Author: Ncho De Gregorio
Views : 94
Description: Practica
#EJERCICIO SAGE1
is_prime?

File: /ext/sage/sage-8.3_1804/local/lib/python2.7/site-packages/sage/arith/misc.py
Signature : is_prime(n)
Docstring :
Return "True" if n is a prime number, and "False" otherwise.

Use a provable primality test or a strong pseudo-primality test
depending on the global "arithmetic proof flag".

INPUT:

* "n" - the object for which to determine primality

* "is_pseudoprime()"

* "sage.rings.integer.Integer.is_prime()"

AUTHORS:

* Kevin Stueve kstueve@uw.edu (2010-01-17): delegated calculation
to "n.is_prime()"

EXAMPLES:

sage: is_prime(389)
True
sage: is_prime(2000)
False
sage: is_prime(2)
True
sage: is_prime(-1)
False
sage: is_prime(1)
False
sage: is_prime(-2)
False

sage: a = 2**2048 + 981
sage: is_prime(a)    # not tested - takes ~ 1min
sage: proof.arithmetic(False)
sage: is_prime(a)    # instantaneous!
True
sage: proof.arithmetic(True)

is_prime(7)

True
factor?

File: /ext/sage/sage-8.3_1804/local/lib/python2.7/site-packages/sage/arith/misc.py
Signature : factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds)
Docstring :
Returns the factorization of "n".  The result depends on the type
of "n".

If "n" is an integer, returns the factorization as an object of
type "Factorization".

If n is not an integer, "n.factor(proof=proof, **kwds)" gets
called. See "n.factor??" for more documentation in this case.

Warning: This means that applying "factor" to an integer result
of a symbolic computation will not factor the integer, because it
is considered as an element of a larger symbolic ring.EXAMPLES:

sage: f(n)=n^2
sage: is_prime(f(3))
False
sage: factor(f(3))
9

INPUT:

* "n" - an nonzero integer

* "proof" - bool or None (default: None)

* "int_" - bool (default: False) whether to return answers as
Python ints

* "algorithm" - string

* "'pari'" - (default) use the PARI c library

* "'kash'" - use KASH computer algebra system (requires the
optional kash package be installed)

* "'magma'" - use Magma (requires magma be installed)

* "verbose" - integer (default: 0); PARI's debug variable is set
to this; e.g., set to 4 or 8 to see lots of output during
factorization.

OUTPUT:

* factorization of n

implementations of algorithms for doing certain integer
factorization problems. These implementations are not used by the
generic factor command, which currently just calls PARI (note that
PARI also implements sieve and ecm algorithms, but they aren't as
optimized). Thus you might consider using them instead for certain
numbers.

The factorization returned is an element of the class
"Factorization"; see Factorization?? for more details, and examples
below for usage. A Factorization contains both the unit factor (+1
or -1) and a sorted list of (prime, exponent) pairs.

The factorization displays in pretty-print format but it is easy to
recover the number from its factorization, and even to multiply two
factorizations. See examples below.

EXAMPLES:

sage: factor(500)
2^2 * 5^3
sage: factor(-20)
-1 * 2^2 * 5
sage: f=factor(-20)
sage: list(f)
[(2, 2), (5, 1)]
sage: f.unit()
-1
sage: f.value()
-20
sage: factor( -next_prime(10^2) * next_prime(10^7) )
-1 * 101 * 10000019

sage: factor(-500, algorithm='kash')      # optional - kash
-1 * 2^2 * 5^3

sage: factor(-500, algorithm='magma')     # optional - magma
-1 * 2^2 * 5^3

sage: factor(0)
Traceback (most recent call last):
...
ArithmeticError: factorization of 0 is not defined
sage: factor(1)
1
sage: factor(-1)
-1
sage: factor(2^(2^7)+1)
59649589127497217 * 5704689200685129054721

Sage calls PARI's factor, which has proof False by default. Sage
has a global proof flag, set to True by default (see
"sage.structure.proof.proof", or proof.[tab]). To override the
default, call this function with proof=False.

sage: factor(3^89-1, proof=False)
2 * 179 * 1611479891519807 * 5042939439565996049162197

sage: factor(2^197 + 1)  # long time (2s)
3 * 197002597249 * 1348959352853811313 * 251951573867253012259144010843

