{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"# Asymptotic 5D Kerr-AdS metric with b=0 in light-cone coordinates\n",
"\n",
"This [SageMath](https://www.sagemath.org/) notebook is relative to the article *Heavy quarks in rotating plasma via holography* by Anastasia A. Golubtsova, Eric Gourgoulhon and Marina K. Usova, [arXiv:2107.11672](https://arxiv.org/abs/2107.11672).\n",
"\n",
"The involved differential geometry computations are based on tools developed through the [SageManifolds](https://sagemanifolds.obspm.fr) project."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"'SageMath version 9.3, Release Date: 2021-05-09'"
]
},
"execution_count": 1,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"version()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"%display latex"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"Parallelism().set(nproc=8)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5-dimensional Lorentzian manifold M\n"
]
}
],
"source": [
"M = Manifold(5, 'M', r'\\mathcal{M}', structure='Lorentzian', metric_name='G')\n",
"print(M)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Asymptotically AdS coordinates"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\mathcal{M},(T, y, {\\Theta}, {\\Phi}, {\\Psi})\\right)$$"
],
"text/plain": [
"Chart (M, (T, y, Th, Ph, Ps))"
]
},
"execution_count": 5,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"AdSc. = M.chart(r'T y:(0,+oo) Th:(0,pi/2):\\Theta Ph:(0,2*pi):\\Phi Ps:(0,2*pi):\\Psi')\n",
"AdSc"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(m, a, b\\right)$$"
],
"text/plain": [
"(m, a, b)"
]
},
"execution_count": 6,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"var('m a b', domain='real')"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"b = 0 # assumed in Sec. 5"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"keep_Delta = True # change to False to provide explicit expression for Delta"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"if keep_Delta:\n",
" Delta = var('Delta', latex_name=r'\\Delta', domain='real')\n",
"else:\n",
" Delta = 1 - a^2*sin(Th)^2 - b^2*cos(Th)^2"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"G = M.metric()\n",
"G[0,0] = - (1 + y^2) + 2*m/(Delta^3*y^2)\n",
"G[0,3] = -2*a*m*sin(Th)^2/(Delta^3*y^2)\n",
"G[0,4] = -2*b*m*cos(Th)^2/(Delta^3*y^2)\n",
"G[1,1] = 1/(1 + y^2 - 2*m/(Delta^2*y^2))\n",
"G[2,2] = y^2\n",
"G[3,3] = y^2*sin(Th)^2 + 2*a^2*m*sin(Th)^4/(Delta^3*y^2)\n",
"G[3,4] = 2*a*b*m*sin(Th)^2*cos(Th)^2/(Delta^3*y^2)\n",
