1\documentclass{ximera}
2
3\title{This is a TEST by Prof. Choi!}
4\author{Youngjun Choi, Ph.D.}
5
6\begin{document}
7\begin{abstract}
8  This is a place to get started.
9\end{abstract}
10\maketitle
11March 30, 2021\$0.1in] 12Here's a sample question. I can math like 2x^3 = 10. 13 14\begin{problem} 15 What do you think the answer is? 16 17 \begin{multipleChoice} 18 \choice{Incorrect} 19 \choice{Not this one!} 20 \choice[correct]{Click here?} 21 \choice{Not me!} 22 \end{multipleChoice} 23\end{problem} 24 25\begin{problem} 26 \begin{multipleChoice} 27 \choice[correct]{YES!} 28 \choice{No, no no.} 29 \end{multipleChoice} 30\end{problem} 31 32\begin{problem} 33 You can test that x + x = \answer{2x} 34 or that x \cdot x = \answer{x^2}. 35 36 I can do calculations like 37 \[ 38 \sqrt{\answer{4}} = 2 39$
40  and
41  $42 \frac{\answer{1}}{2} = 0.5 43$
44\end{problem}
45
46\begin{problem}
47  Set up the definite integral
48    $49 \int_{\answer{0}}^{\answer{1}} f(x) \, dx 50$
51  to evaluate from $0$ to $1$.
52
53  \begin{question}
54    What if $f(x) = \sin x$?  Then,
55    $56 \int_0^1 \sin x \, dx = \answer{-\cos(1) + \cos(0)}. 57$
58
59    \begin{hint}
60      Recall $\int \sin x \, dx = -\cos x + C$.
61    \end{hint}
62  \end{question}
63\end{problem}
64
65\begin{problem}
66   The tolerance 17 means $3421 \approx \answer[tolerance=17]{3421}$
67\end{problem}
68
69\end{document}
70