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Introduction: Restricted Sumsets

Suppose that A = {a1, a2, . . . , am} is a subset of an abelian group
G , with m ∈ N. Let h be a non-negative integer.

We will write ĥ A for the restricted h-fold sumset of A, which
consists of sums of exactly h distinct terms of A:

ĥ A =
{ m∑

i=1
λiai

∣∣∣∣ λ1, . . . , λm ∈ {0, 1},
m∑

i=1
λi = h

}
.

Example 1
Let A = {1, 2, 3} ⊆ Z6.

Then,

2̂ A = {1 + 2, 1 + 3, 2 + 3} = {3, 4, 5}.
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We will write ĥ A for the restricted h-fold sumset of A, which
consists of sums of exactly h distinct terms of A:
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Introduction: Weak (k , l)-sum-free sets

For positive integers k > l , a subset A of a given finite abelian
group G is weakly (k, l)-sum-free if

k Â ∩ l Â = ∅.

Example 2
A = {1, 2, 3} is weakly (3, 2)-sum-free in Z6:

2̂ A = {1 + 2, 1 + 3, 2 + 3} = {3, 4, 5} and
3̂ A = {1 + 2 + 3} = {6} = {0}, so,

3̂ A ∩ 2̂ A = ∅.
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Introduction: µ̂ (G , {k , l})

We denote the maximum size of a weakly (k, l)-sum-free subset of
G as µ̂ (G , {k, l}). That is,

µ̂ (G , {k, l}) = max{|A| | A ⊆ G , k Â ∩ l Â = ∅}.

Example 3
Find µ̂ (Z4, {3, 1}).

Z4 = {0, 1, 2, 3}.
|A| A ⊆ Z4 1̂ A 3̂ A 3̂ A ∩ 1̂ A
4 {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} 6= ∅
3 {0, 1, 2} {0, 1, 2} {3} ∅

µ̂ (Z4, {3, 1}) = 3.
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Example 4

Find µ̂ (Z2
2, {2, 1}).

Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)} Notationally= {00, 01, 10, 11}.

|A| A ⊆ Z2
2 2̂ A 1̂ A 2̂ A ∩ 1̂ A

4 {00, 01, 10, 11} {01, 10, 11} {00, 01, 10, 11} {01, 10, 11} 6= ∅
3 {00, 01, 10} {01, 10, 11} {00, 01, 10} {01, 10} 6= ∅
3 {00, 01, 11} {01, 11, 10} {00, 01, 11} {01, 11} 6= ∅
3 {00, 10, 11} {10, 11, 01} {00, 10, 11} {10, 11} 6= ∅
3 {01, 10, 11} {11, 10, 01} {01, 10, 11} {11, 10, 01} 6= ∅
2 {01, 10} {11} {01, 10} ∅

µ̂ (Z2
2, {2, 1}) = 2.
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Example 4

Find µ̂ (Z2
2, {2, 1}).

Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)} Notationally= {00, 01, 10, 11}.

|A| A ⊆ Z2
2 2̂ A 1̂ A 2̂ A ∩ 1̂ A
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3 {00, 01, 11} {01, 11, 10} {00, 01, 11} {01, 11} 6= ∅
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2 {01, 10} {11} {01, 10} ∅
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A Note About Non-restricted Sumsets

Write hA for the (ordinary) h-fold sumset of A, which consists of
sums of exactly h (not necessarily distinct) terms of A:

hA =
{ m∑

i=1
λiai

∣∣∣∣ λ1, . . . , λm ∈ N0,
m∑

i=1
λi = h

}
.

For positive integers k > l , a subset A of a given finite abelian
group G is (k, l)-sum-free if and only if

kA ∩ lA = ∅.

We denote the maximum size of a (k, l)-sum-free subset of G as
µ(G , {k, l}).That is,

µ(G , {k, l}) = max{|A| | A ⊆ G , kA ∩ lA = ∅}.
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Established Information

Theorem G.18 (Green and Ruzsa)
Let κ be the exponent of G . Then

µ(G , {2, 1}) = µ(Zκ, {2, 1}) ·
n
κ

= v1(κ, 3) · n
κ
.

Theorem G.67 (Zannier)
For all positive integers we have

µ̂ (Zn, {2, 1}) =


(
1 + 1

p

)
n
3 if n has prime divisors cong. to 2(3),

and p is the smallest such divisor;⌊n
3
⌋

+ 1 otherwise.
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A New Conjecture

Conjecture
For all positive integers n1 ≤ n2 (n = n1n2),

µ̂ (Zn1×Zn2 , {2, 1}) =
{
µ n has prime divisors cong. to 2(3),
µ+ 1 otherwise.
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Examining the Conjecture

Note that when gcd(n1, n2) = 1, Zn1 × Zn2
∼= Zn, so by Theorem

G.67, and Theorem G.18,

µ̂ (Zn, {2, 1}) =


(
1 + 1

p

)
n
3 n has prime divisors cong. to 2(3),

and p is the smallest such divisor;⌊n
3
⌋

+ 1 otherwise

=
{

v1(n, 3) · n
n n has a prime divisor cong. to 2(3);

v1(n, 3) · n
n + 1 otherwise.

