Pairs of Points

Peter E. Francis

Definition. Two paths $f_{1}: I \rightarrow \mathbb{R}^{2}$ and $f_{2}: I \rightarrow \mathbb{R}^{2}$ are said to properly intersect if there exist $t_{1}, t_{2} \in(0,1)$ for which $f_{1}\left(t_{1}\right)=f_{2}\left(t_{2}\right)$.

That is, f_{1} and f_{2} properly intersect if they intersect at a point other than their endpoints. The paths f_{1} and f_{2} are properly non-intersecting if they share, at most, some of their endpoints.

Question. Does there exist a largest $N \in \mathbb{N}$ for which given any set $P=$ $\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{N}, b_{N}\right)\right\} \subset \mathbb{R}^{2} \times \mathbb{R}^{2}$, there exist pairwise properly non-intersecting paths $f_{j}: I \rightarrow \mathbb{R}^{2}$, such that $f_{j}(0)=a_{j}$ and $f_{j}(1)=b_{j}$? If so, what is it?

Claim. A largest such N exists, and $N=8$.
Proof. Consider $P=\{(0,0),(0,1),(0,2)\} \times\{(1,0),(1,1),(1,2)\}$, so $|P|=9$. The resulting paths between pairs of points are the edges in the $K_{3,3}$ graph, which is not planar; thus, $N<9$.

Suppose we have a set P of 8 pairs of points. We can assume that P contains no symmetric pairs, since any path from a to b that is properly nonintersecting any other is contained in an open tube, in which another path can be drawn. We can also assume that P contains no pair of the form (a, a) since the constant path at a and any other path are properly non-intersecting.

Then the paths between the pairs of points in P form a graph with at most 8 edges, and any graph with at most 8 edges is planar. This follows from Kuratowski's Theorem, since no graph with 8 edges can have a subdivision of K_{5} or $K_{3,3}$ as a subgraph (these graphs have 9 and 10 edges, respectively).

