The Maximum size of weak (k, l)-sum-free sets

Peter Francis
Gettysburg College

May 11, 2019

Introduction: Restricted Sumsets

Introduction: Restricted Sumsets

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

Introduction: Restricted Sumsets

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h^{\wedge} A$ for the restricted h-fold sumset of A, which consists of sums of exactly h distinct terms of A :

Introduction: Restricted Sumsets

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h^{\wedge} A$ for the restricted h-fold sumset of A, which consists of sums of exactly h distinct terms of A :

$$
h^{\wedge} A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in\{0,1\}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

Introduction: Restricted Sumsets

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h^{\wedge} A$ for the restricted h-fold sumset of A, which consists of sums of exactly h distinct terms of A :

$$
h^{\wedge} A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in\{0,1\}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

Example 1

Introduction: Restricted Sumsets

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h^{\wedge} A$ for the restricted h-fold sumset of A, which consists of sums of exactly h distinct terms of A :

$$
h^{\wedge} A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in\{0,1\}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

Example 1

Let $A=\{1,2,3\} \subseteq \mathbb{Z}_{6}$.

Introduction: Restricted Sumsets

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h^{\wedge} A$ for the restricted h-fold sumset of A, which consists of sums of exactly h distinct terms of A :

$$
h^{\wedge} A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in\{0,1\}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

Example 1

Let $A=\{1,2,3\} \subseteq \mathbb{Z}_{6}$. Then,

$$
2^{\wedge} A=\{1+2, \quad 1+3, \quad 2+3\}
$$

Introduction: Restricted Sumsets

Suppose that $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write $h^{\wedge} A$ for the restricted h-fold sumset of A, which consists of sums of exactly h distinct terms of A :

$$
h^{\wedge} A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in\{0,1\}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

Example 1

Let $A=\{1,2,3\} \subseteq \mathbb{Z}_{6}$. Then,

$$
2^{\wedge} A=\{1+2, \quad 1+3, \quad 2+3\}=\{3,4,5\} .
$$

Introduction: Weak (k, l)-sum-free sets

Introduction: Weak $(k, /)$-sum-free sets

For positive integers $k>l$, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if

$$
k^{\wedge} A \cap ノ A=\emptyset .
$$

Introduction: Weak (k, l)-sum-free sets

For positive integers $k>l$, a subset A of a given finite abelian group G is weakly (k, I)-sum-free if

$$
k^{\wedge} A \cap ノ A=\emptyset .
$$

Example 2

Introduction: Weak (k, l)-sum-free sets

For positive integers $k>l$, a subset A of a given finite abelian group G is weakly (k, I)-sum-free if

$$
k^{\wedge} A \cap \wedge A=\emptyset .
$$

Example 2
 $A=\{1,2,3\}$ is weakly $(3,2)$-sum-free in \mathbb{Z}_{6} :

Introduction: Weak (k, l)-sum-free sets

For positive integers $k>l$, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if

$$
k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset .
$$

Example 2

$A=\{1,2,3\}$ is weakly $(3,2)$-sum-free in \mathbb{Z}_{6} :

$$
\begin{aligned}
& 2^{\wedge} A=\{1+2, \quad 1+3, \quad 2+3\}=\{3,4,5\} \text { and } \\
& 3^{\wedge} A=\{1+2+3\}=\{6\}=\{0\}, \text { so, }
\end{aligned}
$$

$$
3^{\wedge} A \cap 2^{\wedge} A=\emptyset .
$$

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, l\})$.

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, l\})$. That is,

$$
\mu^{\wedge}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap / \wedge A=\emptyset\right\} .
$$

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, l\})$. That is,

$$
\hat{\mu^{\wedge}}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset\right\} .
$$

Example 3

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, l\})$. That is,

$$
\mu^{\wedge}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset\right\} .
$$

Example 3

Find $\mu^{\wedge}\left(\mathbb{Z}_{4},\{3,1\}\right)$.

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, l\})$. That is,

$$
\mu^{\wedge}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset\right\} .
$$

Example 3

Find $\mu^{\wedge}\left(\mathbb{Z}_{4},\{3,1\}\right)$.
$\mathbb{Z}_{4}=\{0,1,2,3\}$.