"G[4,4] = y^2*cos(Th)^2 + 2*b^2*m*cos(Th)^4/(Delta^3*y^2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Check of Eq. (5.38):"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}G = \\left( -y^{2} + \\frac{2 \\, m}{{\\Delta}^{3} y^{2}} - 1 \\right) \\mathrm{d} T\\otimes \\mathrm{d} T -\\frac{2 \\, a m \\sin\\left({\\Theta}\\right)^{2}}{{\\Delta}^{3} y^{2}} \\mathrm{d} T\\otimes \\mathrm{d} {\\Phi} + \\left( \\frac{1}{y^{2} - \\frac{2 \\, m}{{\\Delta}^{2} y^{2}} + 1} \\right) \\mathrm{d} y\\otimes \\mathrm{d} y + y^{2} \\mathrm{d} {\\Theta}\\otimes \\mathrm{d} {\\Theta} -\\frac{2 \\, a m \\sin\\left({\\Theta}\\right)^{2}}{{\\Delta}^{3} y^{2}} \\mathrm{d} {\\Phi}\\otimes \\mathrm{d} T + \\left( y^{2} \\sin\\left({\\Theta}\\right)^{2} + \\frac{2 \\, a^{2} m \\sin\\left({\\Theta}\\right)^{4}}{{\\Delta}^{3} y^{2}} \\right) \\mathrm{d} {\\Phi}\\otimes \\mathrm{d} {\\Phi} + y^{2} \\cos\\left({\\Theta}\\right)^{2} \\mathrm{d} {\\Psi}\\otimes \\mathrm{d} {\\Psi}$$"
],
"text/plain": [
"G = (-y^2 + 2*m/(Delta^3*y^2) - 1) dT*dT - 2*a*m*sin(Th)^2/(Delta^3*y^2) dT*dPh + 1/(y^2 - 2*m/(Delta^2*y^2) + 1) dy*dy + y^2 dTh*dTh - 2*a*m*sin(Th)^2/(Delta^3*y^2) dPh*dT + (y^2*sin(Th)^2 + 2*a^2*m*sin(Th)^4/(Delta^3*y^2)) dPh*dPh + y^2*cos(Th)^2 dPs*dPs"
]
},
"execution_count": 11,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"G.display()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\begin{array}{lcl} G_{ \\, T \\, T }^{ \\phantom{\\, T}\\phantom{\\, T} } & = & -y^{2} + \\frac{2 \\, m}{{\\Delta}^{3} y^{2}} - 1 \\\\ G_{ \\, T \\, {\\Phi} }^{ \\phantom{\\, T}\\phantom{\\, {\\Phi}} } & = & -\\frac{2 \\, a m \\sin\\left({\\Theta}\\right)^{2}}{{\\Delta}^{3} y^{2}} \\\\ G_{ \\, y \\, y }^{ \\phantom{\\, y}\\phantom{\\, y} } & = & \\frac{1}{y^{2} - \\frac{2 \\, m}{{\\Delta}^{2} y^{2}} + 1} \\\\ G_{ \\, {\\Theta} \\, {\\Theta} }^{ \\phantom{\\, {\\Theta}}\\phantom{\\, {\\Theta}} } & = & y^{2} \\\\ G_{ \\, {\\Phi} \\, {\\Phi} }^{ \\phantom{\\, {\\Phi}}\\phantom{\\, {\\Phi}} } & = & y^{2} \\sin\\left({\\Theta}\\right)^{2} + \\frac{2 \\, a^{2} m \\sin\\left({\\Theta}\\right)^{4}}{{\\Delta}^{3} y^{2}} \\\\ G_{ \\, {\\Psi} \\, {\\Psi} }^{ \\phantom{\\, {\\Psi}}\\phantom{\\, {\\Psi}} } & = & y^{2} \\cos\\left({\\Theta}\\right)^{2} \\end{array}$$"
],
"text/plain": [
"G_T,T = -y^2 + 2*m/(Delta^3*y^2) - 1 \n",
"G_T,Ph = -2*a*m*sin(Th)^2/(Delta^3*y^2) \n",
"G_y,y = 1/(y^2 - 2*m/(Delta^2*y^2) + 1) \n",
"G_Th,Th = y^2 \n",
"G_Ph,Ph = y^2*sin(Th)^2 + 2*a^2*m*sin(Th)^4/(Delta^3*y^2) \n",
"G_Ps,Ps = y^2*cos(Th)^2 "
]
},
"execution_count": 12,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"G.display_comp(only_nonredundant=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Light cone coordinates"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\mathcal{M},({x^+}, {x^-}, y, {\\Theta}, {\\Psi})\\right)$$"
],
"text/plain": [
"Chart (M, (xp, xm, y, Th, Ps))"
]
},
"execution_count": 13,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"LC. = M.chart(r'xp:x^+ xm:x^- y:(0,+oo) Th:(0,pi/2):\\Theta Ps:(0,2*pi):\\Psi')\n",
