Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Project: BHLectures
Views: 665
Kernel: SageMath 10.0.rc3

Lemaître-Tolman solutions

This Jupyter/SageMath notebook is relative to the lectures Geometry and physics of black holes.

The computations make use of tools developed through the SageManifolds project.

version()
'SageMath version 10.0.rc3, Release Date: 2023-05-12'

First we set up the notebook to display mathematical objects using LaTeX rendering:

%display latex

Spacetime

We declare the spacetime manifold MM:

M = Manifold(4, 'M', structure='Lorentzian') print(M)
4-dimensional Lorentzian manifold M

and declare the chart of Lemaître synchronous coordinates on it:

X.<t,x,th,ph> = M.chart(r't:\tau x:(0,+oo):\chi th:(0,pi):\theta ph:(0,2*pi):\phi') X

(M,(τ,χ,θ,ϕ))\displaystyle \left(M,({\tau}, {\chi}, {\theta}, {\phi})\right)

The most general metric tensor, assuming spherical symmetry and synchronous coordinates:

g = M.metric() a = function('a') r = function('r') g[0,0] = -1 g[1,1] = a(t,x)^2 g[2,2] = r(t,x)^2 g[3,3] = (r(t,x)*sin(th))^2 g.display()

g=dτdτ+a(τ,χ)2dχdχ+r(τ,χ)2dθdθ+r(τ,χ)2sin(θ)2dϕdϕ\displaystyle g = -\mathrm{d} {\tau}\otimes \mathrm{d} {\tau} + a\left({\tau}, {\chi}\right)^{2} \mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + r\left({\tau}, {\chi}\right)^{2} \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + r\left({\tau}, {\chi}\right)^{2} \sin\left({\theta}\right)^{2} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

Einstein equation

The cosmological constant:

Lamb = var('Lamb', latex_name=r'\Lambda') Lamb

Λ\displaystyle {\Lambda}

The Ricci tensor:

Ric = g.ricci() print(Ric)
Field of symmetric bilinear forms Ric(g) on the 4-dimensional Lorentzian manifold M
Ric.display()

Ric(g)=(r(τ,χ)2aτ2+2a(τ,χ)2rτ2a(τ,χ)r(τ,χ))dτdτ2(a(τ,χ)2rτχaτrχ)a(τ,χ)r(τ,χ)dτdχ2(a(τ,χ)2rτχaτrχ)a(τ,χ)r(τ,χ)dχdτ+(a(τ,χ)2r(τ,χ)2aτ2+2a(τ,χ)2aτrτ+2aχrχ2a(τ,χ)2rχ2a(τ,χ)r(τ,χ))dχdχ+(a(τ,χ)2r(τ,χ)aτrτ+a(τ,χ)3rτ2+a(τ,χ)3r(τ,χ)2rτ2+a(τ,χ)3+r(τ,χ)aχrχa(τ,χ)rχ2a(τ,χ)r(τ,χ)2rχ2a(τ,χ)3)dθdθ+(a(τ,χ)2r(τ,χ)aτrτ+a(τ,χ)3rτ2+a(τ,χ)3r(τ,χ)2rτ2+a(τ,χ)3+r(τ,χ)aχrχa(τ,χ)rχ2a(τ,χ)r(τ,χ)2rχ2)sin(θ)2a(τ,χ)3dϕdϕ\displaystyle \mathrm{Ric}\left(g\right) = \left( -\frac{r\left({\tau}, {\chi}\right) \frac{\partial^2\,a}{\partial {\tau} ^ 2} + 2 \, a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \right) \mathrm{d} {\tau}\otimes \mathrm{d} {\tau} -\frac{2 \, {\left(a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}\right)}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \mathrm{d} {\tau}\otimes \mathrm{d} {\chi} -\frac{2 \, {\left(a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}\right)}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \mathrm{d} {\chi}\otimes \mathrm{d} {\tau} + \left( \frac{a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial^2\,a}{\partial {\tau} ^ 2} + 2 \, a\left({\tau}, {\chi}\right)^{2} \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} + 2 \, \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} - 2 \, a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \right) \mathrm{d} {\chi}\otimes \mathrm{d} {\chi} + \left( \frac{a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} + a\left({\tau}, {\chi}\right)^{3} \frac{\partial\,r}{\partial {\tau}}^{2} + a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} + a\left({\tau}, {\chi}\right)^{3} + r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} - a\left({\tau}, {\chi}\right) \frac{\partial\,r}{\partial {\chi}}^{2} - a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right)^{3}} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{{\left(a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} + a\left({\tau}, {\chi}\right)^{3} \frac{\partial\,r}{\partial {\tau}}^{2} + a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} + a\left({\tau}, {\chi}\right)^{3} + r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} - a\left({\tau}, {\chi}\right) \frac{\partial\,r}{\partial {\chi}}^{2} - a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}\right)} \sin\left({\theta}\right)^{2}}{a\left({\tau}, {\chi}\right)^{3}} \mathrm{d} {\phi}\otimes \mathrm{d} {\phi}

