #a13,a14,a24,a33,a34,a44 m = matrix(SR,[[-2*r,2*s,2,1,0,0], [-2*q,r,s,0,1,0], [-2*p,-2*q,0,-2*r,2*s,1], [0,-p,q,0,-r,s], [2*(p*r-q^2),-2*(p*s-q*r),2*q*s,r^2,-2*r*s,s^2]]) minors = m.minors(5) for i in minors: i.factor().show()
4(r32qrs+ps2+q2pr)(q2pr)\displaystyle 4 \, {\left(r^{3} - 2 \, q r s + p s^{2} + q^{2} - p r\right)} {\left(q^{2} - p r\right)}
2(r32qrs+ps2+q2pr)(qrps)\displaystyle -2 \, {\left(r^{3} - 2 \, q r s + p s^{2} + q^{2} - p r\right)} {\left(q r - p s\right)}
4(r32qrs+ps2+q2pr)(qsp)\displaystyle 4 \, {\left(r^{3} - 2 \, q r s + p s^{2} + q^{2} - p r\right)} {\left(q s - p\right)}
2(r32qrs+ps2+q2pr)(r22qs+p)\displaystyle -2 \, {\left(r^{3} - 2 \, q r s + p s^{2} + q^{2} - p r\right)} {\left(r^{2} - 2 \, q s + p\right)}
2(r32qrs+ps2+q2pr)(rsq)\displaystyle -2 \, {\left(r^{3} - 2 \, q r s + p s^{2} + q^{2} - p r\right)} {\left(r s - q\right)}
2(r32qrs+ps2+q2pr)(s2r)\displaystyle 2 \, {\left(r^{3} - 2 \, q r s + p s^{2} + q^{2} - p r\right)} {\left(s^{2} - r\right)}
R.<p,q,r,s,b,d> = PolynomialRing(QQ,6) I = R * [r - s*(b+d) + b*d, q - s*(b^2+b*d+d^2) + b*d*(b+d), p - s*(b^3+b^2*d+b*d^2+d^3) + b*d*(b^2+b*d+d^2)] I.elimination_ideal([b,d])
Ideal (r^3 - 2*q*r*s + p*s^2 + q^2 - p*r) of Multivariate Polynomial Ring in p, q, r, s, b, d over Rational Field
# rational space quartic with coordinates of degrees 4,3,2,1 t,t1,t2,t3,t4=var('t,t1,t2,t3,t4') p, q, r, s = var('p,q,r,s') p1 = t^4 - p p2 = t^3 + q p3 = t^2 - r p4 = t + s # q(x) describes the space quartic as x varies q(x) = [p1.substitute(t==x), p2.substitute(t==x), p3.substitute(t==x), p4.substitute(t==x)] # 4 distinct points t1, t2, t3, t4 are coplanar iff the following matrix is singular m = matrix(SR,[q(t1), q(t2), q(t3), q(t4)]) F=(m.determinant().factor())/((t1-t2)*(t1-t3)*(t1-t4)*(t2-t3)*(t2-t4)*(t3-t4)) print("The symmetric expression F is") F.show() print("Solve F=0 for t4 and set it equal to f") f=solve(F,t4)[0].rhs(); f.show() print("Quotient of the partial derivatives of f with respect to t2 and t3:") g = (f.diff(t2)/f.diff(t3)).simplify_full(); g.show() print("The above expression should be independent of t1, so take the partial derivative wrt t1, take the numerator of that and factorize:") h = g.diff(t1).numerator().factor(); h.show() print("Since t1, t2, t3 are arbitrary in some small ball, the first and last factors are non-zero generically, and we obtain that the catalecticant vanishes.") g.diff(t1).denominator().factor().show()
The symmetric expression F is
st1t2t3+st1t2t4+st1t3t4+st2t3t4+t1t2t3t4+rt1t2+rt1t3+rt2t3+rt1t4+rt2t4+rt3t4+qt1+qt2+qt3+qt4+p\displaystyle s t_{1} t_{2} t_{3} + s t_{1} t_{2} t_{4} + s t_{1} t_{3} t_{4} + s t_{2} t_{3} t_{4} + t_{1} t_{2} t_{3} t_{4} + r t_{1} t_{2} + r t_{1} t_{3} + r t_{2} t_{3} + r t_{1} t_{4} + r t_{2} t_{4} + r t_{3} t_{4} + q t_{1} + q t_{2} + q t_{3} + q t_{4} + p
