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Abstract

BOUNDS FOR THE INDEPENDENCE NUMBER OF A GRAPH

By William W. Willis, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2011.

Director: Craig E. Larson, Assistant Professor, Department of Mathematics and Applied
Mathematics.

The independence number α of a graph is the maximum number of vertices from the

vertex set of the graph such that no two verices are adjacent. We systematically examine

a collection of upper bounds for the independence number to determine graphs for which

each upper bound is better than any other upper bound considered. A similar investigation

follows for lower bounds. In several instances a graph cannot be found. We also include

graphs for which no bound equals α and bounds which do not apply to general graphs.
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Preliminaries

The independence number α = α(G) of a graph G is the cardinality of a maximum in-

dependent set of vertices. The independence number is difficult to compute. Finding a

maximum independent set is an NP-hard problem. For this reason we look for bounds on

the independence number which can be computed in polynomial time. These can be used

to make estimates on the independence number which can be used in branch-and-bound

algorithms for the computation of the independence number.

Many upper and lower bounds for the independence number of a graph appear in the

mathematical literature. The goal of this thesis is to identify these bounds and, for each

bound, determine a graph in which that bound is better than any existing bound for estimating

α(G). In some cases we could not find a graph that shows a bound can be better than all of

the others. In these instances it may be the case that the bound is implied by one or more of

the other bounds. We identify and prove these relationships in several cases.

Our plan is to first define several graph invariants that appear in these upper and lower

bounds. This is followed by a systematic investigation of the known upper bounds, a similar

investigation of the lower bounds, and finally a compilation of bounds for special graph

classes.

A graph, G, consists of a collection of n vertices and e edges. The set of all vertices

is given by V (G), and the set of edges by E(G). In Figure 1.4 the vertices are labelled

a,b,c,d. Here V (G) = {a,b,c,d} and E(G) = {ab,ac,bc,cd}. The cardinalities of these

sets, n = n(G) and e = e(G), represent the order and the size of graph G, respectively.
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In Figure 1.4, n(G) = 4 and e(G) = 4. We say vertices vi and v j ∈ V (G) are adjacent if

viv j ∈ E(G), and we write vi ∼ v j. An independent set of a graph G, denoted I(G) or just I,

is a subset of vertices of the vertex set V such that no two are adjacent. This independent

set is a maximum independent set if it is of largest cardinality. In Figure 1.4, {b, d} is a

maximum independent set, so α = 2. Then consider the graph G in Figure 1.1. Notice

that the vertices can be covered by two cycles of length 4. The independence number of a

four-cycle is clearly two. Thus α ≤ 4. It is easy to find an independent set with 4 vertices.

Thus, α ≥ 4. Putting these two together, we get α = 4.

The independence number of a graph is a graph invariant, a number associated with a

graph which does not depend on its representation. We look for bounds on the independence

number using efficiently computable graph invariants. The order, n, and size, e, of a graph

are examples of such invariants. The degree of a vertex v, denoted d(v), is the number of

edges incident to v. The maximum degree of a graph G, given by ∆ = ∆(G) is the maximum

degree of all the vertices in G. The average degree of G, d̄ = d̄(G), of a graph G is the

average of the degrees of every vertex in G. ∆ and d̄ are efficiently computable.

1.1 Eigenvalues

Another efficiently computable graph invariant that appears in independence number bounds

is the number of non-negative and non-positive eigenvalues of the adjacency matrix. The

adjacency matrix of a graph, A(G), is a square n×n matrix populated with ones and zeroes,

with ai j = 1 if vertex vi ∼ v j, and zero if vi and v j are not adjacent. For Figure 1.2, the

adjacency matrix is

A =


0 1 1

1 0 1

1 1 0

 ,
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with characteristic polynomial, λ 3−3λ −2. Solving for λ we get the eigenvalues 2 and

-1 with algebraic multiplicity 2. For 2×2 and 3×3 matrices, finding the eigenvalues is a

fairly simple process by hand. Anything larger than theses matrices is difficult. We look

to computer programs for the eigenvalues in these instances. We have used the software

GrInvIn to compute the eigenvalues of each graph [28].