Any object which has a factor method can be factored like this:

sage: factor(122 - 454*i)
(-3*i - 2) * (-i - 2)^3 * (i + 1)^3 * (i + 4)

To access the data in a factorization:

sage: f = factor(420); f
2^2 * 3 * 5 * 7
sage: [x for x in f]
[(2, 2), (3, 1), (5, 1), (7, 1)]
sage: [p for p,e in f]
[2, 3, 5, 7]
sage: [e for p,e in f]
[2, 1, 1, 1]
sage: [p^e for p,e in f]
[4, 3, 5, 7]

We can factor Python and numpy numbers:

sage: factor(math.pi)
3.141592653589793
sage: import numpy
sage: factor(numpy.int8(30))
2 * 3 * 5

factor(73652)

2^2 * 18413


#EJERCICIO SAGE2

primes?

File: /ext/sage/sage-8.3_1804/local/lib/python2.7/site-packages/sage/arith/misc.py
Signature : primes(start, stop=None, proof=None)
Docstring :
Returns an iterator over all primes between start and stop-1,
inclusive. This is much slower than "prime_range", but potentially
uses less memory.  As with "next_prime()", the optional argument
proof controls whether the numbers returned are guaranteed to be
prime or not.

This command is like the Python 2 "xrange" command, except it only
iterates over primes. In some cases it is better to use primes than
"prime_range", because primes does not build a list of all primes
in the range in memory all at once. However, it is potentially much
slower since it simply calls the "next_prime()" function
repeatedly, and "next_prime()" is slow.

INPUT:

* "start" - an integer - lower bound for the primes

* "stop" - an integer (or infinity) optional argument - giving
upper (open) bound for the primes

* "proof" - bool or None (default: None)  If True, the function
yields only proven primes.  If False, the function uses a pseudo-
primality test, which is much faster for really big numbers but
does not provide a proof of primality. If None, uses the global
default (see "sage.structure.proof.proof")

OUTPUT:

* an iterator over primes from start to stop-1, inclusive

EXAMPLES:

sage: for p in primes(5,10):
....:     print(p)
5
7
sage: list(primes(13))
[2, 3, 5, 7, 11]
sage: list(primes(10000000000, 10000000100))
[10000000019, 10000000033, 10000000061, 10000000069, 10000000097]
sage: max(primes(10^100, 10^100+10^4, proof=False))
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009631
sage: next(p for p in primes(10^20, infinity) if is_prime(2*p+1))
100000000000000001243


len(list(primes(1,10**2)))

25

list(primes(1,100))

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
len?

File:
Docstring :
len(object) -> integer

Return the number of items of a sequence or collection.


f=(abs(len(list(primes(1,x)))))/(x/ln(x))0
RDF(f,  x = +oo)

Error in lines 2-2 Traceback (most recent call last): File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1188, in execute flags=compile_flags) in namespace, locals File "", line 1, in <module> File "sage/structure/parent.pyx", line 861, in sage.structure.parent.Parent.__call__ (build/cythonized/sage/structure/parent.c:9403) def __call__(self, x=0, *args, **kwds): TypeError: __call__() got multiple values for keyword argument 'x'

gcd(636,163)

1
gcd(1,0)

1
lcm(1,0)

0
3874%1129

487
gcd(3,0)

3
(93585*40407)/3

1260496365


636*163

103668


RDF?

File: /ext/sage/sage-8.3_1804/src/sage/rings/real_double.pyx
Signature : RDF()
Docstring :
An approximation to the field of real numbers using double
precision floating point numbers. Answers derived from calculations
in this approximation may differ from what they would be if those
calculations were performed in the true field of real numbers. This
is due to the rounding errors inherent to finite precision
calculations.