"LC"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"The transformation from AdS coordinates to light cone coordinates is defined by Eq. (5.40) of the paper:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} {x^+} & = & -{\\Phi} a + T \\\\ {x^-} & = & {\\Phi} a + T \\\\ y & = & y \\\\ {\\Theta} & = & {\\Theta} \\\\ {\\Psi} & = & {\\Psi} \\end{array}\\right.$$"
],
"text/plain": [
"xp = -Ph*a + T\n",
"xm = Ph*a + T\n",
"y = y\n",
"Th = Th\n",
"Ps = Ps"
]
},
"execution_count": 14,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"AdSc_to_LC = AdSc.transition_map(LC, [T - a*Ph, T + a*Ph, y, Th, Ps])\n",
"AdSc_to_LC.display()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left\\{\\begin{array}{lcl} T & = & \\frac{1}{2} \\, {x^-} + \\frac{1}{2} \\, {x^+} \\\\ y & = & y \\\\ {\\Theta} & = & {\\Theta} \\\\ {\\Phi} & = & \\frac{{x^-} - {x^+}}{2 \\, a} \\\\ {\\Psi} & = & {\\Psi} \\end{array}\\right.$$"
],
"text/plain": [
"T = 1/2*xm + 1/2*xp\n",
"y = y\n",
"Th = Th\n",
"Ph = 1/2*(xm - xp)/a\n",
"Ps = Ps"
]
},
"execution_count": 15,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"AdSc_to_LC.inverse().display()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}G = \\left( -\\frac{{\\Delta}^{3} a^{2} y^{2} + {\\left({\\Delta}^{3} a^{2} - {\\Delta}^{3} \\sin\\left({\\Theta}\\right)^{2}\\right)} y^{4} - 2 \\, {\\left(\\sin\\left({\\Theta}\\right)^{4} + 2 \\, \\sin\\left({\\Theta}\\right)^{2} + 1\\right)} a^{2} m}{4 \\, {\\Delta}^{3} a^{2} y^{2}} \\right) \\mathrm{d} {x^+}\\otimes \\mathrm{d} {x^+} + \\left( -\\frac{{\\Delta}^{3} a^{2} y^{2} + {\\left({\\Delta}^{3} a^{2} + {\\Delta}^{3} \\sin\\left({\\Theta}\\right)^{2}\\right)} y^{4} + 2 \\, {\\left(\\sin\\left({\\Theta}\\right)^{4} - 1\\right)} a^{2} m}{4 \\, {\\Delta}^{3} a^{2} y^{2}} \\right) \\mathrm{d} {x^+}\\otimes \\mathrm{d} {x^-} + \\left( -\\frac{{\\Delta}^{3} a^{2} y^{2} + {\\left({\\Delta}^{3} a^{2} + {\\Delta}^{3} \\sin\\left({\\Theta}\\right)^{2}\\right)} y^{4} + 2 \\, {\\left(\\sin\\left({\\Theta}\\right)^{4} - 1\\right)} a^{2} m}{4 \\, {\\Delta}^{3} a^{2} y^{2}} \\right) \\mathrm{d} {x^-}\\otimes \\mathrm{d} {x^+} + \\left( -\\frac{{\\Delta}^{3} a^{2} y^{2} - 2 \\, a^{2} m \\cos\\left({\\Theta}\\right)^{4} + {\\left({\\Delta}^{3} a^{2} + {\\Delta}^{3} \\cos\\left({\\Theta}\\right)^{2} - {\\Delta}^{3}\\right)} y^{4}}{4 \\, {\\Delta}^{3} a^{2} y^{2}} \\right) \\mathrm{d} {x^-}\\otimes \\mathrm{d} {x^-} + \\left( \\frac{{\\Delta}^{2} y^{2}}{{\\Delta}^{2} y^{4} + {\\Delta}^{2} y^{2} - 2 \\, m} \\right) \\mathrm{d} y\\otimes \\mathrm{d} y + y^{2} \\mathrm{d} {\\Theta}\\otimes \\mathrm{d} {\\Theta} + y^{2} \\cos\\left({\\Theta}\\right)^{2} \\mathrm{d} {\\Psi}\\otimes \\mathrm{d} {\\Psi}$$"