The Einstein tensor:

G = Ric - 1/2*g.ricci_scalar() * g G.set_name('G') print(G)
Field of symmetric bilinear forms G on the 4-dimensional Lorentzian manifold M
G.display_comp()

Gττττ=2a(τ,χ)2r(τ,χ)aτrτ+a(τ,χ)3rτ2+a(τ,χ)3+2r(τ,χ)aχrχa(τ,χ)rχ22a(τ,χ)r(τ,χ)2rχ2a(τ,χ)3r(τ,χ)2Gτχτχ=2(a(τ,χ)2rτχaτrχ)a(τ,χ)r(τ,χ)Gχτχτ=2(a(τ,χ)2rτχaτrχ)a(τ,χ)r(τ,χ)Gχχχχ=a(τ,χ)2(rτ)2+2a(τ,χ)2r(τ,χ)2rτ2+a(τ,χ)2(rχ)2r(τ,χ)2Gθθθθ=a(τ,χ)2r(τ,χ)22aτ2+a(τ,χ)2r(τ,χ)aτrτ+a(τ,χ)3r(τ,χ)2rτ2+r(τ,χ)aχrχa(τ,χ)r(τ,χ)2rχ2a(τ,χ)3Gϕϕϕϕ=(a(τ,χ)2r(τ,χ)22aτ2+a(τ,χ)2r(τ,χ)aτrτ+a(τ,χ)3r(τ,χ)2rτ2+r(τ,χ)aχrχa(τ,χ)r(τ,χ)2rχ2)sin(θ)2a(τ,χ)3\displaystyle \begin{array}{lcl} G_{ \, {\tau} \, {\tau} }^{ \phantom{\, {\tau}}\phantom{\, {\tau}} } & = & \frac{2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} + a\left({\tau}, {\chi}\right)^{3} \frac{\partial\,r}{\partial {\tau}}^{2} + a\left({\tau}, {\chi}\right)^{3} + 2 \, r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} - a\left({\tau}, {\chi}\right) \frac{\partial\,r}{\partial {\chi}}^{2} - 2 \, a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2}} \\ G_{ \, {\tau} \, {\chi} }^{ \phantom{\, {\tau}}\phantom{\, {\chi}} } & = & -\frac{2 \, {\left(a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}\right)}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \\ G_{ \, {\chi} \, {\tau} }^{ \phantom{\, {\chi}}\phantom{\, {\tau}} } & = & -\frac{2 \, {\left(a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}\right)}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \\ G_{ \, {\chi} \, {\chi} }^{ \phantom{\, {\chi}}\phantom{\, {\chi}} } & = & -\frac{a\left({\tau}, {\chi}\right)^{2} \left(\frac{\partial\,r}{\partial {\tau}}\right)^{2} + 2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} + a\left({\tau}, {\chi}\right)^{2} - \left(\frac{\partial\,r}{\partial {\chi}}\right)^{2}}{r\left({\tau}, {\chi}\right)^{2}} \\ G_{ \, {\theta} \, {\theta} }^{ \phantom{\, {\theta}}\phantom{\, {\theta}} } & = & -\frac{a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} \frac{\partial^2\,a}{\partial {\tau} ^ 2} + a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} + a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} + r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} - a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right)^{3}} \\ G_{ \, {\phi} \, {\phi} }^{ \phantom{\, {\phi}}\phantom{\, {\phi}} } & = & -\frac{{\left(a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} \frac{\partial^2\,a}{\partial {\tau} ^ 2} + a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} + a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} + r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} - a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}\right)} \sin\left({\theta}\right)^{2}}{a\left({\tau}, {\chi}\right)^{3}} \end{array}

Dust matter model

Let us consider a pressureless fluid ("dust"). Moreover, we assume that the coordinates (τ,χ,θ,ϕ)(\tau,\chi,\theta,\phi) are comoving, i.e. that the fluid 4-velocity is equal to τ\partial_\tau:

u = M.vector_field('u') u[0] = 1 u.display()

u=τ\displaystyle u = \frac{\partial}{\partial {\tau} }

Since (τ,χ,θ,χ)(\tau,\chi,\theta,\chi) are synchronous, the above does define a unit timelike vector:

g(u,u).display()

g(u,u):MR(τ,χ,θ,ϕ)1\displaystyle \begin{array}{llcl} g\left(u,u\right):& M & \longrightarrow & \mathbb{R} \\ & \left({\tau}, {\chi}, {\theta}, {\phi}\right) & \longmapsto & -1 \end{array}