1.2 Fractional Independence

The independence number of a graph can be defined as the solution to an integer program:

Let w : V → {0,1}. We wish to maximize ∑v∈V w(vi) subject to the condition that, for

adjacent vertices vi and v j, w(vi)+w(v j)≤ 1. If this integer program is “relaxed” so that

the weights are in the interval [0,1], then the solution is the fractional independence number,

α f (G). Since the condition on w has been relaxed, we have many more choices for the

weights of vertices than just 0 and 1, making this a seemingly harder problem. In fact, this

is a linear program, and it is known that these can be solved efficiently [6].

THEOREM 1.1. Let w : V → [0,1], such that w(vi)+w(v j)≤ 1 for adjacent vertices vi and

v j. A maximum weighting can be obtained using the weights {0, 1
2 ,1}. [37]

Earlier, we showed that the independence number α of the graph in Figure 1.1 is 4.

Using a similar argument, it can be shown that α f (G) = 4. There are graphs where α f > α .

Consider the complete graph k3 on 3 vertices (Figure 1.2). It is easy to check that α = 1,

but α f = 11
2 .

1.3 Residue and the Annihilation Number

Let D= {d1,d2, ...,dn} be the degrees of the vertices of a graph with vertices V = {v1, ...,vn}

and di = d(vi). Assume that the degrees are in non-increasing order, i.e. d1 ≥ d2 ≥ ...≥ dn.

The Havel-Hakimi procedure starts by deleting the largest element ∆ and then subtacting
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Figure 1.1: An example of where α = α f . α = 4.

Figure 1.2: An example of where α 6= α f . α = 1 and α f =
3
2 .

one from the next ∆ largest elements. We then reorder the new degrees so that d
′
1 ≥ d

′
2 ≥

...≥ d
′
n−1 obtaining a new sequence, called the derived sequence. We repeat this process

until we are left with a sequence of zeroes.

THEOREM 1.2 (Havel-Hakimi [39]). A sequence (d) = d1, ...,dn is graphic if, and only if,

the derived sequence (d
′
) = d

′
1, ...,d

′
n−1 is graphic.

This theorem guarantees that if we start with a degree sequence of a graph, we will

obtain a sequence of zeroes after repeated application of the Havel-Hakimi procedure. In

the 1980’s, Fajtlowicz defined the number of zeroes remaining at the end of this process as

the residue of a graph. Applying Havel-Hakimi to the graph in Figure 1.3, we get 20011.

Rearranging we have 21100, and we apply the process again. This time we are left with

0000 and R(G) = 4.

Applying a process similar to the Havel-Hakimi procedure, Pepper introduced the anni-

hilation number in 2004 as an upper bound on the independence number. The annihilation

number, denoted a(G), is reached by a process similar to the Havel-Hakimi process for the
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Figure 1.3: A graph with degree sequence D = {3,3,1,1,1,1}. Here R = a = 4.

residue. Given a non-increasing degree sequence, D = d1 ≥ d2 ≥ ...≥ dn, of non-negative

integers, we delete the first term d1, and reduce the last term to zero. If d1 ≥ dn, we subtract

the difference of the two from the dn−1st term. If that term zeroes out and there is still a

remainder, we subtract that from the next term to the left until a total of d1 has been deleted

from the degree sequence. We continue this process until we are left with a sequence of

zeroes. This process is called the annihilation process.

DEFINITION 1.3. Let G be a graph with degree sequence d = {d1,d2, ...,dn}. The annihila-

tion number, a(G) is the number of zeroes in the sequence when the annihilation process

terminates. [30]

There is an alternate, equivalent, definition of the annihilation number. Now we write

the degree sequence as a sequence of non-decreasing integers, d1 ≤ d2 ≤ ...≤ dn.