],
"text/plain": [
"G = -1/4*(Delta^3*a^2*y^2 + (Delta^3*a^2 - Delta^3*sin(Th)^2)*y^4 - 2*(sin(Th)^4 + 2*sin(Th)^2 + 1)*a^2*m)/(Delta^3*a^2*y^2) dxp*dxp - 1/4*(Delta^3*a^2*y^2 + (Delta^3*a^2 + Delta^3*sin(Th)^2)*y^4 + 2*(sin(Th)^4 - 1)*a^2*m)/(Delta^3*a^2*y^2) dxp*dxm - 1/4*(Delta^3*a^2*y^2 + (Delta^3*a^2 + Delta^3*sin(Th)^2)*y^4 + 2*(sin(Th)^4 - 1)*a^2*m)/(Delta^3*a^2*y^2) dxm*dxp - 1/4*(Delta^3*a^2*y^2 - 2*a^2*m*cos(Th)^4 + (Delta^3*a^2 + Delta^3*cos(Th)^2 - Delta^3)*y^4)/(Delta^3*a^2*y^2) dxm*dxm + Delta^2*y^2/(Delta^2*y^4 + Delta^2*y^2 - 2*m) dy*dy + y^2 dTh*dTh + y^2*cos(Th)^2 dPs*dPs"
]
},
"execution_count": 16,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"G.display(LC)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\begin{array}{lcl} G_{ \\, {x^+} \\, {x^+} }^{ \\phantom{\\, {x^+}}\\phantom{\\, {x^+}} } & = & -\\frac{{\\Delta}^{3} a^{2} y^{2} + {\\left({\\Delta}^{3} a^{2} - {\\Delta}^{3} \\sin\\left({\\Theta}\\right)^{2}\\right)} y^{4} - 2 \\, {\\left(\\sin\\left({\\Theta}\\right)^{4} + 2 \\, \\sin\\left({\\Theta}\\right)^{2} + 1\\right)} a^{2} m}{4 \\, {\\Delta}^{3} a^{2} y^{2}} \\\\ G_{ \\, {x^+} \\, {x^-} }^{ \\phantom{\\, {x^+}}\\phantom{\\, {x^-}} } & = & -\\frac{{\\Delta}^{3} a^{2} y^{2} + {\\left({\\Delta}^{3} a^{2} + {\\Delta}^{3} \\sin\\left({\\Theta}\\right)^{2}\\right)} y^{4} + 2 \\, {\\left(\\sin\\left({\\Theta}\\right)^{4} - 1\\right)} a^{2} m}{4 \\, {\\Delta}^{3} a^{2} y^{2}} \\\\ G_{ \\, {x^-} \\, {x^-} }^{ \\phantom{\\, {x^-}}\\phantom{\\, {x^-}} } & = & -\\frac{{\\Delta}^{3} a^{2} y^{2} - 2 \\, a^{2} m \\cos\\left({\\Theta}\\right)^{4} + {\\left({\\Delta}^{3} a^{2} + {\\Delta}^{3} \\cos\\left({\\Theta}\\right)^{2} - {\\Delta}^{3}\\right)} y^{4}}{4 \\, {\\Delta}^{3} a^{2} y^{2}} \\\\ G_{ \\, y \\, y }^{ \\phantom{\\, y}\\phantom{\\, y} } & = & \\frac{{\\Delta}^{2} y^{2}}{{\\Delta}^{2} y^{4} + {\\Delta}^{2} y^{2} - 2 \\, m} \\\\ G_{ \\, {\\Theta} \\, {\\Theta} }^{ \\phantom{\\, {\\Theta}}\\phantom{\\, {\\Theta}} } & = & y^{2} \\\\ G_{ \\, {\\Psi} \\, {\\Psi} }^{ \\phantom{\\, {\\Psi}}\\phantom{\\, {\\Psi}} } & = & y^{2} \\cos\\left({\\Theta}\\right)^{2} \\end{array}$$"
],
"text/plain": [
"G_xp,xp = -1/4*(Delta^3*a^2*y^2 + (Delta^3*a^2 - Delta^3*sin(Th)^2)*y^4 - 2*(sin(Th)^4 + 2*sin(Th)^2 + 1)*a^2*m)/(Delta^3*a^2*y^2) \n",
"G_xp,xm = -1/4*(Delta^3*a^2*y^2 + (Delta^3*a^2 + Delta^3*sin(Th)^2)*y^4 + 2*(sin(Th)^4 - 1)*a^2*m)/(Delta^3*a^2*y^2) \n",
"G_xm,xm = -1/4*(Delta^3*a^2*y^2 - 2*a^2*m*cos(Th)^4 + (Delta^3*a^2 + Delta^3*cos(Th)^2 - Delta^3)*y^4)/(Delta^3*a^2*y^2) \n",
"G_y,y = Delta^2*y^2/(Delta^2*y^4 + Delta^2*y^2 - 2*m) \n",
"G_Th,Th = y^2 \n",
"G_Ps,Ps = y^2*cos(Th)^2 "
]
},