Let us check that uu is a geodesic vector field:

nabla = g.connection() acc = u['^b']*nabla(u)['^a_b'] acc.display()

0\displaystyle 0

The 1-form associated to the fluid 4-velocity by metric duality:

u_form = u.down(g) print(u_form)
1-form on the 4-dimensional Lorentzian manifold M
u_form.display()

dτ\displaystyle -\mathrm{d} {\tau}

The pressureless energy-momentum tensor:

rho = function('rho') T = rho(t,x)*(u_form * u_form) T.set_name('T') print(T)
Field of symmetric bilinear forms T on the 4-dimensional Lorentzian manifold M
T.display()

T=ρ(τ,χ)dτdτ\displaystyle T = \rho\left({\tau}, {\chi}\right) \mathrm{d} {\tau}\otimes \mathrm{d} {\tau}

The Einstein equation:

E = G + Lamb*g - 8*pi*T E.set_name('E') print(E)
Field of symmetric bilinear forms E on the 4-dimensional Lorentzian manifold M
E.display_comp()

Eττττ=8πa(τ,χ)3r(τ,χ)2ρ(τ,χ)+Λa(τ,χ)3r(τ,χ)22a(τ,χ)2r(τ,χ)aτrτa(τ,χ)3rτ2a(τ,χ)32r(τ,χ)aχrχ+a(τ,χ)rχ2+2a(τ,χ)r(τ,χ)2rχ2a(τ,χ)3r(τ,χ)2Eτχτχ=2(a(τ,χ)2rτχaτrχ)a(τ,χ)r(τ,χ)Eχτχτ=2(a(τ,χ)2rτχaτrχ)a(τ,χ)r(τ,χ)Eχχχχ=Λa(τ,χ)2r(τ,χ)2a(τ,χ)2(rτ)22a(τ,χ)2r(τ,χ)2rτ2a(τ,χ)2+(rχ)2r(τ,χ)2Eθθθθ=Λa(τ,χ)3r(τ,χ)2a(τ,χ)2r(τ,χ)22aτ2a(τ,χ)2r(τ,χ)aτrτa(τ,χ)3r(τ,χ)2rτ2r(τ,χ)aχrχ+a(τ,χ)r(τ,χ)2rχ2a(τ,χ)3Eϕϕϕϕ=(Λa(τ,χ)3r(τ,χ)2a(τ,χ)2r(τ,χ)22aτ2a(τ,χ)2r(τ,χ)aτrτa(τ,χ)3r(τ,χ)2rτ2r(τ,χ)aχrχ+a(τ,χ)r(τ,χ)2rχ2)sin(θ)2a(τ,χ)3\displaystyle \begin{array}{lcl} E_{ \, {\tau} \, {\tau} }^{ \phantom{\, {\tau}}\phantom{\, {\tau}} } & = & -\frac{8 \, \pi a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) + {\Lambda} a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} - 2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} - a\left({\tau}, {\chi}\right)^{3} \frac{\partial\,r}{\partial {\tau}}^{2} - a\left({\tau}, {\chi}\right)^{3} - 2 \, r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} + a\left({\tau}, {\chi}\right) \frac{\partial\,r}{\partial {\chi}}^{2} + 2 \, a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2}} \\ E_{ \, {\tau} \, {\chi} }^{ \phantom{\, {\tau}}\phantom{\, {\chi}} } & = & -\frac{2 \, {\left(a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}\right)}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \\ E_{ \, {\chi} \, {\tau} }^{ \phantom{\, {\chi}}\phantom{\, {\tau}} } & = & -\frac{2 \, {\left(a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}\right)}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)} \\ E_{ \, {\chi} \, {\chi} }^{ \phantom{\, {\chi}}\phantom{\, {\chi}} } & = & \frac{{\Lambda} a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} - a\left({\tau}, {\chi}\right)^{2} \left(\frac{\partial\,r}{\partial {\tau}}\right)^{2} - 2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} - a\left({\tau}, {\chi}\right)^{2} + \left(\frac{\partial\,r}{\partial {\chi}}\right)^{2}}{r\left({\tau}, {\chi}\right)^{2}} \\ E_{ \, {\theta} \, {\theta} }^{ \phantom{\, {\theta}}\phantom{\, {\theta}} } & = & \frac{{\Lambda} a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} - a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} \frac{\partial^2\,a}{\partial {\tau} ^ 2} - a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} - a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} - r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} + a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right)^{3}} \\ E_{ \, {\phi} \, {\phi} }^{ \phantom{\, {\phi}}\phantom{\, {\phi}} } & = & \frac{{\left({\Lambda} a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} - a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} \frac{\partial^2\,a}{\partial {\tau} ^ 2} - a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} - a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} - r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} + a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}\right)} \sin\left({\theta}\right)^{2}}{a\left({\tau}, {\chi}\right)^{3}} \end{array}

