Using Simon's algorithm

$\frac{1}{\sqrt{2}}\left|y+\frac{1}{\sqrt{2}}\right| \Rightarrow \Rightarrow$

Ahmed Alharbi

13 Aug 2017

Contents

> Dirac's Notation
> Gates and \{partial\}-measurement
> Simon's Algorithm

- Three attacks
, Remarks \& Further readings

Dirac's notation

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

$|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]_{\alpha^{2}+\beta^{2}=1, \alpha, \beta \in \mathbb{C}, ~}$

Dirac's notation

$|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right] \alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$
$|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]_{\alpha^{2}+\beta^{2}=1, \alpha, \beta \in \mathbb{C}}$
$\langle 0|=\left[\begin{array}{ll}0 & 1\end{array}\right] \bar{\alpha}\langle 0|+\bar{\beta}\langle 1|=\left[\begin{array}{ll}\bar{\alpha} & \bar{\beta}\end{array}\right]$
$\langle 1|=\left[\begin{array}{ll}1 & 0\end{array}\right] \alpha^{2}+\beta^{2}=1, \alpha, \beta \in \mathbb{C}$

Dirac's notation

$$
\begin{aligned}
& |0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
\end{aligned} \quad \text { • Tensor product } \begin{gathered}
\\
|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \alpha^{2}+\beta^{2}=1, \alpha, \beta \in \mathbb{C}
\end{gathered} \quad|x\rangle \otimes|y\rangle=\left(\begin{array}{l}
y_{0} \\
y \\
x_{1}\left[\begin{array}{l}
y_{0} y_{0} \\
y_{1}
\end{array}\right]
\end{array}\right)=\left[\begin{array}{l}
x_{0} y_{0} \\
x_{0} y_{1} \\
x_{1} y_{0} \\
x_{1} y_{1}
\end{array}\right] .
$$

$\langle 1|=\left[\begin{array}{ll}1 & 0\end{array}\right] \alpha^{2}+\beta^{2}=1, \alpha, \beta \in \mathbb{C}$

Dirac's notation

$|1\rangle \otimes|0\rangle \otimes|1\rangle \otimes=|101\rangle$

Dirac's notation

$|1\rangle \otimes|0\rangle \otimes|1\rangle \otimes=|101\rangle \equiv\left[\begin{array}{l}0 \\ 1\end{array}\right] \otimes\left[\begin{array}{l}1 \\ 0\end{array}\right] \otimes\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Dirac's notation

$$
|1\rangle \otimes|0\rangle \otimes|1\rangle \otimes=|101\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
1_{5+1} \\
0 \\
0
\end{array}\right]
$$

Gates

- We are allowed to use unitary transformation i.e

$$
U \cdot U^{\dagger}=\mathbb{I}
$$

Gates

- We are allowed to use unitary transformation i.e

$$
U \cdot U^{\dagger}=\mathbb{I}
$$

- Example: Hadamard's gate
- $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- $H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
- in a compact format:
- $H|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right)$
- Or in matrix form:

$$
\begin{array}{r}
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H|0\rangle
\end{array} \begin{array}{r}
H|1\rangle
\end{array}
$$

Dirac's Notation

- Given a state $|\psi\rangle=\sum \alpha_{i}|i\rangle$ probability of getting $|i\rangle$ after measurement is $\left|\alpha_{i}\right|^{2}$

Gates: evaluating a function

- Suppose we have a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- How do we construct a unitary that evaluates f ?

Gates: evaluating a function

- Suppose we have a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- How do we construct a unitary that evaluates f ?
- Solution: define U_{f} as following:

$$
U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus x\rangle
$$

- Is U_{f} unitary?

Gates: evaluating a function

- Suppose we have a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- How do we construct a unitary that evaluates f ?
- Solution: define U_{f} as following:

$$
U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus x\rangle
$$

- Is U_{f} unitary?
- Yes! Proof idea U_{f} we is a permutation matrix

Gates

- What is the value of $H^{\otimes n}\left|x_{n} x_{n-1} \ldots x_{1}\right\rangle$?

