The Maximum size of weak (k, l)-sum-free sets

Peter Francis

Gettysburg College

May 11, 2019

Peter Francis The Maximum size of weak (k, l)-sum-free sets 1/18

э.

Introduction: Restricted Sumsets

ヘロト ヘロト ヘビト ヘビト

∃ 990

Introduction: Restricted Sumsets

Suppose that $A = \{a_1, a_2, ..., a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write h^A for the <u>restricted</u> *h*-fold sumset of *A*, which consists of sums of exactly *h* <u>distinct</u> terms of *A*:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

We will write h^A for the <u>restricted</u> *h*-fold sumset of *A*, which consists of sums of exactly *h* <u>distinct</u> terms of *A*:

$$h^{\hat{}}A = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \{0, 1\}, \sum_{i=1}^{m} \lambda_{i} = h \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Introduction: Restricted Sumsets

Suppose that $A = \{a_1, a_2, ..., a_m\}$ is a subset of an abelian group G, with $m \in \mathbb{N}$. Let h be a non-negative integer.

We will write h^A for the <u>restricted</u> *h*-fold sumset of *A*, which consists of sums of exactly *h* <u>distinct</u> terms of *A*:

$$h^{\hat{}}A = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \{0, 1\}, \sum_{i=1}^{m} \lambda_{i} = h \right\}.$$

Example 1

イロト イポト イヨト イヨト

We will write h^A for the <u>restricted</u> *h*-fold sumset of *A*, which consists of sums of exactly *h* <u>distinct</u> terms of *A*:

$$h^{\hat{}}A = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \{0, 1\}, \sum_{i=1}^{m} \lambda_{i} = h \right\}.$$

Example 1

Let $A = \{1, 2, 3\} \subseteq \mathbb{Z}_6$.

We will write h^A for the <u>restricted</u> *h*-fold sumset of *A*, which consists of sums of exactly *h* <u>distinct</u> terms of *A*:

$$h^{\hat{}}A = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \{0, 1\}, \sum_{i=1}^{m} \lambda_{i} = h \right\}.$$

Example 1

Let $A = \{1, 2, 3\} \subseteq \mathbb{Z}_6$. Then,

$$2^{A} = \{1+2, 1+3, 2+3\}$$

We will write h^A for the <u>restricted</u> *h*-fold sumset of *A*, which consists of sums of exactly *h* <u>distinct</u> terms of *A*:

$$h^{\hat{}}A = \left\{ \sum_{i=1}^{m} \lambda_{i} a_{i} \mid \lambda_{1}, \ldots, \lambda_{m} \in \{0, 1\}, \sum_{i=1}^{m} \lambda_{i} = h \right\}.$$

Example 1

Let $A = \{1, 2, 3\} \subseteq \mathbb{Z}_6$. Then,

$$2^{A} = \{1+2, 1+3, 2+3\} = \{3, 4, 5\}.$$

ヘロト ヘロト ヘビト ヘビト

∃ 990

For positive integers k > l, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if

 $k^A \cap l^A = \emptyset.$

・ 戸 ト ・ ヨ ト ・ ヨ ト

For positive integers k > l, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if

 $k^A \cap l^A = \emptyset.$

For positive integers k > l, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if

 $k^A \cap l^A = \emptyset.$

Example 2

 $A = \{1, 2, 3\}$ is weakly (3, 2)-sum-free in \mathbb{Z}_6 :

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

э.

For positive integers k > l, a subset A of a given finite abelian group G is weakly (k, l)-sum-free if

 $k^A \cap l^A = \emptyset.$

Example 2

 $A = \{1, 2, 3\}$ is weakly (3, 2)-sum-free in \mathbb{Z}_6 :

$$2^{A} = \{1 + 2, 1 + 3, 2 + 3\} = \{3, 4, 5\}$$
 and
 $3^{A} = \{1 + 2 + 3\} = \{6\} = \{0\}$, so,
 $3^{A} \cap 2^{A} = \emptyset$.

イロト イヨト イヨト

э.

