Modular Symbols Statistics

William Stein ${ }^{1}$
University of Washington
wstein@uw.edu

30m talk on May 17, 2015 in Eugene, Oregon Slides at http://tinyurl.com/modsymdist Video at http://youtu.be/mSGiSCLGug8
${ }^{1}$ Joint work-in-progress with Barry Mazur and Karl Rubin.

Overview

Modular symbols and L-functions

Statistics of modular symbols

Random walks?

Modular symbols associated to an elliptic curve

- Elliptic curve: E / \mathbb{Q}, modular form $f=f_{E}=\sum a_{n} q^{n}$.
- Period mapping: integration defines a map

$$
\mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q} \cup\{i \infty\} \rightarrow \mathbb{C} \text { given by } \alpha \mapsto \int_{i \infty}^{\alpha} 2 \pi i f(z) d z
$$

- Homology: $H_{1}(E, \mathbb{Z}) \cong \Lambda_{E} \subset \mathbb{C}$ is the image of all integrals of closed paths in the upper half plane, and $E(\mathbb{C}) \cong \mathbb{C} / \Lambda_{E}$.
- Complex conjugation: $\Lambda_{E}^{+} \oplus \Lambda_{E}^{-} \subset \Lambda_{E}$ has index 1 or 2 . Write $\Lambda_{E}^{+}=\mathbb{Z} \omega^{+}$, where $\omega^{+}>0$ is well defined.
- Modular symbols: $[\alpha]_{E}^{+}: \mathbb{P}^{1}(\mathbb{Q}) \rightarrow \mathbb{Q}$

$$
\{\alpha\}_{E}^{+}=\frac{1}{2}\left(\int_{i \infty}^{\alpha} 2 \pi i f(z) d z+\int_{i \infty}^{-\alpha} 2 \pi i f(z) d z\right)=[\alpha]_{E}^{+} \cdot \omega^{+}
$$

WARNING: Cannot evaluate by switching order of summation and integration!

Example

We compute some modular symbols using SageMath. Despite the numerical definitions above, the following computations are entirely algebraic.

```
E = EllipticCurve('11a')
s = E.modular_symbol()
s(17/13)
```

$$
\text { - }-4 / 5
$$

Let's compute more symbols:

$$
[s(n / 13) \text { for } n \text { in }[-13 \ldots 13]]
$$

$$
\begin{array}{llll}
{[1 / 5,} & -4 / 5,17 / 10,17 / 10,-4 / 5,-4 / 5,-4 / 5,-4 / 5,-4 / 5, \\
-4 / 5, & 17 / 10,17 / 10,-4 / 5,1 / 5,-4 / 5,17 / 10,17 / 10,-4 / 5, \\
-4 / 5, & -4 / 5,-4 / 5,-4 / 5,-4 / 5,17 / 10,17 / 10, & -4 / 5,1 / 5]
\end{array}
$$

Lots of random-looking rational numbers... patterns...? Symmetry: $[a / M]^{+}=[-a / M]^{+}$and $[1+(a / M)]^{+}=[a / M]^{+}$.

A motivation for considering modular symbols: L-functions

L-series of $E: L(E, s)=\sum a_{n} n^{-s}$, where $a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)$.
For each Dirichlet character $\chi:(\mathbb{Z} / M \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ there is a twisted L-function $L(E, \chi, s)=\sum \chi(n) a_{n} n^{-s}$. Moreover,

$$
\frac{L(E, \chi, 1)}{\omega_{\chi}}=\text { explicit sum involving }\left[\frac{a}{M}\right]^{ \pm} \text {and Gauss sums }
$$

So... statistical properties of the set of numbers

$$
Z(M)=\left\{\left[\frac{a}{M}\right]^{+}: a=0, \ldots, M-1\right\}
$$

are relevant to understanding special values of twists.
(Note: $[a / M]^{+}=[1-a / M]^{+}$, but we leave in this redundant data as a double-check on our calculations below!)