Solving the Einstein equation

τχ\tau\chi component

Let us first consider the 01=τχ01 = \tau\chi component of the Einstein equation:

E[0,1]

2(a(τ,χ)2rτχaτrχ)a(τ,χ)r(τ,χ)\displaystyle -\frac{2 \, {\left(a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}\right)}}{a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right)}

A slight rearrangement of the equation:

eq = E[0,1]*r(t,x)/(-2*a(t,x)) eq

a(τ,χ)2rτχaτrχa(τ,χ)2\displaystyle \frac{a\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau}\partial {\chi}} - \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\chi}}}{a\left({\tau}, {\chi}\right)^{2}}

We see that this equation is equivalent to τ(1arχ)=0 \frac{\partial}{\partial\tau} \left( \frac{1}{a}\frac{\partial r}{\partial\chi} \right) = 0 since

drdx = diff(r(t,x), x) eq - diff(drdx/a(t,x), t)

0\displaystyle 0

Hence there exists a function of χ\chi only, f(χ)f(\chi) say, such that 1arχ=f(χ)\frac{1}{a}\frac{\partial r}{\partial\chi} = f(\chi). We disregard the case f(χ)=0f(\chi)=0, which would imply rχ=0\frac{\partial r}{\partial\chi}=0 and would lead to the so-called Datt model (1938). Accordingly, we may write a(τ,χ)=1f(χ)rχ a(\tau,\chi) = \frac{1}{f(\chi)}\frac{\partial r}{\partial\chi} Let us call af this expression of aa:

f = function('f') af(t,x) = drdx / f(x) af(t,x)

χr(τ,χ)f(χ)\displaystyle \frac{\frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)}{f\left({\chi}\right)}

We check that if we substitute aa by af in the τχ\tau\chi component of the Einstein equation, we get identically zero:

E[0,1].expr().substitute_function(a, af)

0\displaystyle 0

NB: expr() returns a Sage symbolic expression from the coordinate function E[0,1], so that we may apply substitute_function

Hence the first Lemaitre-Tolman equation is

LT1 = a(t,x) == af(t,x) LT1

a(τ,χ)=χr(τ,χ)f(χ)\displaystyle a\left({\tau}, {\chi}\right) = \frac{\frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)}{f\left({\chi}\right)}

χχ\chi\chi component

The 11=χχ11 = \chi\chi component of Einstein equation is

E[1,1]

Λa(τ,χ)2r(τ,χ)2a(τ,χ)2(rτ)22a(τ,χ)2r(τ,χ)2rτ2a(τ,χ)2+(rχ)2r(τ,χ)2\displaystyle \frac{{\Lambda} a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} - a\left({\tau}, {\chi}\right)^{2} \left(\frac{\partial\,r}{\partial {\tau}}\right)^{2} - 2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} - a\left({\tau}, {\chi}\right)^{2} + \left(\frac{\partial\,r}{\partial {\chi}}\right)^{2}}{r\left({\tau}, {\chi}\right)^{2}}

It is equivalent to

eq = (- E[1,1] * r(t,x)^2).expr() == 0 eq

Λa(τ,χ)2r(τ,χ)2+a(τ,χ)2τr(τ,χ)2+2a(τ,χ)2r(τ,χ)2(τ)2r(τ,χ)+a(τ,χ)2χr(τ,χ)2=0\displaystyle -{\Lambda} a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} + a\left({\tau}, {\chi}\right)^{2} \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} + 2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\tau})^{2}}r\left({\tau}, {\chi}\right) + a\left({\tau}, {\chi}\right)^{2} - \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} = 0

Let us substitute for a(τ,χ)a(\tau,\chi) the value found above when solving the τχ\tau\chi component:

eq1 = eq.substitute_function(a, af) eq1

Λr(τ,χ)2χr(τ,χ)2f(χ)2+τr(τ,χ)2χr(τ,χ)2f(χ)2+2r(τ,χ)2(τ)2r(τ,χ)χr(τ,χ)2f(χ)2χr(τ,χ)2+χr(τ,χ)2f(χ)2=0\displaystyle -\frac{{\Lambda} r\left({\tau}, {\chi}\right)^{2} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2}}{f\left({\chi}\right)^{2}} + \frac{\frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2}}{f\left({\chi}\right)^{2}} + \frac{2 \, r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\tau})^{2}}r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2}}{f\left({\chi}\right)^{2}} - \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} + \frac{\frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2}}{f\left({\chi}\right)^{2}} = 0