ヘロト ヘロト ヘビト ヘビト

∃ 990

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$.

ヘロト ヘ団 ト ヘヨト ヘヨト

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

Example 3

イロト イボト イヨト イヨト

э.

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

Example 3

Find $\mu^{(\mathbb{Z}_4, \{3, 1\})}$.

イロト イボト イヨト イヨト

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

Example 3

Find $\mu^{(\mathbb{Z}_4, \{3, 1\})}$.

 $\mathbb{Z}_4 = \{0, 1, 2, 3\}.$

イロト イボト イヨト イヨト

э.

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

< ロ > < 同 > < 三 > < 三 >

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

Example 3						
Find $\mu^{(\mathbb{Z}_{4}, \{3, 1\})}$.						
$\mathbb{Z}_4 =$	$\{0, 1, 2, 3\}.$					
A	$A\subseteq \mathbb{Z}_4$	1^A	3^A	$3^{A} \cap 1^{A}$		
4	$\{0, 1, 2, 3\}$	$\{0, 1, 2, 3\}$	$\{0, 1, 2, 3\}$	$\{0,1,2,3\}\neq \emptyset$		

向下 イヨト イヨト

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

Example 3						
Find $\mu^{(\mathbb{Z}_{4}, \{3, 1\})}$.						
$\mathbb{Z}_4 =$	$\{0, 1, 2, 3\}.$					
A	$A\subseteq \mathbb{Z}_4$	1^A	3^A	$3^{A} \cap 1^{A}$		
4	$\{0, 1, 2, 3\}$	$\{0, 1, 2, 3\}$	$\{0, 1, 2, 3\}$	$\{0,1,2,3\}\neq \emptyset$	- 1	
3	$\{0,1,2\}$	$\{0,1,2\}$	{3}	Ø	- 1	

э.

We denote the maximum size of a weakly (k, l)-sum-free subset of G as $\mu^{(G, \{k, l\})}$. That is,

$$\mu^{(G, \{k, l\})} = \max\{|A| \mid A \subseteq G, k^{A} \cap l^{A} = \emptyset\}.$$

Example 3						
Find $\mu^{(\mathbb{Z}_{4}, \{3, 1\})}$.						
$\mathbb{Z}_4 =$	$\{0, 1, 2, 3\}.$					
A	$A\subseteq \mathbb{Z}_4$	1^A	3^A	$3^{A} \cap 1^{A}$		
4	$\{0, 1, 2, 3\}$	$\{0, 1, 2, 3\}$	$\{0, 1, 2, 3\}$	$\{0,1,2,3\} \neq \emptyset$		
3	$\{0, 1, 2\}$	$\{0, 1, 2\}$	{3}	Ø		
$\mu^{(\mathbb{Z}_{4}, \{3, 1\})} = 3.$						

★ Ξ →

Example 4

Find $\mu^{(\mathbb{Z}_{2}^{2}, \{2, 1\})}$.

ヘロト ヘヨト ヘヨト ヘヨト

æ .

 $\mathbb{Z}_2^2 = \{(0,0),(0,1),(1,0),(1,1)\} \overset{\text{Notationally}}{=} \{00,01,10,11\}.$

 $\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$ $|A| \mid A \subseteq \mathbb{Z}_2^2 \mid 2^{\hat{A}} \mid 1^{\hat{A}} \mid 2^{\hat{A}} \cap 1^{\hat{A}}$

イロト イボト イヨト イヨト

 $\mathbb{Z}_{2}^{2} = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$ $\frac{|A| \quad A \subseteq \mathbb{Z}_{2}^{2}}{4 \quad \{00,01,10,11\} \quad \{01,10,11\} \quad \{00,01,10,11\} \quad \{01,10,11\} \neq \emptyset}$

 $\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$

A	$A\subseteq \mathbb{Z}_2^2$	2^A	1^A	$2^A \cap 1^A$
4	$\{00, 01, 10, 11\}$	$\{01, 10, 11\}$	$\{00, 01, 10, 11\}$	$\{01, 10, 11\} \neq \emptyset$
3	$\{00, 01, 10\}$	$\{01, 10, 11\}$	$\{00, 01, 10\}$	$\{01,10\} eq \emptyset$

