
1 Summary of things done, and of things expected
to be accomplished

Let Σg denote the orientable surface of genus g, g ≥ 0. The goal is to compute
the effective topological complexity TCσ,2(Σg), where σ is the standard free
involution on Σg with orbit space Ng+1. The driving philosophy is that
TCσ,2(Σg) establishes a lower bound for TC(Ng+1), with the final hope that
the determination of TCσ,2(Σg) could shed some light on TC(Ng+1).

Already from the introduction of the TC-ideas, TC(Ng+1) has stood as
a surprisingly difficult number to evaluate. Much of the problem comes
from the fact that the usual cohomological bound for TC(Ng+1) does not
give (at least on the nose) a sharp estimate, as the corresponding one in the
oriented case. However, the cohomological lower bound for TCσ,2(Σg) holds
in the cohomology of the cartesian product Σg × Σg, instead of the product
Ng+1 ×Ng+1, which motivated us to take a closer look.

Notation 1.1. Let G denote a discrete group acting freely on a space X.
More generally, G is a topological group acting principally on X, that is, the
action is free and the resulting “translation” map τ : k(X)→ G determined
by τ(x, y)x = y is continuous (in particular k(X) is homeomorphic to X×G).
For z ∈ X, let z stand for the constant path at z.

Fact 1.2. The map f : X × G → P2(X) = P (X) ×X/G P (X) given by
f(x, g) = (x, gx) is a homotopy equivalence. Furthermore, the inclusion
j : X × G → X × X given by j(x, g) = (x, gx) factors as π2 ◦ f . In other
words, π2 is a fibrational replacement of j.

Proof. The equality j = π2 ◦ f is elementary. The map f ′ : P2(X)→ X ×G
given by f ′(φ, ψ) = (φ(1), τ(φ(1), ψ(0))) clearly satisfies f ′ ◦ f = 1X×G. A
homotopy H : P2(X)× [0, 1]→ P2(X) between f ◦ f ′ and 1P2(X) is given by
H(φ, ψ, t) = (φt, ψt), where φt(s) = φ((1− t) + st) and ψt(s) = ψ(st).

Note that in cohomology we have the following commutative diagram.

H∗(X ×X)

H∗ (P2(X)) H∗(X ×G)

π∗2
j
∗

f∗
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As f∗ is an isomorphism, ker j∗ = kerπ∗2, and we can focus on identifying
suitable elements in ker j∗ with a non-trivial product.

2 Surfaces with orientation reversing involutions

Every surface Σg admits an embedding into R3 such that the antipodal map
on R3 restricts to σ. Thus σ can be viewed as given by three consecutive
reflections through the planes perpendicular to the standard axes.

Since there is no torsion in cohomology of Σg the tensor product of coho-
mology rings H∗(Σg) agrees with the cohomology of the product. Therefore
we are interested in the map

j∗ : H∗(Σg;R)⊗H∗(Σg;R)→ H∗(Σg;R)⊕H∗(Σg;R)

which is determined by ω ⊗ 1 7→ (ω, ω) and 1 ⊗ ω 7→
(
ω, σ∗(ω)

)
. In what

follows, [Σg] stands for the fundamental class of Σg (our choice of orientation
is indicated in each case below). We will write x∗ for the dual cohomology
class of a homology class x ∈ H∗(Σg) – this is well defined as Σg is torsion
free. It is also worth remarking that TC is taken in the reduced sense.

Genus 0

It is known that TC(RP2) = 3, whereas TCσ,2(S2) = 1. Consequently, the
latter number is a non-sharp lower bound for the former one. However, the
equality TCσ,2(S2) = 1 is detected sharply using the cohomological method
we propose. Indeed, in view of Fact 1.2, [S2]∗ ⊗ [S2]∗ maps to zero under j∗

for dimensional reasons.
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Genus 1

Recall that TC(N2) ∈ {3, 4} is all that is currently known for the (usual)
topological complexity of the Klein bottle N2. We will now show that

TCσ,2(Σ1) = 2. (1)

Fix a coefficient ring R and choose the standard generators x and y in
H1(S1 × S1;R) with orientations prescribed as in the picture below.

x

y

It follows from the geometric description of σ as consecutive reflections
through the horizontal, back and perpendicular planes, that

x 7→ x 7→ −x 7→ x,

y 7→ −y 7→ −y 7→ −y.

Therefore, σ∗(x∗) = x∗, σ∗(y∗) = −y∗ and, consequently, σ∗(x∗y∗) =
−x∗y∗ = [Σ1]∗, where the last equality is fixed by the choice of (orien-
tations of) generators, i.e. by convention. (The choosing of fundamental class
is only an issue at larger genera.) Marek: I am not

sure the comment
in blue is neces-
sary

From now on we drop the dualising ∗ from our notation:
x may correspond to both a homology cycle or its dual,
depending on the contex.

