CoCalc Public Filesxandbox / Test-CoCalc / first.texOpen with one click!
Author: Youngjun Choi
Views : 8
Compute Environment: Ubuntu 20.04 (Default)
1
\documentclass{ximera}
2
3
\title{This is a TEST by Prof. Choi!}
4
\author{Youngjun Choi, Ph.D.}
5
6
\begin{document}
7
\begin{abstract}
8
This is a place to get started.
9
\end{abstract}
10
\maketitle
11
March 30, 2021\\[0.1in]
12
Here's a sample question. I can math like $2x^3 = 10$.
13
14
\begin{problem}
15
What do you think the answer is?
16
17
\begin{multipleChoice}
18
\choice{Incorrect}
19
\choice{Not this one!}
20
\choice[correct]{Click here?}
21
\choice{Not me!}
22
\end{multipleChoice}
23
\end{problem}
24
25
\begin{problem}
26
\begin{multipleChoice}
27
\choice[correct]{YES!}
28
\choice{No, no no.}
29
\end{multipleChoice}
30
\end{problem}
31
32
\begin{problem}
33
You can test that $x + x = \answer{2x}$
34
or that $x \cdot x = \answer{x^2}$.
35
36
I can do calculations like
37
\[
38
\sqrt{\answer{4}} = 2
39
\]
40
and
41
\[
42
\frac{\answer{1}}{2} = 0.5
43
\]
44
\end{problem}
45
46
\begin{problem}
47
Set up the definite integral
48
\[
49
\int_{\answer{0}}^{\answer{1}} f(x) \, dx
50
\]
51
to evaluate from $0$ to $1$.
52
53
\begin{question}
54
What if $f(x) = \sin x$? Then,
55
\[
56
\int_0^1 \sin x \, dx = \answer{-\cos(1) + \cos(0)}.
57
\]
58
59
\begin{hint}
60
Recall $\int \sin x \, dx = -\cos x + C$.
61
\end{hint}
62
\end{question}
63
\end{problem}
64
65
\begin{problem}
66
The tolerance 17 means $3421 \approx \answer[tolerance=17]{3421}$
67
\end{problem}
68
69
\end{document}
70