 $\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$

A	$A\subseteq \mathbb{Z}_2^2$	2^A	1^A	$2^A \cap 1^A$
4	$\{00, 01, 10, 11\}$	$\{01, 10, 11\}$	$\{00, 01, 10, 11\}$	$\{01, 10, 11\} \neq \emptyset$
3	$\{00, 01, 10\}$	$\{01, 10, 11\}$	$\{00, 01, 10\}$	$\{01,10\} eq \emptyset$
3	$\{00, 01, 11\}$	$\{01, 11, 10\}$	$\{00, 01, 11\}$	$\{01,11\} eq \emptyset$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

 $\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$

A	$A\subseteq \mathbb{Z}_2^2$	2^A	1^A	$2^A \cap 1^A$
4	$\{00, 01, 10, 11\}$	$\{01, 10, 11\}$	$\{00, 01, 10, 11\}$	$\{01, 10, 11\} \neq \emptyset$
3	$\{00, 01, 10\}$	$\{01, 10, 11\}$	$\{00, 01, 10\}$	$\{01,10\} eq \emptyset$
3	$\{00, 01, 11\}$	$\{01, 11, 10\}$	$\{00, 01, 11\}$	$\{01,11\} eq \emptyset$
3	$\{00, 10, 11\}$	$\{10, 11, 01\}$	$\{00, 10, 11\}$	$\{10,11\} eq \emptyset$

 $\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$

A	$A\subseteq \mathbb{Z}_2^2$	2^A	1^A	$2^A \cap 1^A$
4	$\{00, 01, 10, 11\}$	$\{01, 10, 11\}$	$\{00, 01, 10, 11\}$	$\{01, 10, 11\} \neq \emptyset$
3	$\{00, 01, 10\}$	$\{01, 10, 11\}$	$\{00, 01, 10\}$	$\{01,10\} eq \emptyset$
3	$\{00, 01, 11\}$	$\{01, 11, 10\}$	$\{00, 01, 11\}$	$\{01,11\} eq \emptyset$
3	$\{00, 10, 11\}$	$\{10, 11, 01\}$	$\{00, 10, 11\}$	$\{10,11\} eq \emptyset$
3	$\{01, 10, 11\}$	$\{11, 10, 01\}$	$\{01, 10, 11\}$	$\{11,10,01\}\neq \emptyset$

_

Find $\mu^{(\mathbb{Z}_2^2, \{2, 1\})}$.

 $\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$

A	$A\subseteq \mathbb{Z}_2^2$	2^A	1^A	$2^A \cap 1^A$
4	$\{00, 01, 10, 11\}$	$\{01, 10, 11\}$	$\{00, 01, 10, 11\}$	$\{01, 10, 11\} \neq \emptyset$
3	$\{00, 01, 10\}$	$\{01, 10, 11\}$	$\{00, 01, 10\}$	$\{01,10\} eq \emptyset$
3	$\{00, 01, 11\}$	$\{01, 11, 10\}$	$\{00, 01, 11\}$	$\{01,11\} eq \emptyset$
3	$\{00, 10, 11\}$	$\{10, 11, 01\}$	$\{00, 10, 11\}$	$\{10,11\} eq \emptyset$
3	$\{01, 10, 11\}$	$\{11, 10, 01\}$	$\{01, 10, 11\}$	$\{11, 10, 01\} \neq \emptyset$
2	$\{01, 10\}$	{11}	$\{01, 10\}$	Ø

・ 戸 ト ・ ヨ ト ・ ヨ ト

э.