DEFINITION 1.4. The annihilation number can be defined as the largest k such that

∑
k
1 di ≤ ∑

n
k+1 d j

Ordering the degrees of the graph in Figure 1.3 in non-decreasing order, we have

D = {1,1,1,1,3,3}. a(G)=4 since ∑
4
1 di ≤ ∑

6
5 d j, but ∑

5
1 di > ∑

6
6 d j.
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1
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b

a

c d

Figure 1.4: A graph with vertices a,b,c,and d. It is properly colored using the three colors
1, 2, and 3.

1.4 Matching Number and Chromatic Number

A few bounds on the independence number include other hard-to-compute invariants. While

these bounds are not as efficient as others involving n, e, ∆(G), etc., there are some graphs

in which they are best for.

In a graph G, a matching is a set of edges with no shared end points. The matching

number, α(G)′, is the maximum size of a matching. Given a set of colors, S = {a,b,c...},

the chromatic number, χ , is the minimum number of colors needed to label the vertices

such that adjacent vertices have different colors. A maximum matching can be found in

polynomial time [9], whereas the chromatic number is another NP-hard invariant [14]. The

graph in Figure 1.4 has been colored using 3 colors. This is the minimum number of colors

in which we can color this graph. Thus χ = 3. The edges ab and cd make up the matching

M = {ab,cd}. In fact, this is a maximum matching, and α
′
= 2.

1.5 Radius

The distance from u to v in a graph G, denoted d(u,v), is the length of a shortest path from

u to v. The diameter of G is the maximum value of the distance of G, max v∈V d(u,v). The

eccentricity of a vertex, ε(u), is written ε(u) = max v∈V d(u,v).

DEFINITION 1.5. The radius of a graph is given by rad(G) = min u∈V max v∈V d(u,v).



7

Figure 1.5: A graph with radius=2 and D̄ = 1.467

The radius of the graph in Figure 1.5 is 2. It is easily checked that the eccentricity of

each vertex is 2.

1.6 Average Distance

The distance between vertices is denoted d(u,v), for vertices u,v in vertex set V. d(u,v) is

defined as the shortest path from u to v. The average distance , D̄(G), is the average value of

distances between all pairs of vertices in a graph G. The average distance in Figure 1.4, for

example, is 1.33 and in Figure 1.5 it is 1.467.

1.7 Important Fact

Since the independence number α an integer, it would be helpful to be able to consider the

bounds on the independence number as integers. For some bounds this is easy, they produce

integers every time (Cvetkovic). Others, such as the bound suggested by Hansen, will not

produce integers in general. Thus, for every upper bound we will use the floor function, and

for every lower bound the ceiling function, to convert the values to integers. That is if µ is

an upperbound for α(G), then α ≤ bµc; if µ is a lower bound for α then α ≥ dµe.



8

Upper Bounds

Bound Name
U1 α ≤ n− e

∆
Kwok Bound

U2 α ≤ p0 +min{p−, p+} Cvetković Bound

U3 α ≤ b1
2 +
√

1
4 +n2−n−2ec Hansen Upper Bound

U4 α ≤ n Trivial Bound
U5 α ≤ α f Fractional Independence Number Bound
U6 α ≤ a Annihilation Number Bound
U7 α ≤ n−α

′
Matching Number Upper Bound

U8 α ≤ n−
⌈n−1

∆

⌉
=
⌊ (∆−1)n+1

∆

⌋
Borg Bound

U9 α ≤ n−δ Minimum Degree Bound

Table 2.1: A list of each upper bound in the order considered.

2.1 U1: Kwok Bound

The following result is attributed to P.K. Kwok and is given as an exercise in [39]. It also

appears in R. Pepper’s dissertation [29] and may be considered “folklore”. Recall that n is

the number of vertices of the graph and ∆ is the maximum degree.

THEOREM 2.1. For any graph, α ≤ n− e
∆

.

