
Phys205-Week01-Student

September 26, 2019

1 Computational Physics - Week 1
1.1 Table of contents week 1
Computational Physics - Week 1: Section 1
-Table of contents week 1: Section 1.1
-Introduction to week 1: Section 1.2
-Installing Python and Jupyter software: Section 1.3
-Jupyter Notebooks revisited - cells: Section 1.4
-Markdown cells: Section 1.5
–Entering text and tables: Section 1.5.1
–Including links: Section 1.5.2
–Figures: Section 1.5.3
–Entering formulae: Section 1.5.4
-Pandas: Section 1.6
–Reading data into Pandas: Section 1.6.1
–Week 1 exercise 1: Section 1.6.2
-Data analysis: Section 1.7
–Plotting with matplotlib: Section 1.7.1
–Fitting with least_squares: Section 1.7.2
–Week 1 exercise 2: Section 1.7.3
–Week 1 exercise 3: Section 1.7.4
–Week 1 exercise 4: Section 1.7.5

1.2 Introduction to week 1
The Computational Physics module (Phys205) builds on the knowledge you acquired in the In-
troduction to Computational Physics module (Phys105) you took in your first year. The first few
weeks follow a format similar to that used in Phys105: there will be a lecture that introduces an
aspect of Python and then a computer lab in which you will work through a Jupyter Notebook that
contains some exercises. Demonstrators will be available to help with any difficulties you have, and
you should get one of them to mark your work when you have finished it.

The second part of the course, which will start later this semester, consists of a set of short
projects that you will tackle in groups of about three. Example projects could include determining
Feigenbaum’s constant by investigating the behaviour of the logistic map and writing a Monte Carlo
to simulate the determination of π using raindrops. Again, demonstrators will be available to help
you with any technical problems you have. The projects will be assessed through short individual
reports, which should be written as Jupyter Notebooks. If you have any ideas for projects you

1

would like to try, discuss them with me and we will decide if they are suitable!

The final section of the course, which will run in semester 2, consists of longer projects. You
will work on these in groups of six to eight. Possible topics include modelling traffic flow in the
Birkenhead tunnel, and investigating the relationship between the availability of prey and the size
and number of predators in a range of habitats. You will be asked to produce an initial project
plan, describing how you plan to tackle the problem you have been given, and a group report at the
end of the project. You will also give a presentation explaining your project to the other Phys205
groups. Again, if you have any ideas for topics you would like to tackle, please discuss them with
me!

Today, we will start with a reminder on how to install the tools we will be using in the course (the
Python programming language and Jupyter Notebooks) and then look at how data can be imported
into a Python program and analysed using the Pandas package. (We will look at Pandas in more
detail next week.) We will finish by revisiting the problem of fitting data using the least_squares
routine from the SciPy library, which you will be using extensively in Practical Physics II (Phys206).

Today, and in all our Phys205 sessions, please read through the relevant sections of the Notebook
before you try the problems. (Of course, you can miss out revision topics, like how to use Mark-
down, if you are familiar with them!). If you don’t understand anything in the Notebook, or have
difficulties with the problems, ask one of the demonstrators for help. You can also consult the
recommended textbooks (A student’s guide to Python for physical modelling, or Learning scientific
programming with Python), both of which are available in the libary. Alternatively, ask Google -
there is lots of information on Python and Jupyter Notebooks out there!

1.3 Installing Python and Jupyter software
Python and Jupyter Notebooks have aready been installed on the University PCs you will be using
in the Phys205 computing sessions.

If you want to use Python and Jupyter Notebooks on your own computer, you can install the
software required for Windows, Mac or Linux PCs as follows:
Go to the Anaconda web site https://www.anaconda.com/download/. Select Windows, macOS or
Linux, depending on the operating system running on your computer. Download the version of
Anaconda labelled Python 3.7, not the Python 2.7 version. Follow the installation instructions on
the web site.

Once Anaconda is installed, open it and launch Jupyter Notebook to get started:

• On Windows, click the “Anaconda3” icon in the start menu and then “Jupyter Notebook”.

• On Linux, open a terminal window , type in the command “jupyter notebook &” and presss
Enter.