Frequency histogram: $M=100$

```
E = EllipticCurve('11a'); s = E.modular_symbol()
M = 100; v = [s(a/M) for a in range(M)]; print(v)
stats.TimeSeries(v).plot_histogram()
```

```
[1/5, 1/5, 6/5, 1/5, -3/10, -4/5, 6/5, 1/5, -3/10, 1/5,
1/5, 1/5, -3/10, 1/5, 6/5, 17/10, 11/5, 27/10, 6/5, 1/5,
6/5, 27/10, 6/5, 27/10, -3/10, 7/10, 6/5, 1/5, -3/10,
27/10, 1/5, -23/10, -3/10, 1/5, -13/10, -4/5, -3/10,
-23/10, 6/5, -23/10, -13/10, -23/10, -19/5, -23/10,
-3/10, -4/5, -13/10, -23/10, -3/10, -23/10, -4/5,
-23/10, -3/10, -23/10, -13/10, -4/5, -3/10, -23/10,
-19/5, -23/10, -13/10, -23/10, 6/5, -23/10, -3/10,
-4/5, -13/10, 1/5, -3/10, -23/10, 1/5, 27/10, -3/10,
1/5, 6/5, 7/10, -3/10, 27/10, 6/5, 27/10, 6/5, 1/5,
6/5, 27/10, 11/5, 17/10, 6/5, 1/5, -3/10, 1/5, 1/5,
1/5, -3/10, 1/5, 6/5, -4/5, -3/10, 1/5, 6/5, 1/5]
```


Frequency histogram: $M=1000$

```
E = EllipticCurve('11a')
s = E.modular_symbol()
M = 1000
stats.TimeSeries([s(a/M) for a in range(M)]).plot_histogram()
```


Frequency histogram: $M=10000$

```
E = EllipticCurve('11a')
s = E.modular_symbol()
M = 10000
stats.TimeSeries([s(a/M) for a in range(M)]).plot_histogram()
```


We quickly want much larger M in order to see what might happen in the limit, and the code in Sage is way too slow for this...

More frequency histograms: use Cython...

```
%load modular_symbol_map.pyx
def ms(E, sign=1):
    g = E.modular_symbol(sign=sign)
    h = ModularSymbolMap(g)
    d = float(h.denom) # otherwise get int division!
    return lambda a,b: h._eval1(a,b)[0]/d
s = ms(EllipticCurve('11a'))
M = 100000 # the following takes about 1 second
stats.TimeSeries([s(a, M) for a in range(M)]).plot_histogram()
```


More frequency histograms (Cython)

```
s = ms(EllipticCurve('11a'))
M = 1000000 # the following takes about 1 second
stats.TimeSeries([s(a, M) for a in range(M)]).plot_histogram()
```


Note that there are only 38 distinct values in $Z\left(10^{6}\right)$ and 40 in $Z(1500000)$.

Sorry...

- But I can't tell you "the answer" yet.
- Not sure this is a good question.
- So let's consider another question...

Return to $M=13$ and make a "random walk"

```
E = EllipticCurve('11a')
s = E.modular_symbol()
M = 13; v = [s(a/M) for a in range(M)]; print(v)
w = stats.TimeSeries(v).sums()
w.plot() + points(enumerate(w), pointsize=30, color='black')
```

$$
\begin{array}{lllll}
{[1 / 5,} & -4 / 5,17 / 10,17 / 10, & -4 / 5, & -4 / 5, & -4 / 5,
\end{array}
$$

How about $M=20$?

```
s = EllipticCurve('11a').modular_symbol()
M = 20; v = [s(a/M) for a in range(M)]
w = stats.TimeSeries(v).sums()
w.plot() + points(enumerate(w), pointsize=30, color='black')
```


How about $M=50$?

How about $M=100 ?$

How about $M=1000$?

How about $M=10000$?

How about $M=100000$?

How about $M=100003$ next prime after 100000 ?

Notice Anything?

- The pictures all look almost the same, as if they are converging to some limiting function.
- Similar observation about other elliptic curves (with a different picture).
- Similar definition for modular symbols attached to newforms with Fourier coefficients in a number field, or of higher weight (we get a multi-dimensional random walk).