We can describe

j∗ : [H∗(Σ1;R)⊗H∗(Σ1;R)]1 → H1(Σ1;R)⊕H1(Σ1;R)
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using simple R-linear algebra. Choose (x ⊗ 1, y ⊗ 1, 1 ⊗ x, 1 ⊗ y) and(
(x, 0), (y, 0), (0, x), (0, y)

)
as bases of the domain and codomain, respec-

tively. Then j∗ is represented by the following matrix.

J1
1 =


(x,0) (y,0) (0,x) (0,y)

x⊗1 1 0 1 0
y⊗1 0 1 0 1
1⊗x 1 0 1 0
1⊗y 0 1 0 −1


If −1 = 1 in R, the kernel of j∗ is 2-dimensional, generated by elements
ā = x⊗ 1 + 1⊗ x and ā′ = y ⊗ 1 + 1⊗ y. Their product,

āā′ = xy ⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ xy,

is non-zero, which shows that 2 ≤ TCσ,2(Σ1). Since TCσ,2(Σ1) ≤ TC(Σ1) = 2
by design, we obtain equality.

Genus 2

Recall TC(N3) ∈ {3, 4} is all that is currently known for the (usual) topolog-
ical complexity of the non-orientable closed surface N3 of genus 3. We will
now show that cohomological methods imply that

3 ≤ TCσ,2(Σ2). (2)

Fix some coefficient ring R. The picture included below showcases our
preferred choice of generators x1, y1, x2, y2 of H1(Σ2;R). Their duals satisfy
x1y1 = x2y2 = −[Σ2], where our choice of fundamental class follows standard
conventions.

x1

y1

x2

y2

The cohomology ring H∗(Σ2;R) is generated by (the duals of) x1, y1, x2,
and y2. Note that their products vanish except for the two indicated above.
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Similarly as before, we determine the images of consecutive reflections to be

x1 7−→ x1 7−→ −x1 7−→ −x2,

y1 7−→ −y1 7−→ −y1 7−→ y2.

Consequently, the action induced on cohomology is determined by σ∗(x1) =
−x2 and σ∗(y1) = y2. Using appropriate bases, we can describe j∗ as a linear
operator given by the matrix

J1
2 =



(x1,0) (y1,0) (x2,0) (y2,0) (0,x1) (0,y1) (0,x2) (0,y2)

x1⊗1 1 0 0 0 1 0 0 0
y1⊗1 0 1 0 0 0 1 0 0
x2⊗1 0 0 1 0 0 0 1 0
y2⊗1 0 0 0 1 0 0 0 1
1⊗x1 1 0 0 0 0 0 −1 0
1⊗y1 0 1 0 0 0 0 0 1
1⊗x2 0 0 1 0 −1 0 0 0
1⊗y2 0 0 0 1 0 1 0 0


.

If we set R = Q, the kernel of J1
2 is spanned by

b = (x1 − x2)⊗ 1− 1⊗ (x1 − x2) and

c = (y1 + y2)⊗ 1− 1⊗ (y1 + y2).

These have trivial squares, so the only non-zero product is

bc = (x2 − x1)⊗ (y1 + y2) + (y1 + y2)⊗ (x1 − x2).

(For R = F2, the kernel is still 2-dimensional, spanned by b̄ and c̄, the
reductions of b and c. Their squares are still zero, and their product is still
non-zero.)

This of course shows that 2 ≤ TCσ,2(Σ2). There is room for improvement,
though: we will describe elements in H2(Σ2 × Σ2;Q) which belong to the
kernel of j∗ and multiply to something non-zero with bc. This will establish
the asserted lower bound 3 ≤ TCσ,2(Σ2).

Description of ker j∗ in dimension 2. Consider the map

j∗ : H2(Σ2 × Σ2;Q)→ H2(Σ2;Q)⊕H2(Σ2;Q).

Its domain is 18-dimensional (as a Q-vector space), spanned by [Σ2] ⊗ 1,
1⊗[Σ2] and 16 different elements of the form u⊗v, where u, v ∈ {x1, y1, x2, y2}.
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The codomain is spanned by two elements,
(
[Σ2], 0

)
and

(
0, [Σ2]

)
. As

j∗
(
[Σ2]⊗ 1

)
=
(
[Σ2], [Σ2]

)
,

j∗
(
1⊗ [Σ2]

)
=
(
[Σ2], σ∗[Σ2]

)
=
(
[Σ2],−[Σ2]

)
,

the kernel of j∗ will clearly be 16-dimensional. The multiplicative structure
in H∗(Σ2;Q) yields:

j∗(xi ⊗ xj) = (0, 0),

j∗(yi ⊗ yj) = (0, 0),

j∗(xi ⊗ yi) = j∗(xi ⊗ 1)j∗(1⊗ yi) = (xi, xi)(yi, σ
∗yi) =

(
− [Σ2], 0

)
,

j∗(yi ⊗ xi) = j∗(yi ⊗ 1)j∗(1⊗ xi) = (yi, yi)(xi, σ
∗xi) =

(
[Σ2], 0

)
.

