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American writer, teacher, and comedian, Sam Leven-
son, gives us the following warning:

Somewhere on this globe, every ten
seconds, there is a woman giving
birth to a child. She must be found

and stopped.

The joke comes from the fact that the statements
“for any given time, there is a place, at which there is a
woman giving birth” and “there is a place, for which
there is a woman, that is always giving birth” are not
equivalent. The first is believable while the second, if
true, would be ridiculously disastrous.
As this example shows, there is a discrepancy be-

tween the sometimes deceiving and confusing use of
quantifiers (words or phrases used to describe the quan-
tity of objects that have a certain property) in the En-
glish language and the rigidly fundamental role that
quantification plays in mathematical writing. So the
question is: how do we translate? Moreover, how do
we teach new Mathematical thinkers the importance
of the delicate care that quantifiers need? The answer
is a game of course!
∀ people, ∃ an understanding and @ a want for re-

view, skip the next section. If you’re confused by that
last sentence, that’s OK, just keep on reading!

The Notation of Quantifiers

When discussing quantifiers at length, it is useful to
have a simple notation to save time and brain power, so
before we get to our game, let’s review some standard
logical symbols.
We will write P (x) to denote a statement whose

truth depends on x in a set A. For example, if P (x)

denotes the predicate

x < 57 or x is odd,

for a positive integer x, then P (4), P (57), and P (101)
are all true, while P (100) and P (134) are false.
Here are the shorthand symbols we most often use:

• ∀ is the universal quantifier and can be pro-
nounced “for all”.

• ∃ is the existential quantifier and can be pro-
nounced “there exists”.

• @ is the non-existential quantifier and can be pro-
nounced “there does not exist”.

The sentence
∀x ∈ A,P (x)

means that for all x in the set A, P (x) is true. The
sentence

∃x ∈ A,P (x)

means that there is some (at least one) x in the set A for
which P (x) is true. The sentence

@x ∈ A,P (x)

means that there is no x in the set A for which P (x) is
true. Equivalently, we can write

∀x ∈ A,¬P (x),

meaning that for all x ∈ A, P (x) is false.
The order of nested quantifiers can change the mean-

ing of the statement drastically. Returning to Sam Lev-
enson’s joke, we are now comfortable distinguishing
between the statements

∀ time,∃ place,∃ woman giving birth

and

∃ place,∃ woman,∀ time giving birth.
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The Game

Here is the game. Imagine I have a secret sequence
of four positive integers that you would like to know.
You are allowed to ask questions also in the form of
sequences of positive integers, to which my response
will be the sum of the coordinate-wise product of the
two sequences, denoted by ( · ). For example, if the
secret sequence is s = (1, 2, 3, 4), the response to the
question q = (2, 3, 10, 8) is

q · s = 2(3) + 3(2) + 10(3) + 8(4) = 74.

The goal of the game is to discover my sequence in as
few questions as possible. Let’s play!
I have a sequence (s1, s2, s3, s4) in mind. You first

ask the question
(1, 1, 1, 1),

to which my response is

s1 + s2 + s3 + s4 = 42.

Now you know that every term in the sequence is less
than 42, so has at most two digits. You cleverly ask the
question

(106, 104, 102, 1),

and I respond with

106 · s1 + 104 · s2 + 102 · s3 + 1 · s4 = 20031405.

Looking at the digits of my response, you can deduce
that my secret sequence was (20, 3, 14, 5).
It is not hard to see that this two-question method

will always work! Any sequence can be discovered by
asking the questions (1, 1, 1, 1) and (103d, 102d, 10d, 1),
where d is the number of digits in the response to the
first question.
Well I suppose that it is not that exciting of a game

after all. However, you might be wondering if there is
a more efficient method, a winning strategy with only
one question.
Clearly, if the first question (1, 1, 1, 1) were to have a

response of 4, then we know that the secret sequence
was also (1, 1, 1, 1), so we know that winning the game
with one question is possible. However, to go any fur-
ther, we will need to get a little more technical about
what we mean by ‘winning the game.’

Decoding Sequences

Let D(q, s) denote the predicate that the question q
decodes the secret s. In order to decode the secret
with one question, you must be sure that no other
secret sequence will return the same response for your
question.
That is, D(q, s) is true exactly when there is no se-

quence t 6= s for which

q · s = q · t.

In quantifier notation,

D(s, t) ⇐⇒ @t 6= s,q · t = q · s,

or equivalently,

D(s, t) ⇐⇒ ∀t 6= s,q · t 6= q · s.

So now we can ask our question more carefully. Is
there a question sequence that can decode any secret
sequence: is

∃q,∀s, D(q, s)

true?
Now you might see why this game is so interesting.