Gates

- What is the value of $H^{\otimes n}\left|x_{n} x_{n-1} \ldots x_{1}\right\rangle$?

$$
\begin{aligned}
& H^{\otimes n}\left|x_{n} x_{n-1} \ldots x_{1}\right\rangle \\
& =\left(\frac{1}{\sqrt{2}}|0\rangle+(-1)^{x_{n}} \frac{1}{\sqrt{2}}|1\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle+(-1)^{x_{n-1}} \frac{1}{\sqrt{2}}|1\rangle\right) \ldots\left(\frac{1}{\sqrt{2}}|0\rangle+(-1)^{x_{1}} \frac{1}{\sqrt{2}}|1\rangle\right) \\
& =\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+(-1)^{x_{n}}|1\rangle\right)\left(|0\rangle+(-1)^{x_{n-1}}|1\rangle\right) \ldots\left(|0\rangle+(-1)^{x_{1}}|1\rangle\right) \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle
\end{aligned}
$$

Gates

- Superposition is extremely useful

$$
\begin{aligned}
U_{f} H^{\otimes n}|00 \ldots 0\rangle|00 \ldots 0\rangle & =U_{f} \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}} U_{f}|x\rangle|00 \ldots 0\rangle
\end{aligned}
$$

Gates

- Superposition is extremely useful

$$
\begin{aligned}
U_{f} H^{\otimes n}|00 \ldots 0\rangle|00 \ldots 0\rangle & =U_{f} \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}} U_{f}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
\end{aligned}
$$

Contents

- Dirac's Notation and \{partial\}-measurement
- Gates
- Simon's Algorithm
- Three attacks
^Remarks \& Further readings

Simon's algorithm

Simon's problem:

$$
\text { Let } f:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \operatorname{s.t} f(x \oplus s)=f(x) \text { find } s
$$

Simon's algorithm

Simon's problem:

$$
\text { Let } f:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \text { s.t } f(x \oplus s)=f(x) \text { find } s
$$

Theorem [Simon 1995]:
There exists a quantum algorithm that returns S with high probability using $\mathrm{O}(\mathrm{n})$ queries.

Simon's algorithm: description

$$
U_{f} H^{\otimes n}|00 \ldots 0\rangle|00 \ldots 0\rangle=U_{f} \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|00 \ldots 0\rangle
$$

Simon's algorithm: description

$$
\begin{aligned}
U_{f} H^{\otimes n}|00 \ldots 0\rangle|00 \ldots 0\rangle & =U_{f} \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}} U_{f}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle
\end{aligned}
$$

Simon's algorithm: description

$$
\begin{aligned}
U_{f} H^{\otimes n}|00 \ldots 0\rangle|00 \ldots 0\rangle & =U_{f} \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}} U_{f}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle
\end{aligned}
$$

Simon's algorithm: description

$$
\begin{aligned}
U_{f} H^{\otimes n}|00 \ldots 0\rangle|00 \ldots 0\rangle & =U_{f} \frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}} U_{f}|x\rangle|00 \ldots 0\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle
\end{aligned}
$$

- Apply Hadamard on the first register

Simon's algorithm: description

$$
\begin{aligned}
& H^{\otimes n} \frac{1}{\sqrt{2^{n}}} \sum_{x}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y}\left((-1)^{y \cdot x}|y\rangle+(-1)^{y \cdot(x \oplus s)}|y\rangle\right)|f(x)\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{y \cdot x}\left(1+(-1)^{y \cdot s}\right)|y\rangle|f(x)\rangle
\end{aligned}
$$

Simon's algorithm: description

$$
\begin{aligned}
& H^{\otimes n} \frac{1}{\sqrt{2^{n}}} \sum_{x}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y}\left((-1)^{y \cdot x}|y\rangle+(-1)^{y \cdot(x \oplus s)}|y\rangle\right)|f(x)\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{y \cdot x}\left(1+(-1)^{y \cdot s}\right)|y\rangle|f(x)\rangle
\end{aligned}
$$

- The crucial observation is that when $y . s=1 \bmod 2$ then the probability of observing $|y\rangle|f(x)\rangle$ is 0
- In other words, after measurement we will get y such that $y . s=0 \bmod 2$
- More precisely,
- $y_{n} s_{n} \oplus y_{n-1} s_{n-1} \oplus \ldots \oplus y_{1} s_{1}=0 \bmod 2$
- Finally, run the above procedures cn times to collect enough linear equations then use Gauss elimination to find S