Proof. Let G be a graph with vertex set V . Let I be a maximum independent set of G, and v

a vertex in I. Every edge of the graph G will be incident to a vertex in the set V \ I. Let v

be a vertex in V \ I, then the degree of v will be at most ∆ . Thus there are at most ∆ edges

incident to each vertex in V \ I. Thus
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Figure 2.1: A graph for which the Cvetković Bound gives a better estimate for α than any
of the other upper bounds. α=3, n=8, e=12, p0 = 0, p− = 3, p+ = 5, ∆=3, δ=3

e≤ ∆ · |V \ I|= ∆ · (n−α).

Rearranging we get α ≤ n− e
∆

.

Although this bound for the independence number is efficiently computable, it will never

out perform the fractional independence bound U5 (given by Theorem 2.5) and Pepper

proved that the annihilation number bound U6 is always at least as good as this bound [29].

The former result is proven by C.E. Larson (private communication).

2.2 U2: Cvetković Bound

THEOREM 2.2 (Cvetkovic [7]). For any graph, α ≤ p0+min{p−, p+}where p−, p0,and p+

denote the number of eigenvalues of the adjacency matrix of a graph G smaller than, equal

to, and greater than zero respectively.

Applying properties of eigenvalues of a Hermitian matrix and using Cauchy’s Interlacing

Theorem, Cvetkovic proved this bound in his Doctoral dissertation in 1970. Cvetcovic’s

bound is the minimum of the number of non-negative eigenvalues or the number of non-

positive eigenvalues of a graph’s adjacency matrix. Graphs for which this bound are better

than any of the other bounds considered can be seen in Figures 2.1 to 2.4. Values for

this bound on these graphs, as well as the values for the other upper bounds and their

independence numbers can be seen in Table 2.2.
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Figure 2.2: A graph for which the Cvetković Bound gives a better estimate for α than any
of the other upper bounds. α=4, n=10, e=15, p0 = 0, p− = 4, p+ = 6, ∆=3, δ=3

Figure 2.3: A graph for which the Cvetković Bound gives a better estimate for α than any
of the other upper bounds. α=3, n=8, e=15, p0 = 0, p− = 5, p+ = 3, ∆=6, δ=2

Figure 2.4: A graph for which the Cvetković Bound gives a better estimate for α than any
of the other upper bounds. α=9, n=24, e=36, p0 = 0, p− = 15, p+ = 9, ∆=3, δ=3
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Graph α p0 +min{p−, p+} U1 U3 U4 U5 U6 U7 U8 U9
Figure 2.1 3 3 4 6 8 4 4 4 5 5
Figure 2.2 4 4 5 7 10 5 5 5 7 7
Figure 2.3 3 3 5 6 8 4 4 4 6 6
Figure 2.4 9 9 12 22 24 12 12 12 16 21

Table 2.2: Values for α , the Cvetković Bound, and the other upper bounds for graphs in
which the Cvetković Bound gives the best estimate for α .

2.3 U3: Hansen Upper Bound

THEOREM 2.3 (Hansen [17]). Given a graph G with order n = n(G) and size e = e(G),

α ≤ b1
2 +
√

1
4 +n2−n−2ec.

This efficiently computable bound was presented by Hansen in 1979. We do not know of

any graph where this bound gives a better estimate of the independence number of a graph

than any of the bounds presented here. nor do we know that any of the investigated bounds

implies Hansen’s Upper Bound.

2.4 U4: Trivial Bound

THEOREM 2.4. For any graph, α ≤ n.

Proof. Let I be a maximum independent set. Then |I| = α . Since I ⊆ V, |I| ≤ |V |. Thus

α ≤ n.

The value of this bound increases as the order of a graph G increases. This bound is

equal to the independence number if and only if G is the empty graph on n vertices. Since

this bound is given by just the order of G, any other bound in this section will provide us

with a better estimate for the independence number of a graph, except in the case of the

empty graph.
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2.5 U5: Fractional Independence Number

The fractional independence number α f , as defined in section 1.2, is another efficiently

computable upper bound. This upper bound will perform better than the Kwok Bound and

the Matching Number Upper Bound for all graphs, making these bounds computationally

superfulous. We observe that α f ≥ n
2 for any graph. This is true since putting weights,

w(v) = 1
2 , on each vertex satisfies the given conditions. We also note that α f can be a very

bad bound for some graphs where α is significantly less than n
2 . Take complete graphs, for

example. The independence number α is 1 for any graph in this class, whereas α f will

always be n
2 .