Some slight rearrangement and simplification:

eq2 = (eq1 * f(x)^2 / diff(r(t,x), x)^2).simplify_full() eq2

Λr(τ,χ)2f(χ)2+τr(τ,χ)2+2r(τ,χ)2(τ)2r(τ,χ)+1=0\displaystyle -{\Lambda} r\left({\tau}, {\chi}\right)^{2} - f\left({\chi}\right)^{2} + \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} + 2 \, r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\tau})^{2}}r\left({\tau}, {\chi}\right) + 1 = 0

eq3 = (eq2 * diff(r(t,x),t)).simplify_full() eq3

f(χ)2τr(τ,χ)+τr(τ,χ)3+2r(τ,χ)τr(τ,χ)2(τ)2r(τ,χ)(Λr(τ,χ)21)τr(τ,χ)=0\displaystyle -f\left({\chi}\right)^{2} \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) + \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{3} + 2 \, r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\tau})^{2}}r\left({\tau}, {\chi}\right) - {\left({\Lambda} r\left({\tau}, {\chi}\right)^{2} - 1\right)} \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) = 0

We notice that the left-hand side of this equation is nothing but the partial derivative w.r.t. τ\tau of the following quantity:

A = (diff(r(t,x),t)^2 + 1 - f(x)^2 - (Lamb/3)*r(t,x)^2) * r(t,x) A

13(Λr(τ,χ)2+3f(χ)23τr(τ,χ)23)r(τ,χ)\displaystyle -\frac{1}{3} \, {\left({\Lambda} r\left({\tau}, {\chi}\right)^{2} + 3 \, f\left({\chi}\right)^{2} - 3 \, \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} - 3\right)} r\left({\tau}, {\chi}\right)

bool(eq3.lhs() == diff(A, t))

True\displaystyle \mathrm{True}

Hence eq3 tells that AA is independent of τ\tau, i.e. is a function of χ\chi only, which we call 2m(χ)2 m(\chi):

m = function('m') eq4 = A - 2*m(x) == 0 eq4

13(Λr(τ,χ)2+3f(χ)23τr(τ,χ)23)r(τ,χ)2m(χ)=0\displaystyle -\frac{1}{3} \, {\left({\Lambda} r\left({\tau}, {\chi}\right)^{2} + 3 \, f\left({\chi}\right)^{2} - 3 \, \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} - 3\right)} r\left({\tau}, {\chi}\right) - 2 \, m\left({\chi}\right) = 0

Let us solve extract (r/τ)2(\partial r/\partial\tau)^2 from this equation:

drdt2_sol = solve(eq4, diff(r(t,x),t)^2) drdt2_sol

[τr(τ,χ)2=Λr(τ,χ)3+3f(χ)2r(τ,χ)+6m(χ)3r(τ,χ)3r(τ,χ)]\displaystyle \left[\frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} = \frac{{\Lambda} r\left({\tau}, {\chi}\right)^{3} + 3 \, f\left({\chi}\right)^{2} r\left({\tau}, {\chi}\right) + 6 \, m\left({\chi}\right) - 3 \, r\left({\tau}, {\chi}\right)}{3 \, r\left({\tau}, {\chi}\right)}\right]

We thus obtain the second Lemaitre-Tolman equation:

LT2 = drdt2_sol[0].expand() LT2

τr(τ,χ)2=13Λr(τ,χ)2+f(χ)2+2m(χ)r(τ,χ)1\displaystyle \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} = \frac{1}{3} \, {\Lambda} r\left({\tau}, {\chi}\right)^{2} + f\left({\chi}\right)^{2} + \frac{2 \, m\left({\chi}\right)}{r\left({\tau}, {\chi}\right)} - 1

drdt2 = LT2.rhs() drdt2

13Λr(τ,χ)2+f(χ)2+2m(χ)r(τ,χ)1\displaystyle \frac{1}{3} \, {\Lambda} r\left({\tau}, {\chi}\right)^{2} + f\left({\chi}\right)^{2} + \frac{2 \, m\left({\chi}\right)}{r\left({\tau}, {\chi}\right)} - 1

ττ\tau\tau component

The 00=ττ00 = \tau\tau component of Einstein equation is

E[0,0]