• On a Mac, click on “Anaconda-Navigator” in the LaunchPad and then “Jupyter Notebook”
or open a terminal window, type in the command “jupyter notebook &” and press Enter.

1.4 Jupyter Notebooks revisited - cells
Jupyter Notebooks consist of cells in which nicely formatted documents can be written and cells
which contain computer code. The language used to create the document cells is called Markdown,
and we will use the Python in the code cells.

2

https://press.princeton.edu/titles/11349.html
http://www.cambridge.org/gb/academic/subjects/physics/mathematical-methods/learning-scientific-programming-python?format=PB#07de1fdPT6eysmS0.97
http://www.cambridge.org/gb/academic/subjects/physics/mathematical-methods/learning-scientific-programming-python?format=PB#07de1fdPT6eysmS0.97

When you start a new Notebook, its first cell will be a code cell and any new cell you create will
be a code cell by default. You can create a new cell below the current cell by clicking the “+”
symbol in the Notebook menu bar or by using the Insert menu. (Click on Insert, then on Insert
Cell Above, or Insert Cell Below, as appropriate.) To change a cell’s type to Markdown, select the
cell (by clicking in it) and then click Cell, Cell Type and Markdown. Alternatively, select the cell,
press Esc, then m (for Markdown). You will have to click inside the cell (or press Enter) before it
is selected and you are able to type in it!

A Markdown cell can be changed to a code cell using the Cell menu, or by typing Esc, y.

Cells can be deleted by selecting them and then using the Edit menu, or by pressing Esc, d, d.

1.5 Markdown cells
Markdown is a way of writing nicely formatted text, allowing the inclusion of pictures, web links,
videos and other features in your Notebooks.

To see how this cell was written using Markdown, double click on it.

To “run” or “compile” the cell, so the text is formatted nicely, select the cell (click in it) and press
Ctrl + Enter (i.e. press the Ctrl and Enter keys at the same time, Command + Enter on a Mac).
Alternatively, you can click on the Run button on the menu bar. If you press Shift + Enter, you
will run the current cell and move to the next cell (or create a new cell below the current one if
there isn’t one already there).

Flipping between looking at the Markdown (double click) and the compiled cell (Ctrl + Enter) will
allow you to see how Markdown can be used.

1.5.1 Entering text and tables

If you want to write some normal text, just type it into the cell. If you want to emphasize the text,
you can write in italics (using asterisks before and after the section that you want to be in italics),
or make it bold (using double asterisks). (There are alternative ways of getting italics and of
entering bold text, using single and double underscores.) You can also cross out text (using two
~ symbols before and after the text to be “deleted”).

If you want a new paragraph, press Enter twice, so you produce an empty line.

If you want to start a new line without having a new paragraph, leave two spaces at the end of the
line, like this:
This is a new line.
So is this.

If you want a numbered list, do this: 1. This is the first entry. 2. This is the second. 3. And this
the third.

Bulleted lists are also easy to produce: * This is the first bullet. * And this the second.

If you want to present information in a table, use the following syntax (double click to see the
Markdown!):

Number Angle (degrees) Cosine of angle
0 0 1

3

https://guides.github.com/features/mastering-markdown/

Number Angle (degrees) Cosine of angle
1 30 0.866
2 45 0.707
3 60 0.5
4 90 0.0

Table 1 The value of the cosine of several angles.

(You don’t have to line up the Markdown columns; when you run the cell that will be done
automatically, but it does make reading and editing the Markdown easier!) Notice that you have to
enter the caption “by hand” below the table; table and figure numbers are not entered automatically.

If you want a title or heading, use the hash symbol. (One hash is a title, two a heading, three a
subheading, etc.) For example, here is a subheading…

1.5.2 Including links

Links to pages and videos on the web can be included as is done above (and below) for the
introduction to Markdown. Alternatively, the link can be direct, e.g. https://www.liverpool.
ac.uk.

Links can also be “reference style”. This is where you can find the UK google home page. You can
put the link at the end of the paragraph or cell. This makes the Markdown a little easier to read.
There is no visible difference in the text that results when you run the cell.