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, I\})$. That is,

$$
\mu^{\wedge}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset\right\}
$$

Example 3

Find $\mu^{\wedge}\left(\mathbb{Z}_{4},\{3,1\}\right)$.
$\mathbb{Z}_{4}=\{0,1,2,3\}$.

$\|A\|$	$A \subseteq \mathbb{Z}_{4}$	$1^{\wedge} A$	$3^{\wedge} A$	$3^{\wedge} A \cap 1^{\wedge} A$

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, I\})$. That is,

$$
\mu^{\wedge}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset\right\}
$$

Example 3

Find $\mu^{\wedge}\left(\mathbb{Z}_{4},\{3,1\}\right)$.
$\mathbb{Z}_{4}=\{0,1,2,3\}$.

$\|A\|$	$A \subseteq \mathbb{Z}_{4}$	$1^{\wedge} A$	$3^{\wedge} A$	$3^{\wedge} A \cap 1^{\wedge} A$
4	$\{0,1,2,3\}$	$\{0,1,2,3\}$	$\{0,1,2,3\}$	$\{0,1,2,3\} \neq \emptyset$

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, I\})$. That is,

$$
\mu^{\wedge}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset\right\}
$$

Example 3

Find $\mu^{\wedge}\left(\mathbb{Z}_{4},\{3,1\}\right)$.

$$
\mathbb{Z}_{4}=\{0,1,2,3\}
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{4}$	$1^{\wedge} A$	$3^{\wedge} A$	$3^{\wedge} A \cap 1^{\wedge} A$
4	$\{0,1,2,3\}$	$\{0,1,2,3\}$	$\{0,1,2,3\}$	$\{0,1,2,3\} \neq \emptyset$
3	$\{0,1,2\}$	$\{0,1,2\}$	$\{3\}$	\emptyset

Introduction: $\mu^{\wedge}(G,\{k, /\})$

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{\wedge}(G,\{k, I\})$. That is,

$$
\mu^{\wedge}(G,\{k, I\})=\max \left\{|A| \mid A \subseteq G, k^{\wedge} A \cap \Gamma^{\wedge} A=\emptyset\right\} .
$$

Example 3

Find $\mu^{\wedge}\left(\mathbb{Z}_{4},\{3,1\}\right)$.

$$
\mathbb{Z}_{4}=\{0,1,2,3\}
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{4}$	$1^{\wedge} A$	$3^{\wedge} A$	$3^{\wedge} A \cap 1^{\wedge} A$
4	$\{0,1,2,3\}$	$\{0,1,2,3\}$	$\{0,1,2,3\}$	$\{0,1,2,3\} \neq \emptyset$
3	$\{0,1,2\}$	$\{0,1,2\}$	$\{3\}$	\emptyset

$$
\mu^{\wedge}\left(\mathbb{Z}_{4},\{3,1\}\right)=3 .
$$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\} .
$$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\} .
$$

$\|A\| \mid$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\} .
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$
4	$\{00,01,10,11\}$	$\{01,10,11\}$	$\{00,01,10,11\}$	$\{01,10,11\} \neq \emptyset$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\}
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$
4	$\{00,01,10,11\}$	$\{01,10,11\}$	$\{00,01,10,11\}$	$\{01,10,11\} \neq \emptyset$
3	$\{00,01,10\}$	$\{01,10,11\}$	$\{00,01,10\}$	$\{01,10\} \neq \emptyset$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\}
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$
4	$\{00,01,10,11\}$	$\{01,10,11\}$	$\{00,01,10,11\}$	$\{01,10,11\} \neq \emptyset$
3	$\{00,01,10\}$	$\{01,10,11\}$	$\{00,01,10\}$	$\{01,10\} \neq \emptyset$
3	$\{00,01,11\}$	$\{01,11,10\}$	$\{00,01,11\}$	$\{01,11\} \neq \emptyset$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\}
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$
4	$\{00,01,10,11\}$	$\{01,10,11\}$	$\{00,01,10,11\}$	$\{01,10,11\} \neq \emptyset$
3	$\{00,01,10\}$	$\{01,10,11\}$	$\{00,01,10\}$	$\{01,10\} \neq \emptyset$
3	$\{00,01,11\}$	$\{01,11,10\}$	$\{00,01,11\}$	$\{01,11\} \neq \emptyset$
3	$\{00,10,11\}$	$\{10,11,01\}$	$\{00,10,11\}$	$\{10,11\} \neq \emptyset$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\} .
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$
4	$\{00,01,10,11\}$	$\{01,10,11\}$	$\{00,01,10,11\}$	$\{01,10,11\} \neq \emptyset$
3	$\{00,01,10\}$	$\{01,10,11\}$	$\{00,01,10\}$	$\{01,10\} \neq \emptyset$
3	$\{00,01,11\}$	$\{01,11,10\}$	$\{00,01,11\}$	$\{01,11\} \neq \emptyset$
3	$\{00,10,11\}$	$\{10,11,01\}$	$\{00,10,11\}$	$\{10,11\} \neq \emptyset$
3	$\{01,10,11\}$	$\{11,10,01\}$	$\{01,10,11\}$	$\{11,10,01\} \neq \emptyset$