Furthermore, for i 6= j,

j∗(xi ⊗ yj) = j∗(xi ⊗ 1)j∗(1⊗ yj) = (xi, xi)(yj , σ
∗yj) =

(
0,−[Σ2]

)
,

j∗(yi ⊗ xj) = j∗(yi ⊗ 1)j∗(1⊗ xj) = (yi, yi)(xj , σ
∗xj) =

(
0, [Σ2]

)
.

Consequently, the matrix J2
2 representing j∗ in dimension 2 has the form Marek: You wrote(

0,−[Σ2]
)
, which

I believe is not cor-
rect

Marek: since at
the beginning of
the paragraph we
restrict our atten-
tion to H2 I don’t
think this is neces-
sary.

J2
2 =



([Σ2],0) (0,[Σ2])

1⊗[Σ2] 1 −1
[Σ2]⊗1 1 1
x1⊗x1 0 0
x1⊗y1 −1 0
x1⊗x2 0 0
x1⊗y2 0 −1
y1⊗x1 1 0
y1⊗y1 0 0
y1⊗x2 0 −1
y1⊗y2 0 0
x2⊗x1 0 0
x2⊗y1 0 −1
x2⊗x2 0 0
x2⊗y2 −1 0
y2⊗x1 0 −1
y2⊗y1 0 0
y2⊗x2 1 0
y2⊗y2 0 0



.
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Obviously, all eight elements xi⊗xj and yi⊗yj generate a direct summand
K of ker J2

2 , and all these elements multiplied by bc yield 0. The complement
K⊥ of K in ker J2

2 is generated by the following eight elements:

[Σ2]⊗ 1 + y2 ⊗ x1 − y2 ⊗ x2

1⊗ [Σ2] − y2 ⊗ x1 − y2 ⊗ x2

x1 ⊗ y1 + y2 ⊗ x2

x1 ⊗ y2 − y2 ⊗ x1

y1 ⊗ x1 − y2 ⊗ x2

y1 ⊗ x2 − y2 ⊗ x1

x2 ⊗ y1 − y2 ⊗ x1

x2 ⊗ y2 + y2 ⊗ x2

Of those, only the following five multiply with bc non-trivially:

bc (1⊗ [Σ2]− y2 ⊗ x1 − y2 ⊗ x2) = −2[Σ2]⊗ [Σ2],

bc (x1 ⊗ y1 + y2 ⊗ x2) = 2[Σ2]⊗ [Σ2],

bc (x1 ⊗ y2 − y2 ⊗ x1) = −2[Σ2]⊗ [Σ2],

bc (y1 ⊗ x1 − y2 ⊗ x2) = −2[Σ2]⊗ [Σ2],

bc (y1 ⊗ x2 − y2 ⊗ x1) = −2[Σ2]⊗ [Σ2].

(3)

Note that all of these products vanish in characteristic 2.

Genus 3

The relevant is depicted in the figure below. As in the previous cases, we
have chosen orientations so that x1y1 = xy = x2y2 = −[Σ3].

x

y

x1

y1

x2

y2

The map induced by σ on cohomology is given by: In the eventual
paper, we could
mention about
why σ∗(y) = −y
(the only non-
obvious relation).
The reason
supporting this
equality was the
trick you guys
noted about
the fact that
homology in
dimenson 1 (as in
dimension 2, but
not in iihigher di-
mensions) is given
in terms of loops
modulo oriented
cobordisms

x 7→ x, y 7→ −y,
x1 7→ −x2, y1 7→ y2,

x2 7→ −x1, y2 7→ y1.
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Clearly, j∗ : [H∗(Σ3;R)⊗H∗(Σ3;R)]1 → H1(Σ3;R) ⊕ H1(Σ3;R) can be
represented by the block sum

Marek: techni-
cally speaking we
described J1

2 only
over Q, although
the general
picture should
look the same in
any coefficients R.

J1
3 =

( x, y x1, y1, x2, y2

J1
1 0
0 J1

2

)
.

For R = Q, the kernel of J1
3 is thus the direct sum of kernels and hence

generated by a, b and c, where a = x⊗ 1− 1⊗x (see the genus 1 case), and b
and c are as in the genus 2 case. As ab = ac = 0, the only non-zero product
among those is bc. The same products as in (3) above, with Σ2 replaced by
Σ3, are non-zero, which shows that 3 ≤ TCσ,2(Σ3).