Links can be made to sections or figures in the Notebook. For example, back to the section Section
1.5.1. Double clicking this cell will allow you to see how the section is labelled (using a “#” followed
by the section title with the spaces replaced by hyphens, and how a link to that label is created:
the label is not allowed to contain any spaces!).

1.5.3 Figures

Images stored on your computer can be added using the syntax used below (double click the cell
to see it!). The first example uses the path relative to the folder/directory in which the Notebook
is saved:

4

https://guides.github.com/features/mastering-markdown/
https://www.liverpool.ac.uk
https://www.liverpool.ac.uk
http://www.google.co.uk

Figure 1 Cosine as a function of angle

The absolute path can also be used in Markdown as shown below…though you can’t go back further
than the Jupyter start folder/directory. These images are not automatically incorporated if you
convert your markdown to pdf, so the following section is “commented out”. (Anything between
the “<”, “!” and “–” and the “–” and “>” symbols is treated as a comment, i.e. an explanatory
remark, and is not displayed when the Markdown is compiled.)

Figures from the web can be added in the markdown using the syntax shown below.

Again, this has been commented out, as there is no automatic location and conversion of web
images to pdf, so the above lines would have spoiled the pdf version of this Notebook.

If you want to create a pdf file of this Notebook including the above images, you will have to
download the relevant images to your computer and use a local link!

1.5.4 Entering formulae

Mathematical formulae are entered using LaTeX. How this can be done is best illustrated with a
few examples. A formula can be entered “inline” like this: E = mc2. (Notice how the dollar signs
“bracket” the mathematical formula.)

Formulae can also be placed on their own line in the centre of the page using two dollar symbols:

sin2 x+ cos2 x = 1.

Notice how functions like sin and cos (and log, exp etc.) are entered, and how superscripts (x2)
and subscripts (p0) can be obtained. If you need more than one character in a superscript (or
subscript), enclose the relevant section in curly brackets, e.g. xmax.

5

http://mirrors.rit.edu/CTAN/info/lshort/english/lshort.pdf

Note, it is important in Markdown to ensure there are no spaces between the “$” and the characters
in inline formulae. Although spaces are allowed by the LaTeX standard, they can cause problems
when you try and run LaTex on Notebooks, e.g. when using File, Export Notebook as…, LaTeX, or
File, Export Notebook as…, PDF.

Fractions are obtained like this 1
2 , and a vast array of symbols is available, for example:

√
2,

2 ≈ 2.5,
∫ 1
0 x2dx,

∑15
n=0 xn. (See here for more.) Brackets which expand to the required height can

be entered using () or []. Greek letters are written α, β etc. An example combining some of these
features is the formula for the Fermi function:

F (ϵ) =
1

exp
[ϵ−µ
kT

]
+ 1

.

Finally, “inline” segments of computer code can be indicated using reverse quotes, for example:
print("This is a Python 3 print statement"). Three reverse quotes, with a tag indicating
the relevant language, can be used to produce blocks of code. We shall be interested in Python, so
we will be seeing things like:

import numpy as np
import matplotlib.pyplot as plt
#
print("This illustrates how Markdown can be used to format a block of code")
#
for n in range(0, nMax + 1):

print("n =",n)

Note that the “three reverse quotes with language tag” produces code with colours highlighting the
various elements of the language; much clearer than the inline format.

And that’s about all we need to know about Markdown!

Of course, the power of Jupyter Notebooks is that they allow documents and figures in Markdown
cells like this one to be combined with computer code. We will now exploit this by taking a first
look at the Pandas package.

1.6 Pandas
Pandas is a Python library that provides high-performance, easy-to-use data structures and data
analysis tools. It can be thought of as an extremely powerful version of Excel, with a lot more
features! It should already be installed on your computer as part of the Anaconda package, so in
order to use it we just need to import it. We will also import numpy and matplotlib.pyplot, as
we will need these, and use the %matplotlib inline “magic” command to ensure our plots appear
in the Notebook:

[1]: # <!-- Student -->
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

6

1.6.1 Reading data into Pandas

The most useful Pandas data structures are known as DataFrames. Data can be read into them from
a wide range of formats including from comma-separated-variable (csv) files, Excel spreadsheets
(xls or xlsx) and the web (html). Here, we will read in an Excel (xlsx) file. Let’s first have a look
at the file using Excel:

[2]: #<!-- Student -->
!excel Spectrum01.xlsx

That looks OK. Let’s read the file into a DataFrame called df in our Notebook:

[3]: #<!-- Student -->
df = pd.read_excel("Spectrum01.xlsx")
df

[3]: Unnamed: 0 xData xError yData yError
0 0 0.000000 0.048113 1.213715 1.101687
1 1 0.172414 0.048113 1.068080 1.033479
2 2 0.344828 0.048113 5.352066 2.313453
3 3 0.517241 0.048113 4.571977 2.138218
4 4 0.689655 0.048113 5.042432 2.245536
5 5 0.862069 0.048113 2.028153 1.424132
6 6 1.034483 0.048113 4.452245 2.110034
7 7 1.206897 0.048113 2.209224 1.486346
8 8 1.379310 0.048113 9.481829 3.079258
9 9 1.551724 0.048113 8.464667 2.909410
10 10 1.724138 0.048113 16.065005 4.008117
11 11 1.896552 0.048113 46.473266 6.817130
12 12 2.068966 0.048113 100.883753 10.044090
13 13 2.241379 0.048113 114.477995 10.699439
14 14 2.413793 0.048113 90.468280 9.511481
15 15 2.586207 0.048113 36.077287 6.006437
16 16 2.758621 0.048113 14.663739 3.829326
17 17 2.931034 0.048113 12.677617 3.560564
18 18 3.103448 0.048113 13.462261 3.669095
19 19 3.275862 0.048113 20.749554 4.555168
20 20 3.448276 0.048113 21.947589 4.684825
21 21 3.620690 0.048113 17.906467 4.231603
22 22 3.793103 0.048113 18.526115 4.304197
23 23 3.965517 0.048113 23.308507 4.827888
24 24 4.137931 0.048113 9.974797 3.158290
25 25 4.310345 0.048113 17.549180 4.189174
26 26 4.482759 0.048113 25.830562 5.082378
27 27 4.655172 0.048113 29.505515 5.431898
28 28 4.827586 0.048113 19.995142 4.471593
29 29 5.000000 0.048113 25.943390 5.093465

We have the data we want, but also an extra column full of row indices, and a column header

7

Unnamed:0 that we don’t want. We will see next week how we can delete (and add) columns
and rows in DataFrames. For now, we modify the way we read in the data so we don’t get the
unwanted material in the first place!

[4]: #<!-- Student -->
df = pd.read_excel("Spectrum01.xlsx", index_col = 0)
df

[4]: xData xError yData yError
0 0.000000 0.048113 1.213715 1.101687
1 0.172414 0.048113 1.068080 1.033479
2 0.344828 0.048113 5.352066 2.313453
3 0.517241 0.048113 4.571977 2.138218
4 0.689655 0.048113 5.042432 2.245536
5 0.862069 0.048113 2.028153 1.424132
6 1.034483 0.048113 4.452245 2.110034
7 1.206897 0.048113 2.209224 1.486346
8 1.379310 0.048113 9.481829 3.079258
9 1.551724 0.048113 8.464667 2.909410
10 1.724138 0.048113 16.065005 4.008117
11 1.896552 0.048113 46.473266 6.817130
12 2.068966 0.048113 100.883753 10.044090
13 2.241379 0.048113 114.477995 10.699439
14 2.413793 0.048113 90.468280 9.511481
15 2.586207 0.048113 36.077287 6.006437
16 2.758621 0.048113 14.663739 3.829326
17 2.931034 0.048113 12.677617 3.560564
18 3.103448 0.048113 13.462261 3.669095
19 3.275862 0.048113 20.749554 4.555168
20 3.448276 0.048113 21.947589 4.684825
21 3.620690 0.048113 17.906467 4.231603
22 3.793103 0.048113 18.526115 4.304197
23 3.965517 0.048113 23.308507 4.827888
24 4.137931 0.048113 9.974797 3.158290
25 4.310345 0.048113 17.549180 4.189174
26 4.482759 0.048113 25.830562 5.082378
27 4.655172 0.048113 29.505515 5.431898
28 4.827586 0.048113 19.995142 4.471593
29 5.000000 0.048113 25.943390 5.093465

That looks better!