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\} .
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$
4	$\{00,01,10,11\}$	$\{01,10,11\}$	$\{00,01,10,11\}$	$\{01,10,11\} \neq \emptyset$
3	$\{00,01,10\}$	$\{01,10,11\}$	$\{00,01,10\}$	$\{01,10\} \neq \emptyset$
3	$\{00,01,11\}$	$\{01,11,10\}$	$\{00,01,11\}$	$\{01,11\} \neq \emptyset$
3	$\{00,10,11\}$	$\{10,11,01\}$	$\{00,10,11\}$	$\{10,11\} \neq \emptyset$
3	$\{01,10,11\}$	$\{11,10,01\}$	$\{01,10,11\}$	$\{11,10,01\} \neq \emptyset$
2	$\{01,10\}$	$\{11\}$	$\{01,10\}$	\emptyset

Example 4

Find $\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)$.

$$
\mathbb{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\} \stackrel{\text { Notationally }}{=}\{00,01,10,11\} .
$$

$\|A\|$	$A \subseteq \mathbb{Z}_{2}^{2}$	$2^{\wedge} A$	$1^{\wedge} A$	$2^{\wedge} A \cap 1^{\wedge} A$
4	$\{00,01,10,11\}$	$\{01,10,11\}$	$\{00,01,10,11\}$	$\{01,10,11\} \neq \emptyset$
3	$\{00,01,10\}$	$\{01,10,11\}$	$\{00,01,10\}$	$\{01,10\} \neq \emptyset$
3	$\{00,01,11\}$	$\{01,11,10\}$	$\{00,01,11\}$	$\{01,11\} \neq \emptyset$
3	$\{00,10,11\}$	$\{10,11,01\}$	$\{00,10,11\}$	$\{10,11\} \neq \emptyset$
3	$\{01,10,11\}$	$\{11,10,01\}$	$\{01,10,11\}$	$\{11,10,01\} \neq \emptyset$
2	$\{01,10\}$	$\{11\}$	$\{01,10\}$	\emptyset

$$
\mu^{\wedge}\left(\mathbb{Z}_{2}^{2},\{2,1\}\right)=2 .
$$

A Note About Non-restricted Sumsets

Write $h A$ for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A :

$$
h A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}_{0}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

A Note About Non-restricted Sumsets

Write $h A$ for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A :

$$
h A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}_{0}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

For positive integers $k>l$, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

$$
k A \cap I A=\emptyset
$$

A Note About Non-restricted Sumsets

Write $h A$ for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A :

$$
h A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}_{0}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

For positive integers $k>l$, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

$$
k A \cap I A=\emptyset
$$

We denote the maximum size of a (k, l)-sum-free subset of G as $\mu(G,\{k, l\})$.