EXAMPLES:

sage: RR == RDF
False
sage: RDF == RealDoubleField()    # RDF is the shorthand
True

sage: RDF(1)
1.0
sage: RDF(2/3)
0.6666666666666666

A "TypeError" is raised if the coercion doesn't make sense:

sage: RDF(QQ['x'].0)
Traceback (most recent call last):
...
TypeError: cannot coerce nonconstant polynomial to float
sage: RDF(QQ['x'](3))
3.0

One can convert back and forth between double precision real
numbers and higher-precision ones, though of course there may be
loss of precision:

sage: a = RealField(200)(2).sqrt(); a
1.4142135623730950488016887242096980785696718753769480731767
sage: b = RDF(a); b
1.4142135623730951
sage: a.parent()(b)
1.4142135623730951454746218587388284504413604736328125000000
sage: a.parent()(b) == b
True
sage: b == RR(a)
True

x
f=(abs(len(list(primes(1,x)))))/(x/ln(x))
limit(f,  x = oo)

0

q = len(list(primes(1,10000))))
p = numerical_approx(10000/ln(10000))
p
q

Error in lines 0-1 Traceback (most recent call last): File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1188, in execute flags=compile_flags) in namespace, locals File "<string>", line 1 q = len(list(primes(Integer(1),Integer(10000))))) ^ SyntaxError: invalid syntax
3853%2018

1835

2018%1835

183
1835%183

5

354%212

142
142%19

9

gcd(26,15)

1

26%15

11

15%11

11%4

4 3


4%3

1
3%1

0

1%3

1


26*(-1) + 15*2

4


d,u,v = xgcd(26,15)
106*d == u*26 + v*15

False

xgcd?

File: /ext/sage/sage-8.3_1804/local/lib/python2.7/site-packages/sage/arith/misc.py
Signature : xgcd(a, b)
Docstring :
Return a triple "(g,s,t)" such that g = s * a+t * b =
gcd(a,b).

Note: One exception is if a and b are not in a principal ideal
domain (see
https://en.wikipedia.org/wiki/Principal_ideal_domain), e.g., they
are both polynomials over the integers. Then this function can't
in general return "(g,s,t)" as above, since they need not exist.
Instead, over the integers, we first multiply g by a divisor of
the resultant of a/g and b/g, up to sign.

INPUT:

* "a, b" - integers or more generally, element of a ring for
which the xgcd make sense (e.g. a field or univariate
polynomials).

OUTPUT:

* "g, s, t" - such that g = s * a + t * b

Note: There is no guarantee that the returned cofactors (s and t)
are minimal.

EXAMPLES:

sage: xgcd(56, 44)
(4, 4, -5)
sage: 4*56 + (-5)*44
4

sage: g, a, b = xgcd(5/1, 7/1); g, a, b
(1, 3, -2)
sage: a*(5/1) + b*(7/1) == g
True

sage: x = polygen(QQ)
sage: xgcd(x^3 - 1, x^2 - 1)
(x - 1, 1, -x)

sage: K.<g> = NumberField(x^2-3)
sage: g.xgcd(g+2)
(1, 1/3*g, 0)

sage: R.<a,b> = K[]
sage: S.<y> = R.fraction_field()[]
sage: xgcd(y^2, a*y+b)
(1, a^2/b^2, ((-a)/b^2)*y + 1/b)
sage: xgcd((b+g)*y^2, (a+g)*y+b)
(1, (a^2 + (2*g)*a + 3)/(b^3 + (g)*b^2), ((-a + (-g))/b^2)*y + 1/b)

Here is an example of a xgcd for two polynomials over the integers,
where the linear combination is not the gcd but the gcd multiplied
by the resultant:

sage: R.<x> = ZZ[]
sage: gcd(2*x*(x-1), x^2)
x
sage: xgcd(2*x*(x-1), x^2)
(2*x, -1, 2)
sage: (2*(x-1)).resultant(x)
2



826%621

205
621%205

6
621//205

3

205//6
205%6

34 1


552%6
552//6

0 92


368%92
368//92

0 4


552//368
552%368

1 184
368//164
368%164

2 40

184//40
184%40

4 24

40//24
40%24

1 16
828%368
621%368
552%368

92 253 184
(14^12)%19

368%92
253%92
184%92

11 0 69 0


92%69

23


69%23

0


3^4%39
27354//18

3 1519
(3*9*33)%68

7
Mod(3^47,189)

54
(243)%68

39
n=337
x=4

exp = x^n
mod= exp%n

if mod == x:
print 'pasa.'
if mod != x:
print 'No pasa.'

pasa.