 $\mathbb{Z}_2^2 = \{(0,0), (0,1), (1,0), (1,1)\} \stackrel{\text{Notationally}}{=} \{00,01,10,11\}.$

A	$A\subseteq \mathbb{Z}_2^2$	2^A	1^A	$2^A \cap 1^A$
4	$\{00, 01, 10, 11\}$	$\{01, 10, 11\}$	$\{00, 01, 10, 11\}$	$\{01, 10, 11\} \neq \emptyset$
3	$\{00, 01, 10\}$	$\{01, 10, 11\}$	$\{00, 01, 10\}$	$\{01,10\} eq \emptyset$
3	$\{00, 01, 11\}$	$\{01, 11, 10\}$	$\{00, 01, 11\}$	$\{01,11\} eq \emptyset$
3	$\{00, 10, 11\}$	$\{10, 11, 01\}$	$\{00, 10, 11\}$	$\{10,11\} eq \emptyset$
3	$\{01, 10, 11\}$	$\{11, 10, 01\}$	$\{01, 10, 11\}$	$\{11, 10, 01\} \neq \emptyset$
2	$\{01, 10\}$	{11}	$\{01, 10\}$	Ø

 $\mu^{(\mathbb{Z}_{2}^{2}, \{2, 1\})} = 2.$

A Note About Non-restricted Sumsets

ヘロト 人間 とくほ とくほ とう

A Note About Non-restricted Sumsets

Write hA for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A:

$$hA = \left\{ \sum_{i=1}^{m} \lambda_i a_i \mid \lambda_1, \ldots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^{m} \lambda_i = h \right\}.$$

伺 ト イヨト イヨト

A Note About Non-restricted Sumsets

Write hA for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A:

$$hA = \left\{ \sum_{i=1}^{m} \lambda_i a_i \mid \lambda_1, \ldots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^{m} \lambda_i = h \right\}.$$

For positive integers k > l, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

 $kA \cap IA = \emptyset.$

A Note About Non-restricted Sumsets

Write hA for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A:

$$hA = \left\{ \sum_{i=1}^{m} \lambda_i a_i \mid \lambda_1, \ldots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^{m} \lambda_i = h \right\}.$$

For positive integers k > l, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

$$kA \cap lA = \emptyset.$$

We denote the maximum size of a (k, l)-sum-free subset of G as $\mu(G, \{k, l\})$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

= nan

A Note About Non-restricted Sumsets

Write hA for the (ordinary) h-fold sumset of A, which consists of sums of exactly h (not necessarily distinct) terms of A:

$$hA = \left\{ \sum_{i=1}^{m} \lambda_i a_i \mid \lambda_1, \ldots, \lambda_m \in \mathbb{N}_0, \sum_{i=1}^{m} \lambda_i = h \right\}.$$

For positive integers k > l, a subset A of a given finite abelian group G is (k, l)-sum-free if and only if

$$kA \cap lA = \emptyset.$$

We denote the maximum size of a (k, l)-sum-free subset of G as $\mu(G, \{k, l\})$. That is,

$$\mu(G, \{k, l\}) = \max\{|A| \mid A \subseteq G, kA \cap lA = \emptyset\}.$$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Established Information

ヘロト ヘロト ヘビト ヘビト

Theorem G.18 (Green and Ruzsa)

Let κ be the exponent of G. Then

$$\mu(G, \{2,1\}) = \mu(\mathbb{Z}_{\kappa}, \{2,1\}) \cdot \frac{n}{\kappa} = v_1(\kappa, 3) \cdot \frac{n}{\kappa}.$$

► < Ξ > < Ξ > ...

Theorem G.18 (Green and Ruzsa)

Let κ be the exponent of *G*. Then

$$\mu(G,\{2,1\}) = \mu(\mathbb{Z}_{\kappa},\{2,1\}) \cdot \frac{n}{\kappa} = v_1(\kappa,3) \cdot \frac{n}{\kappa}.$$

Theorem G.67 (Zannier)

For all positive integers we have

$$\mu^{\hat{}}(\mathbb{Z}_n, \{2, 1\}) = \begin{cases} \left(1 + \frac{1}{p}\right) \frac{n}{3} & \text{if } n \text{ has prime divisors cong. to } 2(3), \\ & \text{and } p \text{ is the smallest such divisor;} \\ \left\lfloor \frac{n}{3} \right\rfloor + 1 & \text{otherwise.} \end{cases}$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