1.6.2 Week 1 exercise 1

Use Excel to create a spreadsheet called TimeTable.xlsx with columns labelled with the days of the
week and two rows, one labelled “morning” and the other “afternoon”. Enter a one in each of the
cells in which you have a lecture, problems class or laboratory and a zero where you are free. Read
the spreadsheet into a DataFrame called dfTimeTable in the cell below this one and then display

8

it.

[5]: #<!-- Student -->

1.7 Data analysis
Last year, we used Python to visualise data in various types of plots using matplotlib.pyplot and
to fit data using the least_squares routine from the SciPy library. We will be doing this again in
the year two laboratories (Phys206), so we will do some quick revision on plotting and fitting here.

1.7.1 Plotting with matplotlib

Let’s first plot the data from Spectrum01.xslx we have read into our DataFrame df. We will see next
week how we can plot directly from Pandas. Here, we will extract the data from the DataFrame
so we can use the plotting procedures we learnt about last year. Let’s look at one of the columns
from the DataFrame:

[6]: #<!-- Student -->
df.xData

[6]: 0 0.000000
1 0.172414
2 0.344828
3 0.517241
4 0.689655
5 0.862069
6 1.034483
7 1.206897
8 1.379310
9 1.551724
10 1.724138
11 1.896552
12 2.068966
13 2.241379
14 2.413793
15 2.586207
16 2.758621
17 2.931034
18 3.103448
19 3.275862
20 3.448276
21 3.620690
22 3.793103
23 3.965517
24 4.137931
25 4.310345
26 4.482759
27 4.655172

9

28 4.827586
29 5.000000
Name: xData, dtype: float64

We see that we get the data we want, but also the indices which we don’t. If we turn the column
into a numpy array, we get the format we need for making a plot:

[7]: #<!-- Student -->
xData = np.array(df.xData)
xError = np.array(df.xError)
yData = np.array(df.yData)
yError = np.array(df.yError)
print(yData)

[1.21371531 1.06807951 5.35206586 4.5719766 5.04243153
2.02815262 4.45224528 2.20922434 9.48182923 8.46466692
16.06500484 46.4732664 100.88375314 114.47799496 90.46827961
36.07728691 14.66373865 12.67761662 13.46226134 20.74955384
21.94758904 17.90646675 18.52611518 23.30850696 9.97479697
17.54918024 25.830562 29.50551547 19.99514177 25.94339013]

Now we can create a figure, define the axes we need and make a plot of the data.

[8]: #<!-- Student -->
#
plt.figure(figsize = (8, 6))
plt.errorbar(xData, yData, xerr = xError, yerr = yError, color = 'r', marker =␣
↪→'o', linestyle = '')

plt.title('Data from DataFrame')
plt.xlabel('x')
plt.ylabel('y')
plt.grid(color = 'g')
plt.savefig('Spect01.png')
plt.show()

10

1.7.2 Fitting with least_squares

The next step is to fit this data. From the plot, we can see that it looks like a peak on top of
some background. The data could perhaps be the measurements of the photon energy spectrum
produced when a radiaoctive material decays. We will assume the peak has a gaussian shape and
that the background can be described by a second order polynomial. The formula for a gaussian
function is:

G(x) =
N√
2πσ

exp
[
−(x− µ)2

2σ2

]
.

Here, N describes the number of events in the gauussian peak, µ is the central (mean) value of the
peak and σ its standard deviation.

The second order (background) polynomial can be written:

P (x) = a+ bx+ cx2.

We want to find the values of the parameters N , µ, σ, a, b and c which best describe the data.
That is, we want to choose these values so that the function F (x) = G(x) + P (x) is as close to all

11

of the measured points as possible. We could do this by finding the parameters which minimise the
distance between the measured points (xi ± εx,i, yi ± εy,i) and the value of the function at those
points (xi, F (xi)). That is, choose N , µ, σ, a, b and c so that

∑
|yi − F (xi)| is as small as possible.

1.7.3 Week 1 exercise 2

Explain why we have to minimise
∑

|yi − F (xi)| rather than
∑

yi − F (xi).