G.18=
{
µ n has a prime divisor cong. to 2(3);
µ+ 1 otherwise.
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Examining the Conjecture

When gcd(n1, n2) > 1 and n ≡ 0 mod 2, clearly the smallest prime
divisor of n congruent to 2 mod 3 is 2, so by Proposition G.18,

µ̂ (Zn1 × Zn2 , {2, 1}) = n
2 =

(
1 + 1

2

) n
3

= v1(n, 3) · n
n

G.18= µ(Zn1 × Zn2 , {2, 1}).

Now we should consider when gcd(n1, n2) > 1 and n ≡ 1 mod 2.
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New Theorems

Theorem 13
For any positive integer w ≡ 1 mod 2,

µ̂ (Z3 × Z3w , {2, 1}) ≥ 3w + 1.

Theorem 14
For all positive κ ≡ 1 mod 6,

µ̂ (Z2
κ, {2, 1}) ≥

κ− 1
3 · κ+ 1.
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Proving Theorem 13

Theorem 13
For any positive integer w ≡ 1 mod 2,

µ̂ (Z3 × Z3w , {2, 1}) ≥ 3w + 1.

Here, we will show that

µ̂ (Z3 × Z3·7, {2, 1}) ≥ 3 · 7 + 1 = 22

by constructing a weakly (2, 1)-sum-free set in Z3 × Z21.
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Sketch of Proof of Theorem 13

Consider the sets

A0 = {0} × {−7,−5,−3,−1, 1, 3, 5, 7},
A1 = {1} × {0, 2, 4, 6, 8, 10, 12} , and
A2 = {2} × {−12,−10,−8,−6,−4,−2, 0} .

A0 = {0} × {14, 16, 18, 20, 1, 3, 5, 7},
A1 = {1} × {0, 2, 4, 6, 8, 10, 12} , and
A2 = {2} × {9, 11, 13, 15, 17, 19, 0} .

Let A = A0 ∪ A1 ∪ A2.

|A| = |A0|+ |A1|+ |A2| = 8 + 7 + 7 = 22.

Now we must show that 2̂ A ∩ 1̂ A = ∅.
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(A0 + A0) ∩ A0 = ∅

A0 = {0} × {14, 16, 18, 20, 1, 3, 5, 7}.

2̂ A0 = {0} × {9, 11, 13, 15, 17, 19, 0, 2, 4, 6, 8, 10, 12}.
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(A0 + A0) ∩ A0 = ∅
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A Visual Representation

A0 = {0} × {14, 16, 18, 20, 1, 3, 5, 7}
2̂ A0 = {0} × {9, 11, 13, 15, 17, 19, 0, 2, 4, 6, 8, 10, 12}
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A Note

By Theorem G.18, if w has no prime divisor congruent to 2 mod 3,

µ̂ (Z3 × Z3w , {2, 1}) ≥ 3w + 1

=
⌊3w

3

⌋
· 3 + 1

= v1(3w , 3) · 9w
3w + 1

G.18= µ(Z3 × Z3w , {2, 1}) + 1.
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Future work

Establish a new upper bound that would be useful for different
k and l .
Develop the technique of using arithmetic sequences to
construct weak (2, 1)-sum-free sets for other cases of
n1n2 ≡ 1 mod 2 for µ̂ (Zn1 × Zn2 , {k, l}). Specifically,
µ̂ (Z7 ×Z21, {2, 1}) is of interest. (The group Z2

7 has 98 weak
(2, 1)-sum-free subsets with arithmetic sequences).
Use the same technique to find new constructions of weak
(k, l)-sum free subsets of cyclic groups for k > 2, by treating
the cyclic group as noncyclic.
Constructing tables of discrepancies between µ and µ̂ .
Construct a table of the maximum of all of the lower bounds
that are established for µ̂ and compare with the computer
generated table on page 300.
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Thank you!

I would like to thank Professor Bajnok for the continued guidance
and encouragement, as well as the opportunity and resources to
conduct my own research. I would also like to thank Bailey Heath
for his help in finding the first weak (2, 1)-sum-free subset of Z2

7
and for his kind and accessible support, whenever it was needed.
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