A Note About Non-restricted Sumsets

Write $h A$ for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A :

$$
h A=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{N}_{0}, \sum_{i=1}^{m} \lambda_{i}=h\right\} .
$$

For positive integers $k>l$, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

$$
k A \cap I A=\emptyset
$$

We denote the maximum size of a (k, l)-sum-free subset of G as $\mu(G,\{k, l\})$. That is,

$$
\mu(G,\{k, I\})=\max \{|A| \mid A \subseteq G, k A \cap I A=\emptyset\}
$$

Established Information

Established Information

Theorem G. 18 (Green and Ruzsa)
Let κ be the exponent of G. Then

$$
\mu(G,\{2,1\})=\mu\left(\mathbb{Z}_{\kappa},\{2,1\}\right) \cdot \frac{n}{\kappa}=v_{1}(\kappa, 3) \cdot \frac{n}{\kappa} .
$$

Established Information

Theorem G. 18 (Green and Ruzsa)

Let κ be the exponent of G. Then

$$
\mu(G,\{2,1\})=\mu\left(\mathbb{Z}_{\kappa},\{2,1\}\right) \cdot \frac{n}{\kappa}=v_{1}(\kappa, 3) \cdot \frac{n}{\kappa} .
$$

Theorem G. 67 (Zannier)

For all positive integers we have
$\mu^{\wedge}\left(\mathbb{Z}_{n},\{2,1\}\right)= \begin{cases}\left(1+\frac{1}{p}\right) \frac{n}{3} & \text { if } n \text { has prime divisors cong. to 2(3), } \\ & \text { and } p \text { is the smallest such divisor; } \\ \left\lfloor\frac{n}{3}\right\rfloor+1 & \text { otherwise. }\end{cases}$

A New Conjecture

A New Conjecture

Conjecture

For all positive integers $n_{1} \leq n_{2}\left(n=n_{1} n_{2}\right)$,
$\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right)= \begin{cases}\mu & n \text { has prime divisors cong. to 2(3), } \\ \mu+1 & \text { otherwise. }\end{cases}$

Examining the Conjecture

Note that when $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1, \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \cong \mathbb{Z}_{n}$, so by Theorem G.67, and Theorem G.18,

$$
\begin{aligned}
\mu^{\wedge}\left(\mathbb{Z}_{n},\{2,1\}\right) & = \begin{cases}\left(1+\frac{1}{p}\right) \frac{n}{3} & n \text { has prime divisors cong. to } 2(3) \\
\left\lfloor\frac{n}{3}\right\rfloor+1 & \text { and } p \text { is the smallest such divisor; }\end{cases} \\
& = \begin{cases}v_{1}(n, 3) \cdot \frac{n}{n} & n \text { has a prime divisor cong. to } 2(3) ; \\
v_{1}(n, 3) \cdot \frac{n}{n}+1 & \text { otherwise. }\end{cases} \\
& \stackrel{G .18}{=} \begin{cases}\mu & n \text { has a prime divisor cong. to } 2(3) ; \\
\mu+1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Examining the Conjecture

When $\operatorname{gcd}\left(n_{1}, n_{2}\right)>1$ and $n \equiv 0 \bmod 2$, clearly the smallest prime divisor of n congruent to $2 \bmod 3$ is 2 , so by Proposition G.18,

$$
\begin{aligned}
\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right) & =\frac{n}{2}=\left(1+\frac{1}{2}\right) \frac{n}{3} \\
& =v_{1}(n, 3) \cdot \frac{n}{n} \\
& \stackrel{\text { G.18 }}{=} \mu\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{2,1\}\right)
\end{aligned}
$$

Now we should consider when $\operatorname{gcd}\left(n_{1}, n_{2}\right)>1$ and $n \equiv 1 \bmod 2$.

Theorem 13

For any positive integer $w \equiv 1 \bmod 2$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right) \geq 3 w+1
$$

Theorem 13

For any positive integer $w \equiv 1 \bmod 2$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right) \geq 3 w+1
$$

Theorem 14
For all positive $\kappa \equiv 1 \bmod 6$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{\kappa}^{2},\{2,1\}\right) \geq \frac{\kappa-1}{3} \cdot \kappa+1
$$

Proving Theorem 13

Theorem 13

For any positive integer $w \equiv 1 \bmod 2$,

$$
\mu^{\wedge}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right) \geq 3 w+1
$$

Here, we will show that

$$
\mu^{\wedge}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 \cdot 7},\{2,1\}\right) \geq 3 \cdot 7+1=22
$$

by constructing a weakly $(2,1)$-sum-free set in $\mathbb{Z}_{3} \times \mathbb{Z}_{21}$.