A New Conjecture

・ロト ・四ト ・ヨト ・ヨト

æ –

Conjecture

For all positive integers $n_1 \leq n_2$ $(n = n_1 n_2)$,

 $\mu^{\hat{}}(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}, \{2, 1\}) = \begin{cases} \mu & n \text{ has prime divisors cong. to 2(3),} \\ \mu + 1 & \text{otherwise.} \end{cases}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Note that when $gcd(n_1, n_2) = 1$, $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \cong \mathbb{Z}_n$, so by Theorem G.67, and Theorem G.18,

$\mu^{}(\mathbb{Z}_n, \{2, 1\}) = \begin{cases} \left(1 + \frac{1}{p}\right)\frac{n}{3} & n \text{ has prime divisors cong. to 2(3),} \\ & \text{ and } p \text{ is the smallest such divisor;} \\ \lfloor \frac{n}{3} \rfloor + 1 & \text{ otherwise} \end{cases}$
$\mu^{(\mathbb{Z}_n, \{2, 1\})} = \begin{cases} & \text{and } p \text{ is the smallest such divisor;} \end{cases}$
$\left\lfloor \lfloor rac{n}{3} ight floor+1$ otherwise
$=\begin{cases} v_1(n,3)\cdot \frac{n}{n} & n \text{ has a prime divisor cong. to 2(3);} \\ v_1(n,3)\cdot \frac{n}{n}+1 & \text{otherwise.} \end{cases}$
$\stackrel{G.18}{=} egin{cases} \mu & n ext{ has a prime divisor cong. to 2(3);} \ \mu+1 & ext{otherwise.} \end{cases}$
$- \ igl(\mu+1)$ otherwise.

= nar

When $gcd(n_1, n_2) > 1$ and $n \equiv 0 \mod 2$, clearly the smallest prime divisor of *n* congruent to 2 mod 3 is 2, so by Proposition G.18,

$$\mu^{(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}, \{2, 1\}) = \frac{n}{2} = \left(1 + \frac{1}{2}\right) \frac{n}{3}$$
$$= v_{1}(n, 3) \cdot \frac{n}{n}$$
$$\stackrel{\text{G.18}}{=} \mu(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}, \{2, 1\}).$$

Now we should consider when $gcd(n_1, n_2) > 1$ and $n \equiv 1 \mod 2$.

New Theorems

・ロト ・回ト ・ヨト ・ヨト

Theorem 13

For any positive integer $w \equiv 1 \mod 2$,

 $\mu^{}(\mathbb{Z}_{3}\times\mathbb{Z}_{3w},\{2,1\})\geq 3w+1.$

イロト イボト イヨト イヨト

Theorem 13

For any positive integer $w \equiv 1 \mod 2$,

$$\mu(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2,1\}) \geq 3w+1.$$

Theorem 14

For all positive $\kappa \equiv 1 \mod 6$,

$$\mu$$
 ($\mathbb{Z}_{\kappa}^2, \{2,1\}$) $\geq \frac{\kappa-1}{3} \cdot \kappa + 1.$

・ロト ・回ト ・ヨト ・ヨト

= 900

Proving Theorem 13

ヘロト 人間 とくほ とくほ とう

∃ 990

Theorem 13

For any positive integer $w \equiv 1 \mod 2$,

$$\mu(\mathbb{Z}_3 \times \mathbb{Z}_{3w}, \{2, 1\}) \geq 3w + 1.$$

Here, we will show that

$$\mu(\mathbb{Z}_3 \times \mathbb{Z}_{3.7}, \{2, 1\}) \ge 3 \cdot 7 + 1 = 22$$

by constructing a weakly (2,1)-sum-free set in $\mathbb{Z}_3 \times \mathbb{Z}_{21}$.

イロト イヨト イヨト

э.