THEOREM 2.5. For any graph, α ≤ α f (Fractional independence number).

Proof. Let w : V → [0,1] be a maximum weighting for G, with w(vi)+w(v j)≤ 1 for every

pair of adjacent vertices vi, v j. Let I be a maximum independent set, and α = |I|. So,

α f = ∑v∈V w(vi). Let u : V → [0,1] be a weighting for G defined as follows: u(v) = 1 if

v ∈ I, and u(v) = 0 if v /∈ I. Then α = ∑u(v). By definition, ∑w(v)≥∑u(v). Thus α f ≥ α .

For wheels, it can be argued that α = bn−1
2 c, but α f =

n
2 . But, e(Wn)= 2(n−1),∆(Wn)=

n− 1, and n− e
∆
= n− 2. That is, this family of graphs demonstrates that the difference

between the Fractional Independence Bound and the Kwok Bound can be arbitrarily large.

Graph α α f U1 U2 U3 U4 U6 U7 U8 U9
Figure 2.6 3 3.5 4 5 4 7 4 4 5 4
Figure 2.7 3 3.5 4 4 4 7 4 4 5 4

Table 2.3: Values for α , the α f bound, and the other upper bounds for graphs in which the
Fractional Independence number bound gives the best estimate for α .
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Figure 2.5: Wheel graph, W5, on 5 vertices. For wheels, as n→ ∞ the difference between
α f and n− e

∆
becomes arbitrarily large. Here α = 2,α f = 2.5, and n− e

∆
= 3.

Figure 2.6: A graph for which the fractional independence bound gives a better estimate for
α than any of the other upper bounds. α=3, n=7, e=12, p0 = 3, p− = 2, p+ = 2, ∆=4, δ=3

Figure 2.7: A graph for which the fractional independence bound gives a better estimate for
α than any of the other upper bounds. α=3, n=7, e=15, p0 = 2, p− = 3, p+ = 2, ∆=5, δ=3
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Figure 2.8: Graph with α = a = 2.

2.6 U6: Annihilation Number

R. Pepper proved this bound in his 2004 dissertation. He also proves that for general graphs

the annihilation number a will give a better estimate than the Kwok Bound [29]. Pepper

also shows that the annihilation number will always be better than or equal to the following

upper bounds:

a≤ e
δ

a≤ n∆

∆+δ

THEOREM 2.6. For any graph, α ≤ a (Annihilation number) [30].

There are many graphs where α = a. A graph is a König-Egerváry, or KE, graph if

is has n = α +α
′

vertices, where α
′

is the matching number of the graph. All bipartite

graphs are KE. All graphs in which α = a are characterized by one of the two following

conditions, (1) a = αc (the critical independence number), or (2) a < n
2 and for some v ∈ G,

αc(G− v) = a [24]. The graph in Figure 2.8 has α = a = 2.

The annihilation number a and α f are seemingly related invariants. In our investigation

a often is the same as α f . For several graphs α f ≤ a or α f ≥ a, but by just 1
2 . We conjecture

that α f ≤ a+ 1
2 . The graph in Figure 2.6 is an example where α f < a. The complete graph



15

on 3 vertices, in Figure 1.2, is an example where α f > a. In both cases, α f and a only differ

by 1
2 . An interesting future problem would be the find a graph where α f ≥ a+1.

2.7 U7: Matching Number Upper Bound

THEOREM 2.7 (König). For any graph, α ≤ n−α
′

where α
′
is the matching number.