Solve F=0 for t4 and set it equal to f
qt1+(rt1+q)t2+(rt1+(st1+r)t2+q)t3+prt1+(st1+r)t2+(st1+(s+t1)t2+r)t3+q\displaystyle -\frac{q t_{1} + {\left(r t_{1} + q\right)} t_{2} + {\left(r t_{1} + {\left(s t_{1} + r\right)} t_{2} + q\right)} t_{3} + p}{r t_{1} + {\left(s t_{1} + r\right)} t_{2} + {\left(s t_{1} + {\left(s + t_{1}\right)} t_{2} + r\right)} t_{3} + q}
Quotient of the partial derivatives of f with respect to t2 and t3:
(r2qs)t12+((s2r)t12+r2qs+(rsq)t1)t32+q2pr+(qrps)t1+((rsq)t12+qrps+(r2p)t1)t3(r2qs)t12+((s2r)t12+r2qs+(rsq)t1)t22+q2pr+(qrps)t1+((rsq)t12+qrps+(r2p)t1)t2\displaystyle \frac{{\left(r^{2} - q s\right)} t_{1}^{2} + {\left({\left(s^{2} - r\right)} t_{1}^{2} + r^{2} - q s + {\left(r s - q\right)} t_{1}\right)} t_{3}^{2} + q^{2} - p r + {\left(q r - p s\right)} t_{1} + {\left({\left(r s - q\right)} t_{1}^{2} + q r - p s + {\left(r^{2} - p\right)} t_{1}\right)} t_{3}}{{\left(r^{2} - q s\right)} t_{1}^{2} + {\left({\left(s^{2} - r\right)} t_{1}^{2} + r^{2} - q s + {\left(r s - q\right)} t_{1}\right)} t_{2}^{2} + q^{2} - p r + {\left(q r - p s\right)} t_{1} + {\left({\left(r s - q\right)} t_{1}^{2} + q r - p s + {\left(r^{2} - p\right)} t_{1}\right)} t_{2}}
The above expression should be independent of t1, so take the partial derivative wrt t1, take the numerator of that and factorize:
(st12t2+st12t3+2st1t2t3+t12t2t3+rt12+2rt1t2+2rt1t3+rt2t3+2qt1+qt2+qt3+p)(r32qrs+ps2+q2pr)(t2t3)\displaystyle {\left(s t_{1}^{2} t_{2} + s t_{1}^{2} t_{3} + 2 \, s t_{1} t_{2} t_{3} + t_{1}^{2} t_{2} t_{3} + r t_{1}^{2} + 2 \, r t_{1} t_{2} + 2 \, r t_{1} t_{3} + r t_{2} t_{3} + 2 \, q t_{1} + q t_{2} + q t_{3} + p\right)} {\left(r^{3} - 2 \, q r s + p s^{2} + q^{2} - p r\right)} {\left(t_{2} - t_{3}\right)}
Since t1, t2, t3 are arbitrary in some small ball, the first and last factors are non-zero generically, and we obtain that the catalecticant vanishes.
(s2t12t22+rst12t2+rst1t22rt12t22+r2t12qst12+r2t1t2qt12t2+r2t22qst22qt1t22+qrt1pst1+qrt2pst2pt1t2+q2pr)2\displaystyle {\left(s^{2} t_{1}^{2} t_{2}^{2} + r s t_{1}^{2} t_{2} + r s t_{1} t_{2}^{2} - r t_{1}^{2} t_{2}^{2} + r^{2} t_{1}^{2} - q s t_{1}^{2} + r^{2} t_{1} t_{2} - q t_{1}^{2} t_{2} + r^{2} t_{2}^{2} - q s t_{2}^{2} - q t_{1} t_{2}^{2} + q r t_{1} - p s t_{1} + q r t_{2} - p s t_{2} - p t_{1} t_{2} + q^{2} - p r\right)}^{2}
R.<p,q,r,s,b,d> = PolynomialRing(QQ,6) I = R * [b*d, b*d*(b+d), 1 + b*d*(b^2+b*d+d^2)] I.elimination_ideal([b,d])
Ideal (1) of Multivariate Polynomial Ring in p, q, r, s, b, d over Rational Field