Analysis of Simon

- After collection mindependent equations, the probability of getting new independent equation is $\frac{2^{n}-2^{m}}{2^{n}}$

Analysis of Simon

- After collection mindependent equations, the probability of getting new independent equation is $\frac{2^{n}-2^{m}}{2^{n}}$
- Thus, the success probability after m queries $\prod_{m} \frac{2^{n}-2^{m}}{2^{n}}=\prod_{m}\left(1-\frac{2^{m}}{2^{n}}\right)$

Analysis of Simon's

- After collection mindependent equations, the probability of getting new independent equation is $\frac{2^{n}-2^{m}}{2^{n}}$
- Thus, the success probability after m queries $\prod_{m=1}^{k} \frac{2^{n}-2^{m}}{2^{n}}=\prod_{m=1}^{k}\left(1-\frac{2^{m}}{2^{n}}\right)$

Analysis of Simon's

- After collection m independent equations, the probability of getting new independent equation is $\frac{2^{n}-2^{m}}{2^{n}}$
- Thus, the success probability after m queries $\prod_{m=1}^{k} \frac{2^{n}-2^{m}}{2^{n}}=\prod_{m=1}^{k}\left(1-\frac{2^{m}}{2^{n}}\right)$
- A direct bound $\prod_{m=1}^{k}\left(1-\frac{2^{m}}{2^{n}}\right) \geq 1-\sum \frac{1}{2^{m}}$
- After n-1 experiments $\prod_{m=1}^{n-1}\left(1-\frac{2^{m}}{2^{n}}\right) \geq 1-\sum_{m=2}^{n} \frac{1}{2^{m}}=\frac{1}{2}-\frac{1}{2^{n}}$

Analysis of Simon's

- After collection m independent equations, the probability of getting new independent equation is $\frac{2^{n}-2^{m}}{2^{n}}$
- Thus, the success probability after m queries
- A direct bound $\prod_{m=1}^{k}\left(1-\frac{2^{m}}{2^{n}}\right) \geq 1-\sum \frac{1}{2^{m}}$
- After $\mathrm{n}-1$ experiments $\prod_{m=1}^{n-1}\left(1-\frac{2^{m}}{2^{n}}\right) \geq 1-\sum_{m=2}^{n} \frac{1}{2^{m}}=\frac{1}{2}-\frac{1}{2^{n}}$
- After $\mathrm{c}(\mathrm{n}-1)$ experiments

$$
\left(1-\frac{1}{2}\right)^{2 c} \leq e^{-c}
$$

Digression: Hidden Subgroup Problem

- Simon's algorithm is a special of HSP over $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$

Contents

> Dirac's Notation
> Gates and \{partial\}-measurement

- Simon's Algorithm
> Three attacks
- Analysis
„Remarks \& Further readings

Key Retrieval

Even-Mansour

Classical Even-Mansour
$E_{k_{1}, k_{2}}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, s.t $E_{k_{1}, k_{2}}(x)=P\left(x \oplus k_{1}\right) \oplus k_{2}$
Classical security $O\left(2^{\frac{n}{2}}\right)$

Even-Mansour

Classical Even-Mansour
$E_{k_{1}, k_{2}}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, s.t $E_{k_{1}, k_{2}}(x)=P\left(x \oplus k_{1}\right) \oplus k_{2}$
Classical security $O\left(2^{\frac{n}{2}}\right)$

Quantum Even-Mansour

$$
U_{E_{k_{1}, k_{2}}}|x\rangle|00 \ldots 0\rangle=|x\rangle\left|P\left(x \oplus k_{1}\right) \oplus k_{2}\right\rangle
$$

Quantum security $O(n)$

Attack

- Define $f(x)=P\left(x \oplus k_{1}\right) \oplus P(x) \oplus k_{2}$
- Notice that:

$$
\begin{aligned}
f(x) & =P\left(x \oplus k_{1}\right) \oplus P(x) \oplus k_{2} \\
f\left(x \oplus k_{1}\right) & =P(x) \oplus P\left(x \oplus k_{1}\right) \oplus k_{2}
\end{aligned}
$$