Proof. Let M be a maximum matching. Clearly no more that |M| elements of V (M) can

be in an independent set. Let V
′
(G) = V (G)\V (M). Note |V ′(G)|+ |V (M)| = n. So,

α ≤ |M|+ |V ′(G)|

= α
′
+(n−|V (M)|)

= α
′
+n−2α

′

= n−α
′
, thus proving the theorem.

Since α
′
is computable in polynomial time [9], this bound could be of use. However, the

fractional independence number α f will always give us a better estimate than this bound.

LEMMA 2.8. For any graph, G, and any vertex, u, α f (G)≤ α f (G
′
)+1 where the graph G

′

is given by G−u.

Proof. Let w : V (G)→ [0,1] be a maximum weighting for G subject to the condition that, if

vi and v j are adjacent then w(vi)+w(v j)≤ 1. We define α f as the sum of the weights over

all of the vertices of G, and by definition we have w(u)≤ 1 for u ∈V (G). Now we let w
′

be

the weighting of G
′
defined by the restriction of w to G

′
. Then,

α f (G
′
)≥ ∑v∈V (G′)w

′
(v)

The right hand side of this equation is equivalent to the sum of all weights in the graph

G withough the weight of vertex u. Since α f is defined as above, and w(u)≤ 1, it follows

that ∑v∈V (G′)w
′
(v) = ∑v∈V w(v)−w(u)≥ α f (G)−1.
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Thus, the fractional independence number of G is no more than the fractional indepen-

dence number of G
′
plus one.

THEOREM 2.9. For any graph, α f ≤ n−α
′
.

Proof. We will assume that α f ≤ n−α
′

for graphs with no more than n vertices. Let G be

a graph with n+1 vertices. If G has a perfect matching then α
′
= n+1

2 and (n+1)−α
′
=

n+1− n+1
2 = n+1

2 . The fractional independence number, α f , will also equal n+1
2 . So assume

G does not have a perfect matching. Let v be a vertex of G and let G
′
= G− v. Let M be

a maximum matching of G
′
, and let the vertex v not be saturated by M. By the induction

hypothesis, we know,

α f (G
′
)≤ n(G

′
)−α

′
(G
′
)

Since the order of G
′
is the order of G minus one, and the matching number of G

′
is the

same as G, we have

α f (G
′
)≤ n(G)−1−α

′
(G)

which is equivalent to

α f (G
′
)+1≤ n(G)−α

′
(G)

By Lemma 2.8 we have

α f (G)≤ α f (G
′
)+1≤ n(G)−α

′
(G), proving the theorem.

2.8 U8: Borg Bound

THEOREM 2.10. For a connected graph G, α ≤ n−
⌈n−1

∆

⌉
=
⌊ (∆−1)n+1

∆

⌋
[3].

Proof. Let G be a connected graph with |V | = n and maximum degree ∆ . Note, n−1 ≤

∑v∈V\I d(v). n− 1 ≤ ∑v∈V\I d(v) ≤ ∑v∈V\I ∆ = |V\I|∆ = (n−α)∆ . Thus, α ≤ n− n−1
∆

.
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Since α ∈ Z, α ≤ bn− n−1
∆
c= n−

⌈n−1
∆

⌉
. The last equality holds as n is an integer, proving

the theorem.

The Borg Bound is an efficiently computable upper bound for the independence number

of a graph. However, this bound will usually give an estimate greater than or equal to the

Kwok Bound. For trees though the Borg Bound can be better than the Kwok Bound. Of

course, if e is sufficiently large, the Kwok Bound is a better bound than this bound. Since

Pepper proved that the annihilation number a≤ n− e
∆

[29] we conjecture that a is always

better than the Borg Bound.

2.9 U9: Minimum Degree Bound

n− δ is an efficiently computable upper bound for the independence number of a graph

which can be better than any of the other upper bounds we considered (see Figure 2.9).

THEOREM 2.11. For any graph, α ≤ n−δ .