"execution_count": 17,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"G.display_comp(chart=LC, only_nonredundant=True)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"M.set_default_chart(LC)\n",
"M.set_default_frame(LC.frame())"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"### Check of Eq. (5.41)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}G = \\left( -\\frac{1}{4} \\, y^{2} + \\frac{y^{2} \\sin\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} + \\frac{m \\sin\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} + \\frac{m \\sin\\left({\\Theta}\\right)^{2}}{{\\Delta}^{3} y^{2}} + \\frac{m}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\right) \\mathrm{d} {x^+}\\otimes \\mathrm{d} {x^+} + \\left( -\\frac{1}{4} \\, y^{2} - \\frac{y^{2} \\sin\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} - \\frac{m \\sin\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} + \\frac{m}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\right) \\mathrm{d} {x^+}\\otimes \\mathrm{d} {x^-} + \\left( -\\frac{1}{4} \\, y^{2} - \\frac{y^{2} \\sin\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} - \\frac{m \\sin\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} + \\frac{m}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\right) \\mathrm{d} {x^-}\\otimes \\mathrm{d} {x^+} + \\left( -\\frac{1}{4} \\, y^{2} - \\frac{y^{2} \\cos\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} + \\frac{y^{2}}{4 \\, a^{2}} + \\frac{m \\cos\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\right) \\mathrm{d} {x^-}\\otimes \\mathrm{d} {x^-} + \\left( \\frac{{\\Delta}^{2} y^{2}}{{\\Delta}^{2} y^{4} + {\\Delta}^{2} y^{2} - 2 \\, m} \\right) \\mathrm{d} y\\otimes \\mathrm{d} y + y^{2} \\mathrm{d} {\\Theta}\\otimes \\mathrm{d} {\\Theta} + y^{2} \\cos\\left({\\Theta}\\right)^{2} \\mathrm{d} {\\Psi}\\otimes \\mathrm{d} {\\Psi}$$"
],
"text/plain": [
"G = (-1/4*y^2 + 1/4*y^2*sin(Th)^2/a^2 + 1/2*m*sin(Th)^4/(Delta^3*y^2) + m*sin(Th)^2/(Delta^3*y^2) + 1/2*m/(Delta^3*y^2) - 1/4) dxp*dxp + (-1/4*y^2 - 1/4*y^2*sin(Th)^2/a^2 - 1/2*m*sin(Th)^4/(Delta^3*y^2) + 1/2*m/(Delta^3*y^2) - 1/4) dxp*dxm + (-1/4*y^2 - 1/4*y^2*sin(Th)^2/a^2 - 1/2*m*sin(Th)^4/(Delta^3*y^2) + 1/2*m/(Delta^3*y^2) - 1/4) dxm*dxp + (-1/4*y^2 - 1/4*y^2*cos(Th)^2/a^2 + 1/4*y^2/a^2 + 1/2*m*cos(Th)^4/(Delta^3*y^2) - 1/4) dxm*dxm + Delta^2*y^2/(Delta^2*y^4 + Delta^2*y^2 - 2*m) dy*dy + y^2 dTh*dTh + y^2*cos(Th)^2 dPs*dPs"
]
},
"execution_count": 19,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"G.apply_map(expand, keep_other_components=True)\n",
"G.display()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/latex": [