We can ask quite a few similar sounding questions that
are really quite different, just by changing the order
and type of the quantifiers.

Mixing Up Quantifiers

Here is a list of different modifications we can make to
the quantifier chain above. (5 is the same as above.)

1. “There is some question that can decode some
secret.”

∃q,∃s, D(q, s).

2. “Every question decodes every secret.”

∀q,∀s, D(q, s).

3. “It is possible to ask any question and sometimes
decode the secret.”

∀q,∃s, D(q, s).

4. “There is some secret that can be decoded by any
question.”

∃s,∀q, D(q, s).

5. “There is some fixed question that can decode any
secret.”

∃q,∀s, D(q, s).

6. “For any secret, we can pick a question to decode
it.”

∀s,∃q, D(q, s).

Before moving on, attempt to determine the truth
of each of these claims. Do not get discouraged; while
some of these require simple counterexamples or short
proofs, others are a bit more involved to prove. I have
arranged them from (what I believe to be) simplest to
prove to most challenging.
Remember that a neat artifact of this notation is that

in order to negate a statement quantified with only ∃s
and ∀s, we can just switch the ∀s and ∃s and negate
the last predicate. For example, the negation of the
sentence

∃a ∈ A,∀b ∈ B,P (a, b)

is the sentence

∀a ∈ A,∃b ∈ B,¬P (a, b).

Each of these six statements is either proven or dis-
proven below.
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1. ∃q,∃s, D(q, s) is true.

Proof. The question q = (1, 1, 1, 1) decodes the
secret sequence s = (1, 1, 1, 1).

2. ∀q,∀s, D(q, s) is false.

Proof. We must show that

∃q,∃s,∃t 6= s,q · s = q · t.

Take q = (1, 1, 1, 1), s = (2, 1, 1, 1), and t =
(1, 2, 1, 1). Then

q · s = 2 + 1 + 1 + 1 = q · t.

3. ∀q,∃s, D(q, s) is true.

Proof. Given any question q = (q1, q2, q3, q4), let
s = (1, 1, 1, 1), and suppose indirectly that there
is some t = (t1, t2, t3, t4) 6= s for which

q1 + q2 + q3 + q4 = q · s
= q · t
= q1t1 + q2t2 + q3t3 + q4t4.

If any ti > 1, then q · t > q · s, so

t1 = t2 = t3 = t4 = 1,

contradicting that s 6= t.

4. ∃s,∀q, D(q, s) is true.

Proof. Let s = (1, 1, 1, 1), and similarly to (3), for
all q = (q1, q2, q3, q4), there is no t 6= s for which

q1 + q2 + q3 + q4 = q · s
= q · t
= q1t1 + q2t2 + q3t3 + q4t4.

5. ∃q,∀s, D(q, s) is false.

Proof. We must show that

∀q,∃s,∃t 6= s,q · s = q · t.

Well, given any q = (q1, q2, q3, q4), let

s = (1 + q2, 1, 1, 1)

and
t = (1, 1 + q1, 1, 1).

Then

q · s = q1(1 + q2) + q2 + q3 + q4

= q1 + q2(1 + q1) + q3 + q4

= q · t.

6. ∀s,∃q, D(q, s) is true.

Proof. Let s = (s1, s2, s3, s4). Pick pairwise rela-
tively prime positive integers a1, a2, a3, and a4,
each greater than max{s1, s2, s3, s4}. Let

q1 = a2a3a4,

q2 = a1a3a4,

q3 = a1a2a4,

q4 = a1a2a3,

and q = (q1, q2, q3, q4). Then assume indirectly
that there is some t = (t1, t2, t3, t4) 6= s for which

q · s = q · t,

or equivalently,

0 = q1(s1−t1)+q2(s2−t2)+q3(s3−t3)+q4(s4−t4).

Since a1 divides the last three terms and 0, a1
must also divide q1(s1 − t1); a1 does not divide
q1, so a1 divides s1 − t1. Because s1 and t1 are
positive integers,

s1 − t1 < s1.

Since a1 > s1 in order to have that a1|s1 − t1, it
must be that t1 ≥ s1. Similarly, t2 ≥ s2, t3 ≥ s3,
and t4 ≥ s4. Then since s 6= t we know that one
of these inequalities is strict. Thus,

q1(s1−t1)+q2(s2−t2)+q3(s3−t3)+q4(s4−t4) < 0,

a contradiction.

Conclusion

Perhaps you are surprised with the results in the previ-
ous section (6 was most surprising to me), but hope-
fully you can see the large differences that quantifi-
cation make in the truth of a statement, as well as
the change in caliber of proof needed to keep up with
the variation. Clearly, this is a difficult topic to teach
budding mathematicians.
Now, are we sure we aren’t missing any combinations

of quantifier chains in our lineup?
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