Several different elliptic curves

Sum for $M=10^{6}$ and $E=11 a($ rank 0$)$

Sum for $M=10^{6}$ and $E=37 a($ rank 1$)$

Sum for $M=10^{6}$ and $E=389 a($ rank 2$)$

Taking the limit

- Normalize the "not so random walk" so it is comparable for different values of M. Consider $f_{M}:[0,1] \rightarrow \mathbb{Q}$ given by

$$
f_{M}(x)=\frac{1}{M} \cdot \sum_{a=1}^{M x}\left[\frac{a}{M}\right]^{+}, \quad(\text { write on board })
$$

where, by $\sum_{a=1}^{M x}$ we mean $\sum_{a=1}^{\lfloor M x\rfloor}$.
Conjecture (-)

- The limit $f(x)=\lim _{m \rightarrow \infty} f_{M}(x)$ exists.
(all conjectures in this talk are by Mazur-Rubin-Stein)

What is the limit?

- Let ω^{+}be the least real period as before. (NOTE: This need not be the Ω_{E} in the BSD conjecture, since when the period lattice is rectangular then $\Omega_{E}=2 \omega^{+}$.)
- Let $\sum a_{n} q^{n}$ be the newform attached to the elliptic curve E. Then:

Conjecture (-)

$$
f(x)=\frac{1}{2 \pi \omega^{+}} \cdot \sum_{n=1}^{\infty} \frac{a_{n} \sin (2 \pi n x)}{n^{2}}
$$

Mazur's Heuristic Argument

- Define $\{\alpha\}^{+}$exactly as before, but for any $\alpha \in \mathfrak{h}^{*}$:

$$
\{\alpha\}^{+}=\frac{1}{2}\left(\int_{i \infty}^{\alpha} 2 \pi i f(z) d z+\int_{i \infty}^{-\bar{\alpha}} 2 \pi i f(z) d z\right) \in \mathbb{R} .
$$

- When $\alpha=x+i \eta$, with $x \in \mathbb{R}$ and $\eta>0$, evaluate $\{\alpha\}^{+}$by switching summation and integration (can since $\alpha \notin \mathbb{Q}!$):

$$
\{\alpha\}^{+}=\{x+i \eta\}^{+}=\sum_{n=1}^{\infty} \frac{a_{n} e^{-2 \pi \eta n}}{n} \cos (2 \pi n x) \in \mathbb{R}
$$

- Fix $\eta>0$ and $b \in[0,1]$ and integrate the real function $x \mapsto\{x+i \eta\}^{+}$above from 0 to b :

$$
\int_{0}^{b}\{x+i \eta\}^{+} d x=\frac{1}{2 \pi} \cdot \sum_{n=1}^{\infty} \frac{a_{n} e^{-2 \pi \eta n}}{n^{2}} \cdot \sin (2 \pi n b)
$$

Mazur's Heuristic Argument (continued)

Previous slide:

$$
\int_{0}^{b}\{x+i \eta\}^{+} d x=\frac{1}{2 \pi} \cdot \sum_{n=1}^{\infty} \frac{a_{n} e^{-2 \pi \eta n}}{n^{2}} \cdot \sin (2 \pi n b)
$$

Riemann sum approximation to this integral at points a / M, and divide by ω^{+}to get (heuristic!):

$$
f_{M}(x)=\frac{1}{M} \cdot \sum_{a=1}^{M x}\left[\frac{a}{M}\right]^{+} \sim \frac{1}{2 \pi \omega^{+}} \cdot \sum_{n=1}^{\infty} \frac{a_{n} e^{-2 \pi \eta n}}{n^{2}} \cdot \sin (2 \pi n x)
$$

Take the limit as $\eta \rightarrow 0$ and $M \rightarrow \infty$ to "deduce" our conjecture that $f(x)=\frac{1}{2 \pi \omega^{+}} \cdot \sum_{n=1}^{\infty} \frac{a_{n} \sin (2 \pi n x)}{n^{2}}$.
(Show worksheet and plots if time permits...)

The End