"$$\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\begin{array}{lcl} G_{ \\, {x^+} \\, {x^+} }^{ \\phantom{\\, {x^+}}\\phantom{\\, {x^+}} } & = & -\\frac{1}{4} \\, y^{2} + \\frac{y^{2} \\sin\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} + \\frac{m \\sin\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} + \\frac{m \\sin\\left({\\Theta}\\right)^{2}}{{\\Delta}^{3} y^{2}} + \\frac{m}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\\\ G_{ \\, {x^+} \\, {x^-} }^{ \\phantom{\\, {x^+}}\\phantom{\\, {x^-}} } & = & -\\frac{1}{4} \\, y^{2} - \\frac{y^{2} \\sin\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} - \\frac{m \\sin\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} + \\frac{m}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\\\ G_{ \\, {x^-} \\, {x^+} }^{ \\phantom{\\, {x^-}}\\phantom{\\, {x^+}} } & = & -\\frac{1}{4} \\, y^{2} - \\frac{y^{2} \\sin\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} - \\frac{m \\sin\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} + \\frac{m}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\\\ G_{ \\, {x^-} \\, {x^-} }^{ \\phantom{\\, {x^-}}\\phantom{\\, {x^-}} } & = & -\\frac{1}{4} \\, y^{2} - \\frac{y^{2} \\cos\\left({\\Theta}\\right)^{2}}{4 \\, a^{2}} + \\frac{y^{2}}{4 \\, a^{2}} + \\frac{m \\cos\\left({\\Theta}\\right)^{4}}{2 \\, {\\Delta}^{3} y^{2}} - \\frac{1}{4} \\\\ G_{ \\, y \\, y }^{ \\phantom{\\, y}\\phantom{\\, y} } & = & \\frac{{\\Delta}^{2} y^{2}}{{\\Delta}^{2} y^{4} + {\\Delta}^{2} y^{2} - 2 \\, m} \\\\ G_{ \\, {\\Theta} \\, {\\Theta} }^{ \\phantom{\\, {\\Theta}}\\phantom{\\, {\\Theta}} } & = & y^{2} \\\\ G_{ \\, {\\Psi} \\, {\\Psi} }^{ \\phantom{\\, {\\Psi}}\\phantom{\\, {\\Psi}} } & = & y^{2} \\cos\\left({\\Theta}\\right)^{2} \\end{array}$$"
],
"text/plain": [
"G_xp,xp = -1/4*y^2 + 1/4*y^2*sin(Th)^2/a^2 + 1/2*m*sin(Th)^4/(Delta^3*y^2) + m*sin(Th)^2/(Delta^3*y^2) + 1/2*m/(Delta^3*y^2) - 1/4 \n",
"G_xp,xm = -1/4*y^2 - 1/4*y^2*sin(Th)^2/a^2 - 1/2*m*sin(Th)^4/(Delta^3*y^2) + 1/2*m/(Delta^3*y^2) - 1/4 \n",
"G_xm,xp = -1/4*y^2 - 1/4*y^2*sin(Th)^2/a^2 - 1/2*m*sin(Th)^4/(Delta^3*y^2) + 1/2*m/(Delta^3*y^2) - 1/4 \n",
"G_xm,xm = -1/4*y^2 - 1/4*y^2*cos(Th)^2/a^2 + 1/4*y^2/a^2 + 1/2*m*cos(Th)^4/(Delta^3*y^2) - 1/4 \n",
"G_y,y = Delta^2*y^2/(Delta^2*y^4 + Delta^2*y^2 - 2*m) \n",
"G_Th,Th = y^2 \n",
"G_Ps,Ps = y^2*cos(Th)^2 "
]
},
"execution_count": 20,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"G.display_comp()"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"The above components fully agree with Eq. (5.41)."
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.3",
"language": "sagemath",
"metadata": {
"cocalc": {
"description": "Open-source mathematical software system",
"priority": 10,
"url": "https://www.sagemath.org/"
}
},
"name": "sage-9.3",
"resource_dir": "/ext/jupyter/kernels/sage-9.3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}