1.7.4 Week 1 exercise 3

In which of the Python functions below: 1. Is ∂F
∂x calculated? 2. Is χ = y−F (x)

e calculated?

[9]: # <!-- Student -->
from scipy.optimize import least_squares
#
def fitFunc(p, x):

'''
Gaussian plus polynomial (order 2)
'''
f = p[0]/(np.sqrt(2*np.pi)*p[2])*np.exp(-(x - p[1])**2/(2*p[2]**2)) + p[3]␣

↪→+ p[4]*x + p[5]*x**2
return f

#
def fitFuncDiff(p, x):

'''
Differential of fit function
'''
df = p[0]/(np.sqrt(2*np.pi)*p[2])*(x - p[1])/p[2]**2*np.exp(-(x - p[1])**2/

↪→(2*p[2]**2)) + p[4] + 2*p[5]*x
return df

#
def fitChi(p, x, y, xerr, yerr):

'''
Calculation of chi for fit function and data
'''
chi = (y - fitFunc(p, x))/(np.sqrt(yerr**2 + fitFuncDiff(p, x)**2*xerr**2))
return chi

We provide initial values of the nParams parameters in p then run the fit. The better our initial
guesses are, the more likely the fit is to find the correct values. We can use the plot we have made
to help us pick sensible values. E.g. the mean of the gaussion mu can be seen to be about 2.5.
We can also provide upper and lower bounds for the values of p usung the arrays lBounds and
uBounds. The values used here (±∞) clearly have no effect! We do not have to give bounds; if
they are not needed, just omit the argument bounds from the call to least_squares.

[10]: # <!-- Student -->
#
Set initial values of fit parameters

12

nParams = 6
pInit = [50.0, 2.0, 0.2, 1.0, 1.0, 1.0]
lBounds = [-np.inf, -np.inf, -np.inf, -np.inf, -np.inf, -np.inf]
uBounds = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf]
out = least_squares(fitChi, pInit, args = (xData, yData, xError, yError),␣
↪→bounds = (lBounds, uBounds))

#

The values returned by least_squares are all contained in the object out. The first one we look
at we label fitOK. This is a boolean variable that tells us if the fit has run. We also transfer the
fitted parameters into the array pFinal. This contains the fitted values of the parameters N , µ, σ,
a, b and c in the same order that we used to p.

We also calculate and print out the values of the statistics χ2 and χ2/NDF which describe how well
the fitted function matches the data. We calculate the errors on the fitted parameters by inverting
the squared Jacobian matrix to get the covariance matrix covar. The diagonal components of
covar are the squared errors of the fitted parameters. E.g. the error on N is covar[0, 0], the
error on µ is covar[1, 1], the error on σ is covar[2, 2] etc.

Finally, we plot the data again and add a line describing the fitted function.

[11]: # <!-- Student -->
#
fitOK = out.success
#
Test if fit failed
if not fitOK:

print(" ")
print("Fit failed")

else:
#
Fit worked, so get output
pFinal = out.x
N = pFinal[0]
mu = pFinal[1]
sigma = pFinal[2]
a = pFinal[3]
b = pFinal[4]
c = pFinal[5]
#
Calculate chis**2 per point, summed chi**2 and chi**2/NDF
chisqArr = fitChi(pFinal, xData, yData, xError, yError)**2
chisq = np.sum(chisqArr)
nPoints = len(xData)
NDF = nPoints - nParams
redchisq = chisq/NDF

#
np.set_printoptions(precision = 3)

13

print(" ")
print("Fit quality:")
print("chisq per point = \n",chisqArr)
print("chisq = {:5.2f}, chisq/NDF = {:5.2f}.".format(chisq, redchisq))
#
Compute covariance
jMat = out.jac
jMat2 = np.dot(jMat.T, jMat)
detJmat2 = np.linalg.det(jMat2)
#
Check whether cavariance matrix can be calculated
if detJmat2 < 1E-32:

#
It can't, print out values of parameters without errors
print("Value of determinat detJmat2",detJmat2)
print("Matrix singular, error calculation failed.")
print(" ")
print("Parameters returned by fit:")
print("N = {:5.2f}".format(N))
print("mu = {:5.2f}".format(mu))
print("sigma = {:5.2f}".format(sigma))
print("a = {:5.2f}".format(a))
print("b = {:5.2f}".format(b))
print("c = {:5.2f}".format(c))
print(" ")
errN = 0.0
errmu = 0.0
errsigma = 0.0
erra = 0.0
errb = 0.0
errc = 0.0

else:
#
Covariance matrix is OK, calculate errors
covar = np.linalg.inv(jMat2)
errN = np.sqrt(covar[0, 0])
errmu = np.sqrt(covar[1, 1])
errsigma = np.sqrt(covar[2, 2])
erra = np.sqrt(covar[3, 3])
errb = np.sqrt(covar[4, 4])
errc = np.sqrt(covar[5, 5])
#
print(" ")
print("Parameters returned by fit:")
print("N = {:5.2f} +- {:5.2f}".format(N, errN))
print("mu = {:5.2f} +- {:5.2f}".format(mu, errmu))
print("sigma = {:5.2f} +- {:5.2f}".format(sigma, errsigma))

14

print("a = {:5.2f} +- {:5.2f}".format(a, erra))
print("b = {:5.2f} +- {:5.2f}".format(b, errb))
print("c = {:5.2f} +- {:5.2f}".format(c, errc))
print(" ")

#
Calculate fitted function values (using lots of points so we get a nice␣

↪→smooth curve!)
nPlot = 100
xPlot = np.linspace(np.min(xData), np.max(xData), nPlot)
fitPlot = fitFunc(pFinal, xPlot)
#
Plot data
fig = plt.figure(figsize = (8, 6))
plt.title('Data with fit')
plt.xlabel('x')
plt.ylabel('y')
plt.errorbar(xData, yData, xerr = xError, yerr = yError, color = 'r',␣

↪→marker = 'o', linestyle = '', label = "Data")
plt.plot(xPlot, fitPlot, color = 'b', marker = '', linestyle = '-', label =␣

↪→"Fit")
edge = 0.1
xLow = np.min(xData) - edge*np.abs(np.max(xData) - np.min(xData))
xHigh = np.max(xData) + edge*np.abs(np.max(xData) - np.min(xData))
plt.xlim(xLow, xHigh)
yLow = np.min(yData) - edge*np.abs(np.max(yData) - np.min(yData))
yHigh = np.max(yData) + edge*np.abs(np.max(yData) - np.min(yData))
plt.ylim(yLow, yHigh)
plt.grid(color = 'g')
plt.legend(loc = 2)
plt.show()

Fit quality:
chisq per point =
[3.107e-03 2.418e-01 2.049e+00 9.183e-01 8.000e-01 1.156e+00 2.251e-02
2.847e+00 1.712e+00 1.372e-01 1.164e-02 1.216e-02 3.339e-02 7.673e-02
2.610e-01 1.253e-03 1.370e-01 3.822e-04 8.455e-03 2.176e+00 2.210e+00
2.121e-01 1.314e-01 1.205e+00 8.209e+00 3.855e-01 7.995e-01 1.693e+00
6.467e-01 4.979e-02]
chisq = 28.15, chisq/NDF = 1.17.

Parameters returned by fit:
N = 61.11 +- 5.68
mu = 2.21 +- 0.03
sigma = 0.22 +- 0.02
a = 1.15 +- 0.77
b = 2.40 +- 1.32

15

c = 0.47 +- 0.30

1.7.5 Week 1 exercise 4

Read in the spreadsheet Spectrum02.xlsx. Plot the data. Try to fit it using a gaussian to describe
the peak and a straight line to represent the background.

That’s the end of Week 1 for Phys205. You will have a chance to practice using the plotting and
fitting routines we have revised here in Practical Physics II (Phys 206)!

16

	Computational Physics - Week 1
	Table of contents week 1
	Introduction to week 1
	Installing Python and Jupyter software
	Jupyter Notebooks revisited - cells
	Markdown cells
	Entering text and tables
	Including links
	Figures
	Entering formulae

	Pandas
	Reading data into Pandas
	Week 1 exercise 1

	Data analysis
	Plotting with matplotlib
	Fitting with least_squares
	Week 1 exercise 2
	Week 1 exercise 3
	Week 1 exercise 4

