Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 140
Kernel: SageMath (stable)

Inconsistencies of the EMT proposed by Toshmatov et al.

This worksheet is devoted to the analysis of the energy-momentum tensor presented by Toshmatov et al. for a generic regular rotating metric, in the specific case of Hayward's metric. We show that Einstein's equations are not valid on order 10−210^{-2} as claimed by the authors. (https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084037)

%display latex

Spacetime

M = Manifold(4, 'M') X.<t,r,th,ph> = M.chart(r't r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') X

The mass, angular momentum and regularization length parameters:

m, a, b = var('m a b', domain='real') assume(m>0, a>=0, b>=0) var('gam', latex_name="\gamma");
m = 1 # to simplify the expressions below

The metric:

var('Q') g = M.lorentzian_metric('g') MM = m*r^3/(r^3 + 2*m*b^2) rho2 = r^2 + (a*cos(th))^2 Delta = r^2 -(2*MM*r) + a^2 g[0,0] = -(1-(2*MM*r)/rho2) g[0,3] = -a*(2*MM*r)*sin(th)^2/rho2 g[1,1], g[2,2] = rho2/Delta, rho2 g[3,3] = (r^2+a^2+(2*MM*r)*(a*sin(th))^2/rho2)*sin(th)^2 g.display()
gm1=g.inverse()

Electromagnetic field

We need the 1-forms dt\mathrm{d}t and dϕ\mathrm{d}\phi to form the electromagnetic field; we get them as follows:

X.coframe()
dt = X.coframe()[0] dr = X.coframe()[1] dtheta = X.coframe()[2] dphi = X.coframe()[3]

The potential defined according to Eq. (25) of Toshmatov et al. (2017):

var('Q') A = -Q*a*cos(th)/rho2 * dt + Q*cos(th)*(r^2+a^2)/rho2 * dphi A.set_name('A') A.display()
F = A.exterior_derivative() F.set_name('F') F.display()

The electromagnetic field invariant F:=FabFab\mathcal{F} := F_{ab} F^{ab}:

Fuu = F.up(g) F2 = F['_ab']*Fuu['^ab'] print(F2)
Scalar field on the 4-dimensional differentiable manifold M
F2.display()
FF2=Q^2*(a^4*(3-cos(4*th))+4*(6*a^2*r^2+2*r^4+a^2*(a^2-6*r^2)*cos(2*th)))/(4*rho2^4) #result of Toshmatov et al
FF2.factor()
bool(F2.expr() == FF2) # difference between our expression and the one of Toshmatov et al.

We introduce the Lagrangian density L(F)L(\mathcal{F}) for the electromagnetic field as a function of rr and θ\theta, as Tomashtov et al.

L=r^2*((15*a^4-8*a^2*r^2+8*r^4+4*a^2*(5*a^2-2*r^2)*cos(2*th)+5*a^4*cos(4*th))*diff(MM,r)+16*a^2*r*cos(th)^2*rho2*diff(MM,r,2))

Similarly, we introduce dLdF\frac{\mathrm{d}L}{\mathrm{d}\mathcal{F}} as a lambda function, formed from the derivative of L(x)L(x):

LF=(2*(r^2-a^2*cos(th)^2)*diff(MM,r)-r*rho2*diff(MM,r,2))/(2*Q^2)
#DLF=LF-(diff(L,r)*(diff(FF2,r))^(-1)+diff(L,th)*(diff(FF2,th))^(-1)) # defined as Toshmatov et al.

Consistency checks for the lagrangian of Toshmatov et al.

test_r=1-1/LF*diff(L,r)*(diff(FF2,r))^(-1) test_th=1-1/LF*diff(L,th)*(diff(FF2,th))^(-1)
p1=plot(test_r.subs({th:pi/2,b:1/sqrt(2),a:1/2,Q:1}),(r,0,20),axes_labels=['$r$','$X$'])
#p1.save('test_r.pdf') show(p1)
Image in a Jupyter notebook
plot(test_r.subs({th:pi/2,b:1/sqrt(2),a:1/2,Q:1}),(r,0,1),axes_labels=['$r$','$X$'])
Image in a Jupyter notebook
p2=plot(test_th.subs({th:pi/2.0001,b:1/sqrt(2),a:1/2,Q:1}),(r,1,20),axes_labels=['$r$','$Y$'])
#p2.save('test_th.pdf') show(p2)
Image in a Jupyter notebook
plot(test_th.subs({th:pi/2.0001,b:1/sqrt(2),a:1/2,Q:1}),(r,0,1),axes_labels=['$r$','$Y$'])
Image in a Jupyter notebook

Consistency checks in the case of a Maxwell field L=F\mathcal{L}=\mathcal{F}

F2_M=F2.expr() L_M=F2_M LF_M=1
test_r_M=1-1/LF_M*diff(L_M,r)*(diff(F2_M,r))^(-1) test_th_M=1-1/LF_M*diff(L_M,th)*(diff(F2_M,th))^(-1)
plot(test_r_M.subs({th:pi/2.,b:1/sqrt(2),a:1/2,Q:1}),(r,0,20),axes_labels=['$r$','$X$'])
Image in a Jupyter notebook
plot(test_th_M.subs({th:pi/2.,b:1/sqrt(2),a:1/2,Q:1}),(r,1,20),axes_labels=['$r$','$Y$'])
Image in a Jupyter notebook