Attack

- Define $f(x)=P\left(x \oplus k_{1}\right) \oplus P(x) \oplus k_{2}$
- Notice that:

$$
\begin{aligned}
f(x) & =P\left(x \oplus k_{1}\right) \oplus P(x) \oplus k_{2} \\
f\left(x \oplus k_{1}\right) & =P(x) \oplus P\left(x \oplus k_{1}\right) \oplus k_{2}
\end{aligned}
$$

- Our quantum version of f is

$$
U_{f}=U_{P} U_{E_{k_{1}, k_{2}}} \text { where } U_{P}|x\rangle|y\rangle=|x\rangle|P(x) \oplus y\rangle
$$

Attack

- Define $f(x)=P\left(x \oplus k_{1}\right) \oplus P(x) \oplus k_{2}$
- Notice that:

$$
\begin{aligned}
f(x) & =P\left(x \oplus k_{1}\right) \oplus P(x) \oplus k_{2} \\
f(x \oplus s) & =P(x) \oplus P\left(x \oplus k_{1}\right) \oplus \oplus k_{2}
\end{aligned}
$$

- Our quantum version of f is

$$
U_{f}=U_{P} U_{E_{k_{1}, k_{2}}} \text { where } U_{P}|x\rangle|y\rangle=|x\rangle|P(x) \oplus y\rangle
$$

- Notice that P is known
- Run Simon's algorithm to get k_{1} then simple xor gives us k_{2}

Forgery Attack

CBC-MAC

CBC-MAC

$$
x_{0}=0, x_{i}=E_{k_{1}}\left(x_{i-1} \oplus m_{i}\right), C B C M A C(M)=E_{k_{2}}\left(x_{n}\right)
$$

CBC-MAC

CBC-MAC

$$
x_{0}=0, x_{i}=E_{k_{1}}\left(x_{i-1} \oplus m_{i}\right), \operatorname{CBCMAC}(M)=E_{k_{2} \oplus R}\left(x_{n}\right)
$$

Security definition (informal)

$$
\begin{gathered}
m_{1}, m_{2}, \ldots, m_{q} \\
\boldsymbol{t}_{\mathbf{1}}, \boldsymbol{t}_{\mathbf{2}}, \ldots, \boldsymbol{t}_{\boldsymbol{a}} \\
m, t
\end{gathered}
$$

- An adversary query q messages.
- After receiving q tags, if the adversary produces a message m with a valid tag t then the message authentication is considered insecure.

Simon's function

- For arbitrary messages m_{0}, m_{1} define f as following:

$$
\begin{aligned}
& f:\{0,1\} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
& C B C M A C\left(m_{b} \| x\right)=E_{k_{1}}\left(E_{k_{1}}\left(x \oplus E_{k_{1}}\left(m_{b}\right)\right)\right) \\
&=F\left(x \oplus E_{k_{1}}\left(m_{b}\right)\right)
\end{aligned}
$$

Simon's function

- For arbitrary messages m_{0}, m_{1} define f as following:

$$
\begin{aligned}
& f:\{0,1\} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
& C B C M A C\left(m_{b} \| x\right)=E_{k_{1}}\left(E_{k_{1}}\left(x \oplus E_{k_{1}}\left(m_{b}\right)\right)\right) \\
&=F\left(x \oplus E_{k_{1}}\left(m_{b}\right)\right)
\end{aligned}
$$

Then

$$
f(b \| x)=f\left(b^{\prime} \| x^{\prime}\right) \Leftrightarrow \begin{cases}x=x^{\prime} & \text { if } b=b^{\prime} \\ x=x^{\prime} \oplus E_{k_{1}}\left(m_{0}\right) \oplus E_{k_{1}}\left(m_{1}\right) & \text { if } b \neq b^{\prime}\end{cases}
$$