In characteristic 2 (where we could have hoped to obtain a non-zero
product of length 4), we have four independent vectors in the kernel of J1

3 :
ā, ā′, b̄ and c̄. However, ā and ā′ are supported on {x, y}, while b̄ and c̄ are
supported on on {x1, y1, x2, y2}. Since cup product is distributive and the
set of products of the supports consists of 0, all “cross” products āb̄, ā′b̄, ā′c̄
and āc̄ vanish, and so does āā′b̄c̄.

To summarize, the best possible lower bound on TCσ,2 obtained by purely
cohomological methods is 3, and it is established in rational (or, for that
matter, with integer) coefficients.

Higher genera

Based on the cases g = 1 and g = 2, we can prove that

3 ≤ TCσ,2(Σg)

for g > 3.
For Σg with g = 2k, k ≥ 2, one can partition the standard generating set

into k groups of 4 elements, {x2i−1, y2i−1, x2i, y2i}, each invariant under σ∗.
In every group the involution σ is given by

x2i−1 7→ −x2i,

y2i−1 7→ y2i,

analogously to the case g = 2. With this basis, the map j∗ in the first
gradation can be described by

J1
g =

k⊕
i=1

J1
2 ,
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a block matrix of k-copies of J1
2 . It is clear that any of the products (3) will

give the lower bound 3 ≤ TCσ,2(Σg), exactly as in the case g = 2. Moreover,
the multiplicative structure of H∗(Σg) (with any coefficients) prohibits the
existence of non-zero products across different “groups of four”.

For Σg with g = 2k + 1, k ≥ 2, the map j∗ in the first gradation can be
described by

J1
g = J1

1 ⊕ Jkg−1 = J1
1 ⊕

k⊕
i=1

J1
2 .

Again, one of the products (3) provides the required bound.
In both cases all four-fold products vanish. This shows that the upper

bound on the length on non-zero products in ker j∗ is 3 as well.

3 A short summary of the situation for g ≥ 2

We now have all details in place showing

3 ≤ TCσ,2(Σg), for g ≥ 2. (4)

Furthermore, the fine detailed analysis done by Marek and Zbigniew shows
that the naive cohomological method cannot be used for improving (4) to
4 ≤ TCσ,2(Σg). So, the next (hoped for) goal would be to actually construct
effective motion planners exhibiting the opposite inequality: TCσ,2(Σg) ≤ 3.
If we succeed in such a construction, then it would make sense that, in the
eventual paper arising from this work, we simplify the argument proving (4)
to simply exhibiting three “effective zero divisors” with non-zero product.
Such a task is rather straightforward, and I will record it below.

Start by recalling that the cohomology (Z-coefficients suffices) H∗(Σg)
is a torsion-free ring generated by 1-dimensional classes x1, y1, . . . , xg, yg.
All products among these generators vanish, except for xiyi, 1 ≤ i ≤ g,
each of which agrees with the (negative, by convention, of the) (dual of
the) fundamental class [Σg]. The oriented picture, showing the first four
generators, is

As we have checked over and over, the cohomology action of σ on the first
four generators is determined by σ∗(x1) = −x2 and σ∗(y1) = y2. We also
know that the map

j∗ : H∗(Σg;R)⊗H∗(Σg;R)→ H∗(Σg;R)⊕H∗(Σg;R)
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is determined by j∗(ω⊗1) = (ω, ω) and j∗(1⊗ω) =
(
ω, σ∗(ω)

)
. Then we can

simply say that it is a straightforward task to check that the three classes

b = (x1 − x2)⊗ 1− 1⊗ (x1 − x2),

c = (y1 + y2)⊗ 1− 1⊗ (y1 + y2),

d = x1 ⊗ y1 + y2 ⊗ x2

are effective zero-divisors (i.e. they lie in the kernel of j∗ and, consequently,
in the kernel of π∗2) with a non-trivial product bcd = 2[Σg]⊗ [Σg] 6= 0.

4 Effective motion planners

Let us now get into matters by discussing a possible way to construct effective
motion planners for (Σg, σ) —hoping to have a total of four local rules.

In my original proposal (when I described this problem to Bárbara in a
mail to the four of us), I started as follows:

Suppose U is an open set of Σg × Σg admitting an effective local rule
s : U → P2(Σg), that is, a lifting of the inclusion U ↪→ Σg × Σg along the
projection π2 : P2(Σg)→ Σg ×Σg. We have already noted that P2(Σg) is the
topological disjoint union of two copies of the usual free path space P (Σg).
Explicitly, let us write

P2(Σg) = P e(Σg)
∐

P σ(Σg)

where P e(Σ) is the really usual path space P (Σg), and P σ(Σg) corresponds
to the condition “α(1) = σ · β(0)”. Write U =

∐
i Ui, the path-connected

decomposition of U (this is also a topological disjoint union by local path-
connectedness). Each s(Ui) is contained in either P e(Σg) or P σ(Σg).