Sketch of Proof of Theorem 13

Sketch of Proof of Theorem 13

Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{-7,-5,-3,-1,1,3,5,7\} \\
& A_{1}=\{1\} \times\{0,2,4,6,8,10,12\}, \text { and } \\
& A_{2}=\{2\} \times\{-12,-10,-8,-6,-4,-2,0\} .
\end{aligned}
$$

Sketch of Proof of Theorem 13

Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}, \\
& A_{1}=\{1\} \times\{0,2,4,6,8,10,12\}, \text { and } \\
& A_{2}=\{2\} \times\{9,11,13,15,17,19,0\} .
\end{aligned}
$$

Sketch of Proof of Theorem 13

Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}, \\
& A_{1}=\{1\} \times\{0,2,4,6,8,10,12\}, \text { and } \\
& A_{2}=\{2\} \times\{9,11,13,15,17,19,0\} .
\end{aligned}
$$

Let $A=A_{0} \cup A_{1} \cup A_{2}$.

Sketch of Proof of Theorem 13

Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}, \\
& A_{1}=\{1\} \times\{0,2,4,6,8,10,12\}, \text { and } \\
& A_{2}=\{2\} \times\{9,11,13,15,17,19,0\} .
\end{aligned}
$$

Let $A=A_{0} \cup A_{1} \cup A_{2}$.

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|=8+7+7=22 .
$$

Sketch of Proof of Theorem 13

Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}, \\
& A_{1}=\{1\} \times\{0,2,4,6,8,10,12\}, \text { and } \\
& A_{2}=\{2\} \times\{9,11,13,15,17,19,0\}
\end{aligned}
$$

Let $A=A_{0} \cup A_{1} \cup A_{2}$.

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|=8+7+7=22 .
$$

Now we must show that $2^{\wedge} A \cap 1^{\wedge} A=\emptyset$.

Sketch of Proof of Theorem 13

Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}, \\
& A_{1}=\{1\} \times\{0,2,4,6,8,10,12\}, \text { and } \\
& A_{2}=\{2\} \times\{9,11,13,15,17,19,0\} .
\end{aligned}
$$

Let $A=A_{0} \cup A_{1} \cup A_{2}$.

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|=8+7+7=22 .
$$

Now we must show that $2^{\wedge} A \cap 1^{\wedge} A=\emptyset$.
$\left(A_{0}+A_{0}\right) \cap A_{0}=\emptyset$
$\left(A_{0}+A_{1}\right) \cap A_{1}=\emptyset$
$\left(A_{0}+A_{2}\right) \cap A_{2}=\emptyset$
$\left(A_{1}+A_{2}\right) \cap A_{0}=\emptyset$
$\left(A_{2}+A_{2}\right) \cap A_{1}=\emptyset$
$\left(A_{1}+A_{1}\right) \cap A_{2}=\emptyset$

Sketch of Proof of Theorem 13

Consider the sets

$$
\begin{aligned}
& A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}, \\
& A_{1}=\{1\} \times\{0,2,4,6,8,10,12\}, \text { and } \\
& A_{2}=\{2\} \times\{9,11,13,15,17,19,0\} .
\end{aligned}
$$

Let $A=A_{0} \cup A_{1} \cup A_{2}$.

$$
|A|=\left|A_{0}\right|+\left|A_{1}\right|+\left|A_{2}\right|=8+7+7=22 .
$$

Now we must show that $2^{\wedge} A \cap 1^{\wedge} A=\emptyset$.
$\left(A_{0}+A_{0}\right) \cap A_{0}=\emptyset \quad\left(A_{0}+A_{1}\right) \cap A_{1}=\emptyset \quad\left(A_{0}+A_{2}\right) \cap A_{2}=\emptyset$
$\left(A_{1}+A_{2}\right) \cap A_{0}=\emptyset \quad\left(A_{2}+A_{2}\right) \cap A_{1}=\emptyset \quad\left(A_{1}+A_{1}\right) \cap A_{2}=\emptyset$

$\left(A_{0}+A_{0}\right) \cap A_{0}=\emptyset$

$$
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}
$$

$$
\begin{gathered}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} . \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\} .
\end{gathered}
$$