Simon's function

- For arbitrary messages m_{0}, m_{1} define f as following:

$$
\begin{aligned}
& f:\{0,1\} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n} \\
& C B C M A C\left(m_{b} \| x\right)=E_{k_{1}}\left(E_{k_{1}}\left(x \oplus E_{k_{1}}\left(m_{b}\right)\right)\right) \\
&=F\left(x \oplus E_{k_{1}}\left(m_{b}\right)\right)
\end{aligned}
$$

Then
$f(b \| x)=f\left(b^{\prime} \| x^{\prime}\right) \Leftrightarrow \begin{cases}x=x^{\prime} & \text { if } b=b^{\prime} \\ x=x^{\prime} \oplus E_{k_{1}}\left(m_{0}\right) \oplus E_{k_{1}}\left(m_{1}\right) & \text { if } b \neq b^{\prime}\end{cases}$
Given a $\operatorname{tag} t$ of x^{\prime} then $x^{\prime} \oplus E_{k_{1}}\left(m_{0}\right) \oplus E_{k_{1}}\left(m_{1}\right)$ is a valid message of the same tag

Forgery attack

- Use Simon's algorithm which needs q message to find the period of f and save the values.

Quantum Distinguisher

Security notion

- Pseudo-random function f is secure if there is does not exist an efficient algorithm that can distinguish with non-negligible probability between $f s$ output and a random string.

3-Feistel network

- 3-Feistel network is secure PRP given that all F_{i} are secure PRP

Quantum distinguisher: 3-Feistel network

- 3-Feistel network is secure PRP given that all F_{i} are secure Random Permutations
- By examining the right output, we see that its structure is similar to CBC-MAC (Exercise).
- If the result of running Simon's algorithm is non-zero then it is not a random function.
- PRP is secure classically does not imply it is secure qunatumly

Contents

- Dirac's Notation
> Gates and \{partial\}-measurement
- Simon's Algorithm
- Three attacks
-Remarks \& Further readings

Success probability of Simon's algorithm

- How about approximate Simon's promise?

Success probability of Simon's algorithm

- How about approximate Simon's promise?
- Simon's algorithm works! See "Breaking Symmetric Microsystems Using Quantum Period Finding" published in Crypto 2016

Success probability of Simon's algorithm

- How about approximate Simon's promise?
- Simon's algorithm works! See "Breaking Symmetric Microsystems Using Quantum Period Finding" published in Crypto 2016
- More attacks
- "Superposition Attacks on Cryptographic Protocols"
- "Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation"
- "Breaking Symmetric Cryptosystems Using Quantum Period Finding"
- "Quantum Key-Recovery on full AEZ" 8 Aug 2017

Success probability of Simon's algorithm

- How about approximate Simon's promise?
- Simon's algorithm works! See "Breaking Symmetric Microsystems Using Quantum Period Finding" published in Crypto 2016
- More attacks(Chronologically ordered:
- "Superposition Attacks on Cryptographic Protocols"
- "Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation"
- "Breaking Symmetric Cryptosystems Using Quantum Period Finding"
- "Quantum Key-Recovery on full AEZ" 8 Aug 2017
- Constructing secure ciphers under superposition attacks
- "Quantum-Secure Message Authentication Codes"
- "Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World"
- Replace $\underbrace{\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{n}$ with \mathbb{Z}_{n} as proposed in:
- "Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts"

5.4 Perspectives

The main challenge of my ERC project QUASYModo is to redesign symmetric cryptography for the post-quantum world. The final objective is to construct and recommend symmetric primitives secure in the post-quantum world, as well as the tools needed to properly evaluate them. I will continue to work on this toolbox, and when it is ready, I will use it to: 1) analyze existing cryptosystems/primitives, and 2) design new ones for which we will gain confidence in the post-quantum world.

Some other short-term aims are: improvements on linear cryptanalysis using QFT seem possible, try to find better algorithms for solving the same problem as Kupderberg when having several parallel modular additions, providing a quantized version of improved slide attacks, and study the effect of a smaller than the key state for quantum adversaries (starting for instance quantizing sweet-32). I also plan to start working on the design of a block cipher with an internal state size of 256 bits.

From MÉMOIRE D'HABILITATION À DIRIGER DES RECHERCHES, Université Pierre et Marie Curie, Paris 6 by María Naya-Plasencia, Inria de Paris

Thank you