• If s(Ui) ⊆ P σ(Σg), then let U i be the image of Ui under the homeo-
morphism Σg ×Σg → Σg ×Σg which sends u = (a, b) into u = (a, σ · b),
and let s be defined on U i by s(u) = (α, σ · β) where s(u) = (α, β).
All these definitions fit into an obvious commutative diagram, which
makes it clear that s : Ui → P e(Σg) is a local section of π2.

• On the other hand, if Ui ⊆ P e(Σg), let U i = Ui, and let s = s on Ui.

Then consider the open set U :=
⋃
i U i.

A problem I did not see in that letter to the four of us is that, since the
Ui’s might certainly fail to be mutually disjoint, the above considerations
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might fail to yield a well defined local section s : U → P2(Σ2) of the usual
double evaluation map e2 : P (Σg)→ Σg × Σg.

Of course, I wanted to use the above (now flawed) considerations as
a suggestion that, in looking for effective motion planners for (Σg, σ), we
could try to construct standard motion planners for Σg, but substituting the
constrain that the local domains should cover all of Σg × Σg, by the (softer)
constraint that, for any (a, b) ∈ Σg ×Σg, at least one of (a, b) or (a, σ · b) lies
in the union of the proposed local domains.

Even though the above motivation is flawed, the idea could still be used
as a heuristic guide to constructing the required effective motion planners.
In such a direction, the following paragraphs are intended to construct (with
g = 2, as a warm-up) four ENR’s in Σ2 × Σ2 with corresponding local rules
for the usual double evaluation map e2 : P (Σ2) → Σ2 × Σ2, in such a way
that these four ENR’s cover Σ2 ×H, where H is “half” of Σ2 —say H is
the “left” connected-sum summand in Σ2 = Σ1#Σ1 (recall that the action
of σ switches these two halves). Actually, such four ENR’s can be shown to
exist by an easy dimensional argument (see Lemma 4.1 below), but I am
hoping that well-controlled explicit nice formulas could allow us to sort out
the problem noted above, and end up with the required optimal effective
motion planner. Of course, the task I proposed Bárbara to address was the
construction of such well-controlled explicit formulas.

Before describing the work that Bárbara has done (which I am still in
the process of checking in detail), let me give a theoretic argument for the
existence of four ENR’s as described above (but without giving explicit nice
formulas that, as I have explained, should help us to solve the flaw above).
The task can equivalently be put in the following terms:

Lemma 4.1. Let e : P → Σ2 ×H be the (strict) pull-back (i.e. restriction)
of the usual double evaluation map e2 : P (Σ2)→ Σ2×Σ2 under the inclusion
Σ2 ×H ↪→ Σ2 × Σ2. Then secat(e) ≤ 3.

Proof. Note that H deformation retracts to an obvious 1-dimensional CW
complex. Therefore σ2 ×H has the homotopy type of a 3-dimensional CW
complex, and the assertion of the lemma follows.

Remark 4.2. The above type of ideas should work just as well for higher
genera. In such a direction, it might help to note that H could be taken as
the the “top” part of Σg that results from cutting (horizontally) Σg as if we
were to prepare a bagel. Such an H deformation retracts to the following
graph.
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...

Next Bárbara’s explicit formulas... (to be continued.)

5 Effective motion planners (reloaded)

Subsection 5.1 below contains an update of the original idea to construct
an effective motion planner for (Σ2, σ) with four local rules, as well as a
discussion of why such original idea is doomed to fail. Then Subsection 5.2
below explains a new idea to construct an effective motion planner for (Σ2, σ)
with four local rules. The new idea is still in progress, but Barbara and
I want to share it with you, guys, hoping that your feedback can help to
unmask the situation.

Remark 5.1. Despite what I will say below, I would still have some doubts
about the possibility that

TCσ(Σg) = 3 (5)

would be the right answer (even for some concrete g). For instance, for genus
zero we know that

TCantipodal(S2) = 1 while TC(S2) = 2, (6)

which is a similar behavior to that in the potential (5) and the well-know
TC(Σg) = 4 for g ≥ 2. However, (6) is not the situation for genus one, where
we have

TCantipodal(S1 × S1) = TC(S1 × S1) = 2, (7)

as noted in (1).