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

A Visual Representation

$$
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Visual Representation

$$
\begin{aligned}
A_{0}=\{0\} \times\{14,16,18,20,1,3,5,7\} \\
2^{\wedge} A_{0}=\{0\} \times\{9,11,13,15,17,19,0,2,4,6,8,10,12\}
\end{aligned}
$$

A Note

A Note

By Theorem G.18, if w has no prime divisor congruent to $2 \bmod 3$,

$$
\begin{aligned}
\mu^{\wedge}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right) & \geq 3 w+1 \\
& =\left\lfloor\frac{3 w}{3}\right\rfloor \cdot 3+1 \\
& =v_{1}(3 w, 3) \cdot \frac{9 w}{3 w}+1 \\
& \stackrel{G .18}{=} \mu\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 w},\{2,1\}\right)+1 .
\end{aligned}
$$

Future work

- Establish a new upper bound that would be useful for different k and I.

Future work

- Establish a new upper bound that would be useful for different k and I.
- Develop the technique of using arithmetic sequences to construct weak $(2,1)$-sum-free sets for other cases of $n_{1} n_{2} \equiv 1 \bmod 2$ for $\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{k, /\}\right)$. Specifically, $\mu^{\wedge}\left(\mathbb{Z}_{7} \times \mathbb{Z}_{21},\{2,1\}\right)$ is of interest. (The group \mathbb{Z}_{7}^{2} has 98 weak (2,1)-sum-free subsets with arithmetic sequences).

Future work

- Establish a new upper bound that would be useful for different k and I.
- Develop the technique of using arithmetic sequences to construct weak $(2,1)$-sum-free sets for other cases of $n_{1} n_{2} \equiv 1 \bmod 2$ for $\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{k, /\}\right)$. Specifically, $\mu^{\wedge}\left(\mathbb{Z}_{7} \times \mathbb{Z}_{21},\{2,1\}\right)$ is of interest. (The group \mathbb{Z}_{7}^{2} has 98 weak $(2,1)$-sum-free subsets with arithmetic sequences).
- Use the same technique to find new constructions of weak (k, l)-sum free subsets of cyclic groups for $k>2$, by treating the cyclic group as noncyclic.

Future work

- Establish a new upper bound that would be useful for different k and I.
- Develop the technique of using arithmetic sequences to construct weak $(2,1)$-sum-free sets for other cases of $n_{1} n_{2} \equiv 1 \bmod 2$ for $\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{k, /\}\right)$. Specifically, $\mu^{\wedge}\left(\mathbb{Z}_{7} \times \mathbb{Z}_{21},\{2,1\}\right)$ is of interest. (The group \mathbb{Z}_{7}^{2} has 98 weak $(2,1)$-sum-free subsets with arithmetic sequences).
- Use the same technique to find new constructions of weak (k, l)-sum free subsets of cyclic groups for $k>2$, by treating the cyclic group as noncyclic.
- Constructing tables of discrepancies between μ and μ.

Future work

- Establish a new upper bound that would be useful for different k and I.
- Develop the technique of using arithmetic sequences to construct weak $(2,1)$-sum-free sets for other cases of $n_{1} n_{2} \equiv 1 \bmod 2$ for $\mu^{\wedge}\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}},\{k, /\}\right)$. Specifically, $\mu^{\wedge}\left(\mathbb{Z}_{7} \times \mathbb{Z}_{21},\{2,1\}\right)$ is of interest. (The group \mathbb{Z}_{7}^{2} has 98 weak $(2,1)$-sum-free subsets with arithmetic sequences).
- Use the same technique to find new constructions of weak (k, l)-sum free subsets of cyclic groups for $k>2$, by treating the cyclic group as noncyclic.
- Constructing tables of discrepancies between μ and μ.
- Construct a table of the maximum of all of the lower bounds that are established for μ^{\wedge} and compare with the computer generated table on page 300.

I would like to thank Professor Bajnok for the continued guidance and encouragement, as well as the opportunity and resources to conduct my own research. I would also like to thank Bailey Heath for his help in finding the first weak $(2,1)$-sum-free subset of \mathbb{Z}_{7}^{2} and for his kind and accessible support, whenever it was needed.