8πa(τ,χ)3r(τ,χ)2ρ(τ,χ)+Λa(τ,χ)3r(τ,χ)22a(τ,χ)2r(τ,χ)aτrτa(τ,χ)3rτ2a(τ,χ)32r(τ,χ)aχrχ+a(τ,χ)rχ2+2a(τ,χ)r(τ,χ)2rχ2a(τ,χ)3r(τ,χ)2\displaystyle -\frac{8 \, \pi a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) + {\Lambda} a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} - 2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} - a\left({\tau}, {\chi}\right)^{3} \frac{\partial\,r}{\partial {\tau}}^{2} - a\left({\tau}, {\chi}\right)^{3} - 2 \, r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} + a\left({\tau}, {\chi}\right) \frac{\partial\,r}{\partial {\chi}}^{2} + 2 \, a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2}}

It is equivalent to

eq = (- E[0,0] * a(t,x)^3 * r(t,x)^2).expr() == 0 eq

8πa(τ,χ)3r(τ,χ)2ρ(τ,χ)+Λa(τ,χ)3r(τ,χ)22a(τ,χ)2r(τ,χ)τa(τ,χ)τr(τ,χ)a(τ,χ)3τr(τ,χ)2a(τ,χ)32r(τ,χ)χa(τ,χ)χr(τ,χ)+a(τ,χ)χr(τ,χ)2+2a(τ,χ)r(τ,χ)2(χ)2r(τ,χ)=0\displaystyle 8 \, \pi a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) + {\Lambda} a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} - 2 \, a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}a\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) - a\left({\tau}, {\chi}\right)^{3} \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} - a\left({\tau}, {\chi}\right)^{3} - 2 \, r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}a\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right) + a\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} + 2 \, a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\chi})^{2}}r\left({\tau}, {\chi}\right) = 0

As above, we substitute for a(τ,χ)a(\tau,\chi) the value found when solving the τχ\tau\chi component:

eq1 = eq.substitute_function(a, af) eq1

8πr(τ,χ)2ρ(τ,χ)χr(τ,χ)3f(χ)3+2(χf(χ)χr(τ,χ)f(χ)22(χ)2r(τ,χ)f(χ))r(τ,χ)χr(τ,χ)+Λr(τ,χ)2χr(τ,χ)3f(χ)32r(τ,χ)τr(τ,χ)2τχr(τ,χ)χr(τ,χ)2f(χ)3+χr(τ,χ)3f(χ)τr(τ,χ)2χr(τ,χ)3f(χ)3+2r(τ,χ)χr(τ,χ)2(χ)2r(τ,χ)f(χ)χr(τ,χ)3f(χ)3=0\displaystyle \frac{8 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3}}{f\left({\chi}\right)^{3}} + 2 \, {\left(\frac{\frac{\partial}{\partial {\chi}}f\left({\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)}{f\left({\chi}\right)^{2}} - \frac{\frac{\partial^{2}}{(\partial {\chi})^{2}}r\left({\tau}, {\chi}\right)}{f\left({\chi}\right)}\right)} r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right) + \frac{{\Lambda} r\left({\tau}, {\chi}\right)^{2} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3}}{f\left({\chi}\right)^{3}} - \frac{2 \, r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{\partial {\tau}\partial {\chi}}r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2}}{f\left({\chi}\right)^{3}} + \frac{\frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3}}{f\left({\chi}\right)} - \frac{\frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3}}{f\left({\chi}\right)^{3}} + \frac{2 \, r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\chi})^{2}}r\left({\tau}, {\chi}\right)}{f\left({\chi}\right)} - \frac{\frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3}}{f\left({\chi}\right)^{3}} = 0

eq2 = (eq1 * f(x)^3).simplify_full() eq2

2f(χ)r(τ,χ)χf(χ)χr(τ,χ)22r(τ,χ)τr(τ,χ)2τχr(τ,χ)χr(τ,χ)2+f(χ)2χr(τ,χ)3+(8πr(τ,χ)2ρ(τ,χ)+Λr(τ,χ)2τr(τ,χ)21)χr(τ,χ)3=0\displaystyle 2 \, f\left({\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}f\left({\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} - 2 \, r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{\partial {\tau}\partial {\chi}}r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} + f\left({\chi}\right)^{2} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3} + {\left(8 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) + {\Lambda} r\left({\tau}, {\chi}\right)^{2} - \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} - 1\right)} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3} = 0