5.1 The original (but unsuccessful) try

As observed in previous notes, the total space of the map

π2 : P2(Σ2)→ Σ2 × Σ2

defining TCσ,2 decomposes as a topological (disjoint) union

P2(Σ2) = P e(Σ2)
∐

P σ(Σ2)
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where both P e(Σ2) and P σ(Σ2) are copies of the free path space P (Σ2). In
such terms, π2 takes the form

π2(γ) =

{
e2(γ) = (γ(0), γ(1)), γ ∈ P e(Σ2);

ε2(γ) = (γ(0), σ · γ(1)), γ ∈ P e(Σ2).

Here e2 is the usual double evaluation map defining TC, while ε2 will be
referred to as the twisted evaluation map.

Suppose now that U is an open set of Σ2×Σ2 admitting an effective local
rule s : U → P2(Σ2), that is, s is a lifting of the inclusion U ↪→ Σ2×Σ2 along
the projection π2. Write U =

∐
i Ui, the path-connected decomposition of U

(this is also a topological disjoint union by local path-connectedness). For
each i, let Ũi stand for the image of Ui under the homeomorphism

1× σ : Σ2 × Σ2 → Σ2 × Σ2, (8)

and let Ũ =
∐
i Ũi = (1× σ)(U). Each s(Ui) is contained in either P e(Σ2)

or P σ(Σ2).

• If s(Ui) ⊆ P σ(Σ2), then the composition

Ũi
1×σ∼= Ui

s→ P σ(Σ2) = P e(Σ2)

is a lifting of the inclusion Ũi ↪→ Σ2 × Σ2 along e2 = π2|P e(Σ2).

• Likewise, if s(Ui) ⊆ P e(Σ2), then the composition

Ũi
1×σ∼= Ui

s→ P e(Σ2) = P σ(Σ2)

is a lifting of the inclusion Ũi ↪→ Σ2 × Σ2 along ε2 = π2|Pσ(Σ2).

The two points above can be summarized in terms of the automorphism
τ : P2(Σ2)→ P2(Σ2) than interchanges P e(Σ2) with P σ(Σ2). Namely,

Fact 5.2. Let s be a lifting of the inclusion U ↪→ Σ2 × Σ2 along π2. Then
the composition

Ũ
1×σ∼= U

s→ P2(Σ2)
τ∼= P2(Σ2)

is a lifting of the inclusion Ũ ↪→ Σ2 × Σ2 along π2.
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In the original idea, I wanted to take advantage of Fact 5.2. Explicitly, if
one already has an effective local rule s : U → P2(Σ2) such that

U and Ũ are topologically separated (9)

(in the sense that the closure of one does not intersect the other), then one
gets for free an effective local rule on the larger U

∐
Ũ . In more detail, recall

σ interchanges the left portion L (front portion F , north portion N) of Σ2

with the right portion R (back portion B, south portion S, respectively) of
Σ2. Then one could hope to produce four local rules for e2 covering Σ× L
and then use Fact 5.2 to extend them for free to four effective local rules
covering the whole of Σ2 × Σ2 —the goal that we are after. The plausibility
of this idea comes from the observation that Σ2 × L has the homotopy type
of a cell complex of dimension 3, so that there do exist four local rules for e2

covering Σ2 × L. The complication here comes from the fact that (9) will
not be fulfilled if we are to cover Σ×L, so that the four local rules for e2 on
Σ2 × L have to be constructed with certain care so that

they fit correctly with the four extended local
rules for ε2 on the common portion Σ× (L ∩R).

(10)

The bad news is that, although Bárbara has constructed (I believe several
sets of) four explicit local rules for e2 covering Σ2×L, problems appear when
dealing with (10). Even worst, I now see that the setting in this approach
is doomed to fail. Namely, there is just no way that four local sections for
e2 covering Σ2 × L could agree on Σ2 × (L ∩R) with their freely-obtained
extensions to sections of ε2, for the former were supposed to land on P e(Σ2),
while the latter would have to land on P σ(Σ2).

Remark 5.3. It is worth mentioning, though, that the intrinsic problem
noted in the setting above could be avoided in principle by starting with
four effective (and suitable, so to deal with (10)) local rules for π2 on Σ2×L

—instead of four local rules for e2 covering Σ2 × L. However, so far, Barbara
and I do not have an idea on how to construct such four effective local rules.

In the next subsection I describe an new idea, which is inspired by Marek
and Zbigniew’s description of an optimal effective motion planner on S2.

14



5.2 The new idea

Recall Marek and Zbigniew’s construction of an effective motion planner
{(U1, s1), (U2, s2)} for (S2, antipodal):

U1 = {(x, y) ∈ S2 × S2 : x 6= y},
U2 = {(x, y) ∈ S2 × S2 : x 6= −y},

where s2 is the usual (i.e in terms of geodesics) local rule (for e2) and

s1(x, y) = s2(x,−y).