Sketch of Proof of Theorem 13

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

$$\begin{split} & \mathcal{A}_0 = \{0\} \times \{-7, -5, -3, -1, 1, 3, 5, 7\}, \\ & \mathcal{A}_1 = \{1\} \times \{0, 2, 4, 6, 8, 10, 12\}, \text{ and} \\ & \mathcal{A}_2 = \{2\} \times \{-12, -10, -8, -6, -4, -2, 0\}. \end{split}$$

ヘロト ヘヨト ヘヨト ヘヨト

$$\begin{split} & \mathcal{A}_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}, \\ & \mathcal{A}_1 = \{1\} \times \{0, 2, 4, 6, 8, 10, 12\}, \text{ and} \\ & \mathcal{A}_2 = \{2\} \times \{9, 11, 13, 15, 17, 19, 0\}. \end{split}$$

ヘロト ヘヨト ヘヨト ヘヨト

$$\begin{split} &\mathcal{A}_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}, \\ &\mathcal{A}_1 = \{1\} \times \{0, 2, 4, 6, 8, 10, 12\}, \text{ and} \\ &\mathcal{A}_2 = \{2\} \times \{9, 11, 13, 15, 17, 19, 0\}. \end{split}$$

Let $A = A_0 \cup A_1 \cup A_2$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

$$\begin{split} &\mathcal{A}_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}, \\ &\mathcal{A}_1 = \{1\} \times \{0, 2, 4, 6, 8, 10, 12\}, \text{ and} \\ &\mathcal{A}_2 = \{2\} \times \{9, 11, 13, 15, 17, 19, 0\}. \end{split}$$

Let $A = A_0 \cup A_1 \cup A_2$.

$$|A| = |A_0| + |A_1| + |A_2| = 8 + 7 + 7 = 22.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

$$\begin{split} &\mathcal{A}_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}, \\ &\mathcal{A}_1 = \{1\} \times \{0, 2, 4, 6, 8, 10, 12\}, \text{ and} \\ &\mathcal{A}_2 = \{2\} \times \{9, 11, 13, 15, 17, 19, 0\}. \end{split}$$

Let $A = A_0 \cup A_1 \cup A_2$.

$$|A| = |A_0| + |A_1| + |A_2| = 8 + 7 + 7 = 22.$$

Now we must show that $2^A \cap 1^A = \emptyset$.

$$\begin{split} & \mathcal{A}_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}, \\ & \mathcal{A}_1 = \{1\} \times \{0, 2, 4, 6, 8, 10, 12\}, \text{ and} \\ & \mathcal{A}_2 = \{2\} \times \{9, 11, 13, 15, 17, 19, 0\}. \end{split}$$

Let $A = A_0 \cup A_1 \cup A_2$.

$$|A| = |A_0| + |A_1| + |A_2| = 8 + 7 + 7 = 22.$$

Now we must show that $2^A \cap 1^A = \emptyset$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

$$\begin{split} & \mathcal{A}_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}, \\ & \mathcal{A}_1 = \{1\} \times \{0, 2, 4, 6, 8, 10, 12\}, \text{ and} \\ & \mathcal{A}_2 = \{2\} \times \{9, 11, 13, 15, 17, 19, 0\}. \end{split}$$

Let $A = A_0 \cup A_1 \cup A_2$.

$$|A| = |A_0| + |A_1| + |A_2| = 8 + 7 + 7 = 22.$$

Now we must show that $2^A \cap 1^A = \emptyset$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

 $(A_0 + A_0) \cap A_0 = \emptyset$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

$\mathcal{A}_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ 9 < @

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}.$$

 $2^{\hat{}}A_0 = \{0\} \times \{9, 11, 13, 15, 17, 19, 0, 2, 4, 6, 8, 10, 12\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・ロト ・回ト ・ヨト ・ヨト

æ.,

æ .

・ロト ・回ト ・ヨト ・ヨト

æ -

・ロト ・回ト ・ヨト ・ヨト

æ -

æ .

æ .

・ロト ・回ト ・ヨト ・ヨト

æ -

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Ξ.