Let us substitute for r/τ\partial r/\partial \tau the positive square root of the value of (r/τ)2(\partial r/\partial \tau)^2 found when solving the χχ\chi\chi component:

drdt = sqrt(drdt2) drdt

13Λr(τ,χ)2+f(χ)2+2m(χ)r(τ,χ)1\displaystyle \sqrt{\frac{1}{3} \, {\Lambda} r\left({\tau}, {\chi}\right)^{2} + f\left({\chi}\right)^{2} + \frac{2 \, m\left({\chi}\right)}{r\left({\tau}, {\chi}\right)} - 1}

eq3 = eq2.subs({diff(r(t,x),t): drdt, diff(r(t,x),t,x): diff(drdt, x)}).simplify_full() eq3

8πr(τ,χ)2ρ(τ,χ)χr(τ,χ)32χm(χ)χr(τ,χ)2=0\displaystyle 8 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3} - 2 \, \frac{\partial}{\partial {\chi}}m\left({\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} = 0

If we use the negative square root of (r/τ)2(\partial r/\partial \tau)^2 instead, we get the same result:

drdt = - sqrt(drdt2) drdt

13Λr(τ,χ)2+f(χ)2+2m(χ)r(τ,χ)1\displaystyle -\sqrt{\frac{1}{3} \, {\Lambda} r\left({\tau}, {\chi}\right)^{2} + f\left({\chi}\right)^{2} + \frac{2 \, m\left({\chi}\right)}{r\left({\tau}, {\chi}\right)} - 1}

eq3_minus = eq2.subs({diff(r(t,x),t): drdt, diff(r(t,x),t,x): diff(drdt, x)}).simplify_full() eq3_minus

8πr(τ,χ)2ρ(τ,χ)χr(τ,χ)32χm(χ)χr(τ,χ)2=0\displaystyle 8 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3} - 2 \, \frac{\partial}{\partial {\chi}}m\left({\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} = 0

eq3_minus == eq3

True\displaystyle \mathrm{True}

Thus we continue with eq3 and rearrange it to get the third Lemaitre-Tolman equation:

eq4 = (eq3 / (2*diff(r(t,x),x)^2)).simplify_full() eq4

4πr(τ,χ)2ρ(τ,χ)χr(τ,χ)χm(χ)=0\displaystyle 4 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right) - \frac{\partial}{\partial {\chi}}m\left({\chi}\right) = 0

dmdx_sol = solve(eq4, diff(m(x),x)) dmdx_sol

[χm(χ)=4πr(τ,χ)2ρ(τ,χ)χr(τ,χ)]\displaystyle \left[\frac{\partial}{\partial {\chi}}m\left({\chi}\right) = 4 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)\right]

LT3 = dmdx_sol[0] LT3

χm(χ)=4πr(τ,χ)2ρ(τ,χ)χr(τ,χ)\displaystyle \frac{\partial}{\partial {\chi}}m\left({\chi}\right) = 4 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)

θθ\theta\theta and ϕϕ\phi\phi components

First we notice that the θθ\theta\theta and ϕϕ\phi\phi components of the Einstein equation are equivalent:

E[3,3] == E[2,2] * sin(th)^2

True\displaystyle \mathrm{True}

Let us thus consider only the 22=θθ22 = \theta\theta component:

E[2,2]

Λa(τ,χ)3r(τ,χ)2a(τ,χ)2r(τ,χ)22aτ2a(τ,χ)2r(τ,χ)aτrτa(τ,χ)3r(τ,χ)2rτ2r(τ,χ)aχrχ+a(τ,χ)r(τ,χ)2rχ2a(τ,χ)3\displaystyle \frac{{\Lambda} a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} - a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} \frac{\partial^2\,a}{\partial {\tau} ^ 2} - a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\tau}} \frac{\partial\,r}{\partial {\tau}} - a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\tau} ^ 2} - r\left({\tau}, {\chi}\right) \frac{\partial\,a}{\partial {\chi}} \frac{\partial\,r}{\partial {\chi}} + a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^2\,r}{\partial {\chi} ^ 2}}{a\left({\tau}, {\chi}\right)^{3}}

It is equivalent to

eq = (- E[2,2] * a(t,x)^3).expr() == 0 eq

Λa(τ,χ)3r(τ,χ)2+a(τ,χ)2r(τ,χ)22(τ)2a(τ,χ)+a(τ,χ)2r(τ,χ)τa(τ,χ)τr(τ,χ)+a(τ,χ)3r(τ,χ)2(τ)2r(τ,χ)+r(τ,χ)χa(τ,χ)χr(τ,χ)a(τ,χ)r(τ,χ)2(χ)2r(τ,χ)=0\displaystyle -{\Lambda} a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right)^{2} + a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right)^{2} \frac{\partial^{2}}{(\partial {\tau})^{2}}a\left({\tau}, {\chi}\right) + a\left({\tau}, {\chi}\right)^{2} r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}a\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) + a\left({\tau}, {\chi}\right)^{3} r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\tau})^{2}}r\left({\tau}, {\chi}\right) + r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}a\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right) - a\left({\tau}, {\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\chi})^{2}}r\left({\tau}, {\chi}\right) = 0