Remark 5.4. Note that U1 is homeomorphic to U2 (via the homeomorphism
in (8)). Furthermore, U1 agrees with the configuration space F (S2, 2), which
is well known to be homotopy equivalent to S2. On the other hand, the
obstruction for sectioning e2 on, say, U2 is (primary and is) an element in
the (necessarily untwisted) cohomology group

H2
(
S2, π1

(
ΩS2

))
= Z.

Of course, the existence of s2 implies that the obstruction is trivial. However,
here I want to stress the other direction: Even if we could not “see” how s2

would have to be defined, we could show its existence by actually showing
the triviality of the above obstruction! Of course, the punch line here is that
the latter approach could actually be of use when dealing with Σ2.

The situation above can be extrapolated to the case of Σ2 as follows:
Consider the open sets

V1 = {(x, y) ∈ Σ2 × Σ2 : x 6= y},
V2 = {(x, y) ∈ Σ2 × Σ2 : x 6= σ · y}.

We have proved that TCσ(Σ2) ≥ 3. In particular π2 cannot have local
sections both on V1 and on V2, indeed,(

secatV1(π2) + 1
)

+
(

secatV2(π2) + 1
)
≥ TCσ(Σ2) + 1 ≥ 4. (11)

(Here the sectional category of a fibration p : E → B relative to a subspace
A ⊆ B, secatA(p), is the usual sectional category of the restricted fibration
p : p−1(A)→ A. Of course, sectional category, as topological complexity, is
taken in the reduced sense.) In fact, π2 has no local section neither on V1

nor on V2:
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Proposition 5.5. secatV1(π2) = secatV2(π2) ≥ 1.

Proof. In view of (11), it suffices to argue secatV1(π2) = secatV2(π2). In turn,
the latter equality follows by noticing that V1 = (1 × σ)(V2) and that the
diagram

Σ2 × Σ2 Σ2 × Σ2

P2(Σ2) P2(Σ2)

π2 π2

τ

1× σ

is a pullback (actually, both horizontal maps are homeomorphisms).

We are now in position to describe the new idea for trying to prove
TCσ(Σ2) = 3. Namely, the latter equality would follow from (11) and
Proposition 5.5 if we could prove:

Conjecture 5.6. There are two local sections for π2 whose domains cover V1,
i.e. secatV1(π2) ≤ 1.

Conjecture 5.6 could, of course, be proved by describing, from scratch,
the needed pair of local domains. That is, by describing an open covering
V1 = V11 ∪ V12 and local sections si : V1i → P2(Σ2) of π2 (i ∈ {1, 2}).

(Guys: Would you see how such things could be defined? )

Example 5.7. Let us note that such pair of local sections (if they existed
at all) would have to use the two components of P2(Σ2). For instance, we
next give an argument showing that

secatV1(e2) ≥ 2. (12)

Start by noticing that V1 = Σ2×Σ2−∆ = F (Σ2, 2), the configuration space of
two ordered distinct points in Σ2. It is classical (see Milnor-Stasheff’s “Char-
acteristic classes” book) that the map induced in (say integral) cohomology
by the inclusion F (Σ2, 2) ↪→ Σ2 × Σ2 fits into a long exact sequence

· · · →H∗−2(Σ2)
j→ H∗(Σ2 × Σ2)→ H∗(F (Σ2, 2))→ · · ·

1 −→ ∆
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where ∆ is the diagonal class, and j is a morphism of H∗(Σ2)-modules. It is
then easy to check that j is given in dimension d ∈ {0, 1, 2} by:

d = 0 : j(1) = ω ⊗ 1 + 1⊗ ω − x1 ⊗ y1 + y1 ⊗ x1 − x2 ⊗ y2 + y2 ⊗ x2,

d = 1 : j(x1) = x1 ⊗ ω + ω ⊗ x1,

j(y1) = y1 ⊗ ω + ω ⊗ y1,

j(x2) = x2 ⊗ ω + ω ⊗ x2,

j(y2) = y2 ⊗ ω + ω ⊗ y2,

d = 1 : j(ω) = ω ⊗ ω.

In particular, the inclusion F (Σ2, 2) ↪→ Σ2 × Σ2 induces a ring epimor-
phism expressing H∗(F (Σ2, 2)) as the quotient of H∗(Σ2)⊗2 by the subgroup
generated by the six elements j(1), j(x1), j(y1), j(x2), j(y2) and j(ω).

The upshot of this example’s discussion is that the two classes x1⊗ 1− 1⊗x1

and y1 ⊗ 1− 1⊗ y1 are usual zero-divisors for Σ2, and their product

(x1 ⊗ 1− 1⊗ x1)(y1 ⊗ 1− 1⊗ y1) = ω ⊗ 1 + 1⊗ ω − x1 ⊗ y1 + y1 ⊗ x1

restricts non-trivially to H∗(F (Σ2, 2)), from which the asserted (12) follows.