The Maximum size of weak (k, l)-sum-free sets 15/18

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

$$A_0 = \{0\} \times \{14, 16, 18, 20, 1, 3, 5, 7\}$$

Peter Francis The Maximum size of weak (k, l)-sum-free sets 15 / 18

A Note

▲日 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

By Theorem G.18, if w has no prime divisor congruent to 2 mod 3,

$$\begin{split} \mu^{\hat{}}(\mathbb{Z}_{3} \times \mathbb{Z}_{3w}, \{2, 1\}) &\geq 3w + 1 \\ &= \left\lfloor \frac{3w}{3} \right\rfloor \cdot 3 + 1 \\ &= v_{1}(3w, 3) \cdot \frac{9w}{3w} + 1 \\ &\stackrel{G.18}{=} \mu(\mathbb{Z}_{3} \times \mathbb{Z}_{3w}, \{2, 1\}) + 1. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

Future work

• Establish a new upper bound that would be useful for different *k* and *l*.

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

- Establish a new upper bound that would be useful for different *k* and *l*.
- Develop the technique of using arithmetic sequences to construct weak (2, 1)-sum-free sets for other cases of n₁n₂ ≡ 1 mod 2 for μ[^](ℤ_{n1} × ℤ_{n2}, {k, l}). Specifically, μ[^](ℤ₇ × ℤ₂₁, {2, 1}) is of interest. (The group ℤ₇² has 98 weak (2, 1)-sum-free subsets with arithmetic sequences).

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Establish a new upper bound that would be useful for different *k* and *l*.
- Develop the technique of using arithmetic sequences to construct weak (2, 1)-sum-free sets for other cases of n₁n₂ ≡ 1 mod 2 for μ[^](ℤ_{n1} × ℤ_{n2}, {k, l}). Specifically, μ[^](ℤ₇ × ℤ₂₁, {2, 1}) is of interest. (The group ℤ²₇ has 98 weak (2, 1)-sum-free subsets with arithmetic sequences).
- Use the same technique to find new constructions of weak (k, l)-sum free subsets of cyclic groups for k > 2, by treating the cyclic group as noncyclic.

・ロト ・雪 ト ・ ヨ ト ・

- Establish a new upper bound that would be useful for different *k* and *l*.
- Develop the technique of using arithmetic sequences to construct weak (2, 1)-sum-free sets for other cases of n₁n₂ ≡ 1 mod 2 for μ[^](ℤ_{n1} × ℤ_{n2}, {k, l}). Specifically, μ[^](ℤ₇ × ℤ₂₁, {2, 1}) is of interest. (The group ℤ₇² has 98 weak (2, 1)-sum-free subsets with arithmetic sequences).
- Use the same technique to find new constructions of weak (k, l)-sum free subsets of cyclic groups for k > 2, by treating the cyclic group as noncyclic.
- Constructing tables of discrepancies between μ and μ [^].

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

- Establish a new upper bound that would be useful for different *k* and *l*.
- Develop the technique of using arithmetic sequences to construct weak (2, 1)-sum-free sets for other cases of n₁n₂ ≡ 1 mod 2 for μ[^](ℤ_{n1} × ℤ_{n2}, {k, l}). Specifically, μ[^](ℤ₇ × ℤ₂₁, {2, 1}) is of interest. (The group ℤ₇² has 98 weak (2, 1)-sum-free subsets with arithmetic sequences).
- Use the same technique to find new constructions of weak (k, l)-sum free subsets of cyclic groups for k > 2, by treating the cyclic group as noncyclic.
- Constructing tables of discrepancies between μ and μ [^].
- Construct a table of the maximum of all of the lower bounds that are established for μ^{2} and compare with the computer generated table on page 300.

ヘロト ヘヨト ヘヨト ヘヨト

э.

I would like to thank **Professor Bajnok** for the continued guidance and encouragement, as well as the opportunity and resources to conduct my own research. I would also like to thank **Bailey Heath** for his help in finding the first weak (2, 1)-sum-free subset of \mathbb{Z}_7^2 and for his kind and accessible support, whenever it was needed.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・