We substitute for a(τ,χ)a(\tau,\chi) the value found when solving the τχ\tau\chi component:

eq1 = eq.substitute_function(a, af).simplify_full() eq1

f(χ)r(τ,χ)χf(χ)χr(τ,χ)2+(Λr(τ,χ)2r(τ,χ)2(τ)2r(τ,χ))χr(τ,χ)3(r(τ,χ)23(τ)2χr(τ,χ)+r(τ,χ)τr(τ,χ)2τχr(τ,χ))χr(τ,χ)2f(χ)3=0\displaystyle -\frac{f\left({\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}f\left({\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} + {\left({\Lambda} r\left({\tau}, {\chi}\right)^{2} - r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\tau})^{2}}r\left({\tau}, {\chi}\right)\right)} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3} - {\left(r\left({\tau}, {\chi}\right)^{2} \frac{\partial^{3}}{(\partial {\tau})^{2}\partial {\chi}}r\left({\tau}, {\chi}\right) + r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{\partial {\tau}\partial {\chi}}r\left({\tau}, {\chi}\right)\right)} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2}}{f\left({\chi}\right)^{3}} = 0

eq2 = (eq1 * f(x)^3).simplify_full() eq2

f(χ)r(τ,χ)χf(χ)χr(τ,χ)2(Λr(τ,χ)2r(τ,χ)2(τ)2r(τ,χ))χr(τ,χ)3+(r(τ,χ)23(τ)2χr(τ,χ)+r(τ,χ)τr(τ,χ)2τχr(τ,χ))χr(τ,χ)2=0\displaystyle -f\left({\chi}\right) r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}f\left({\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} - {\left({\Lambda} r\left({\tau}, {\chi}\right)^{2} - r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{(\partial {\tau})^{2}}r\left({\tau}, {\chi}\right)\right)} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{3} + {\left(r\left({\tau}, {\chi}\right)^{2} \frac{\partial^{3}}{(\partial {\tau})^{2}\partial {\chi}}r\left({\tau}, {\chi}\right) + r\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right) \frac{\partial^{2}}{\partial {\tau}\partial {\chi}}r\left({\tau}, {\chi}\right)\right)} \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)^{2} = 0

Then we substitute for r/τ\partial r/\partial\tau the value obtained when solving the ττ\tau\tau component:

eq3 = eq2.subs({diff(r(t,x),t,t,x): diff(drdt,t,x), diff(r(t,x),t,t): diff(drdt,t)}).simplify_full() eq4 = eq3.subs({diff(r(t,x),t): drdt, diff(r(t,x),t,x): diff(drdt,x)}).simplify_full() eq4

0=0\displaystyle 0 = 0

We conclude that the θθ\theta\theta component of Einstein equation does not add any independent equation.

Summary

Let us collect the three independent equations obtained from the Einstein equation, constituting the Lemaître-Tolman system:

for eq in [LT1, LT2, LT3]: show(eq)

a(τ,χ)=χr(τ,χ)f(χ)\displaystyle a\left({\tau}, {\chi}\right) = \frac{\frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)}{f\left({\chi}\right)}

τr(τ,χ)2=13Λr(τ,χ)2+f(χ)2+2m(χ)r(τ,χ)1\displaystyle \frac{\partial}{\partial {\tau}}r\left({\tau}, {\chi}\right)^{2} = \frac{1}{3} \, {\Lambda} r\left({\tau}, {\chi}\right)^{2} + f\left({\chi}\right)^{2} + \frac{2 \, m\left({\chi}\right)}{r\left({\tau}, {\chi}\right)} - 1

χm(χ)=4πr(τ,χ)2ρ(τ,χ)χr(τ,χ)\displaystyle \frac{\partial}{\partial {\chi}}m\left({\chi}\right) = 4 \, \pi r\left({\tau}, {\chi}\right)^{2} \rho\left({\tau}, {\chi}\right) \frac{\partial}{\partial {\chi}}r\left({\tau}, {\chi}\right)

The first equation is the unnumbered one just above Eq. (8.1) in Lemaître's article L'univers en expansion, Annales de la Société Scientifique de Bruxelles A 53, 51 (1933), translated in English in Gen. Relativ. Gravit. 29, 641 (1997). The second equation is Eq. (8.2) in Lemaître's article, while the third one is Eq. (8.3).