As in Remark 5.4, it is plausible that Conjecture 5.6 could be handled
by obstruction theory techniques. Namely, proving Conjecture 5.6 amounts
to sectioning the fiberwise joint square

(Z2 × ΩΣ2)∗2 → J1(π2)→ Σ2 × Σ2

on the subspace V1 = F (Σ2, 2). However, such a task would be more
difficult to deal with than the simple situation in Remark 5.4, as in the
present situation there are two levels of obstructions to analyze. Indeed, it
is well known the homotopy dimension of F (Σ2, 2) = Σ2 × Σ2 −∆Σ2 is 3.
Thus, before one would dare to analyze these two obstructions, it might be
better to asses (in cohomological terms, as in Example 5.7) the potential
secatV1(π2) ≤ 1.

5.3 Unfortunately the new idea also fails

I did the few calculations needed for the above mentioned assessment, and
I am afraid I have bad news to report: secatV1(π2) ≥ 2. I will describe the
calculations below. For the moment let me spell out what this means: V1

(and therefore V2) cannot be covered with only two open subsets on each
of which π2 admits a section. Consequently, if a four local rules effective
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motion planner for Σ2 is to be constructed in a way compatible with the
covering Σ2 × Σ2 = V1 ∪ V2, then the patching of the (at least three) local
sections coming from V1 with those coming from V2 would have to be a very
subtle issue to deal with.

Here are the details giving secatV1(π2) ≥ 2. The key diagram to keep in
mind is the pullback

V1 = F (Σ2, 2) Σ2 × Σ2

P P2(Σ2)

π2 π2

inclusion

inclusion

Recall we have identified the three elements

b = (x1 − x2)⊗ 1− 1⊗ (x1 − x2),

c = (y1 + y2)⊗ 1− 1⊗ (y1 + y2),

d = x1 ⊗ y1 + y2 ⊗ x2

in the kernel of π∗2. We have also checked that

bc = (x2 − x1)⊗ (y1 + y2) + (y1 + y2)⊗ (x1 − x2),

bcd = 2ω ⊗ ω.

Furthermore, the analysis in Example 5.7 implies that the product bc
maps non-trivially to H∗(F (Σ2, 2)). This immediately gives the reported
secatV1(π2) ≥ 2. Note also from Example 5.7 that the product bcd does
vanish on H∗(F (Σ2, 2)), which together with the exhaustive analysis in (3)
says that the cohomology method does not allow us to get secatV1(π2) ≥ 3
(which, in turn, would have to be an equality since, as already noticed, the
homotopy dimension of V1 is hdim(V1) = 3).

There is some relatively good news to remark from all the above, though.
Namely, deciding the actual value for secatV1(π2) ∈ {2, 3} is equivalent to
deciding whether the fiberwise joint cube

(Z2 × ΩΣ2)∗3 → J2(π2)→ Σ2 × Σ2

admits a section on V1. But hdim(V1) = 3, while the first non-trivial homo-
topy group of (Z2×ΩΣ2)∗3 appears (at least ) in dimension 2. Consequently,
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there is a single (primary and, therefore, in principle accessible) obstruction
for the existence of the above mentioned section. The obstruction lies in the
twisted cohomology group

H3
(

Σ2 × Σ2;π2

(
(Z2 × ΩΣ2)∗3

))
. (13)

Further nice things happening are:

• The obstruction is describable as the cube of a certain 1-dimensional
cohomology class which, from experience with other closely related
situations, would seem to be rather accessible.

• Since Σ2 is a K(G, 1) space, the join power (Z2 × ΩΣ2)∗3 would seem
to be a (large) wedge of 2-dimensional spheres. Consequently:

– the action of G×G = π1(Σ2 × Σ2) could be workable, and

– the cohomology group (13) —and relevant obstruction— should
be workable too (from the algebraically viewpoint of cohomology
of groups).

Of course, it would be interesting to eventually come back to settling this
issue. However, the real reason for mentioning all these things will become
apparent in the next subsection.

5.4 One further approach —which has no chance to fail!

The determination of the right value of TCσ(Σ2) ∈ {3, 4} is equivalent to
deciding whether or not the fiberwise join fourth power

(Z2 × ΩΣ2)∗4 → J3(π2)→ Σ2 × Σ2

admits a global section. This time the homotopy groups of the fiber start in
dimension 3, while the base is 4-dimensional on the nose. Furthermore, all
the amenable good things noted at the end of the previous subsection also
hold in this case. Voila: it is a matter of computing the relevant obstruction!
I am not saying that such a task will be a walk in the park, but it is now a
problem whose solution has a clear methodology and which, no matter what
the final result is, one will have the right answer for TCσ(Σ2). Even better,
this idea is fully generalizable to higher genera.

What do you think??
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