| Hosted by CoCalc | Download
Kernel: SageMath (stable)

Equatorial geodesics in Kerr spacetime

%display latex

The spacetime manifold and Boyer-Lindquist coordinates:

M = Manifold(4, 'M') X.<t,r,th,ph> = M.chart(r"t r:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi") X

The spacetime metric:

g = M.lorentzian_metric('g') var('m, a', domain='real') rho2 = r^2 + (a*cos(th))^2 Delta = r^2 -2*m*r + a^2 g[0,0] = -(1-2*m*r/rho2) g[0,3] = -2*a*m*r*sin(th)^2/rho2 g[1,1], g[2,2] = rho2/Delta, rho2 g[3,3] = (r^2+a^2+2*m*r*(a*sin(th))^2/rho2)*sin(th)^2 g.display()
u = M.vector_field('u') var('eps', latex_name=r'\varepsilon') var('ell', latex_name=r'\ell') u[0] = ((r^2 + a^2*(1+2*m/r))*eps - 2*a*m/r*ell)/Delta u[1] = sqrt(eps^2 - 1 + 2*m/r - (ell^2-a^2*(eps^2-1))/r^2 + 2*m/r^3*(ell-a*eps)^2) u[3] = (2*a*m/r*eps + (1-2*m/r)*ell)/Delta u.display_comp()
norm = g(u,u) norm.coord_function()

Value of g(u,u)g(u,u) in the equatorial plane (θ=π2\theta=\frac{\pi}{2}):

norm.coord_function()(t,r,pi/2,ph)
nabla = g.connection() print(nabla)
Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 4-dimensional differentiable manifold M

The 4-acceleration vector a=uua = \nabla_{u}\, u:

Du = nabla(u) a = u.contract(0, Du, 1) a.set_name('a') a.display_comp()

Values of the 4-acceleration in the equatorial plane (θ=π2\theta=\frac{\pi}{2}):

a[0](t,r,pi/2,ph)
a[1](t,r,pi/2,ph)
a[2](t,r,pi/2,ph)
a[3](t,r,pi/2,ph)

The (non-zero and non-redundant) Christoffel symbols in Boyer-Lindquist coordinates:

g.christoffel_symbols_display()