Proof. Let G be a graph with vertex set V . Let I be a maximum independent set of V (G),

and v a vertex in I. The minimum degree of G, δ = δ (G), will be no larger than the

cardinality of the neighbors of v, which is equal to the degree of v. Since v is in I, none of

the neighbors of v are in I. Thus

α = |I| ≤ n−|N(v)|

Since |N(v)| ≥ δ , it follows that α ≤ n−δ .

For complete split graphs, α = n−δ . A split graph is a graph in which the vertices can

be partitioned into two sets, an independent set A and a clique B. A complete split graph has

all edges present between the independent set and clique.

Proof. For complete split graphs, α = |A|. Note that, for any vertex v ∈ A, d(v) = δ , and,

for any vertex w ∈ B, d(w) = ∆
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Figure 2.9: A graph for which the Minimum Degree Bound gives a better estimate for α

than any of the other upper bounds. α=2, n=6, e=12, p0 = 3, p− = 2, p+ = 1, ∆=4, δ=4

Clearly |B| = δ . Since α = |A|, we can add “zero” to this equation to get α = |A|+

|B|− |B|. Since |B|= δ and |A|+ |B|= n, α = n−δ .

Graph α n−δ U1 U2 U3 U4 U5 U6 U7 U8
Figure 2.9 2 2 3 3 3 6 3 3 3 4

Table 2.4: Values for α , the Minimum Degree Bound, and the other upper bounds for graphs
in which the n−δ bound gives a better estimate for α than any upper bounds considered
here.

2.10 Other Upper Bounds

This section contains bounds which were not included in our investigation. We do not have

any examples that demonstrate that these bounds can be better than the investigated bounds.

We also do not know the relationships, if any, that exist between these and the investigated

bounds.

Recall that n and e are the number of vertices and edges, respectively. Let λmin(A) and

λmax(A) be the minimum and maximum eigenvalues of the adjacency matrix A.

THEOREM 2.12. For any graph, α ≤ −nλmin(A)
λmax(A)−λmin(A)

[7][25].
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THEOREM 2.13. For any graph, α ≤ min{∑n
i=k+1

−λmin(A)
λi(A)−λmin(A)

× [(e + y)T ui]
2 : y ∈ Y},

where e is a vector of all 1’s, ui is an orthonormal eigenvector associated with eigenvalue λi,

and Y = {y : y≥ 0 and (e+ y)T ui = 0,∀i = 1...k}. [27]

A cut vertex is a vertex v such that G−v, the graph formed by deleting v and all incident

edges, has more components than G. Let C denote the number of cut vertices.

THEOREM 2.14. For any graph, α ≤ n− C
2 −

1
2 [22].

For a graph G, an orthonormal representation of G is a system of unit vectors {v0,v1, ...,vn}

in a Euclidean space such that if i and j are nonadjacent vertices, then vi and v j are orthog-

onal. Clearly, every graph has an orthonormal representation, for example, by pairwise

orthogonal vectors. The value of and orthonormal representation {u0,u1, ...,un} is defined

minc max1≤i≤n
1

(cT ui)2 where c ranges over all unit vectors. The c vector yielding the mini-

mum is called the handle of the representation. Let ϑ(G) denote the minimum value over

all representations of G. It is easy to see that this minimum is attained.

THEOREM 2.15. For any graph, α ≤ ϑ [25].
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Lower Bounds

Bound Name
L1 α ≥ n

χ
Chromatic Number Bound

L2 α ≥ n
1+∆

Brook’s Bound
L3 α ≥ n

1+d̄ Turan’s Bound
L4 α ≥ ∑v∈V

1
1+d(v) Caro-Wei Bound

L5 α ≥ n
1+λ1

Wilf’s Bound

L6 α ≥
⌈

2n− 2e
d2e/ne

d2e/ne+1

⌉
Hansen Lower Bound

L7 α ≥ D̄ Average Distance
L8 α ≥ R Residue
L9 α ≥ r Radius

L10 α ≥ αc Critical Independence Number
L11 α ≥ 1

2 [(2e+n+1)−
√

(2e+n+1)2−4n2] Harant Bound
L12 α ≥ n−2α

′
Matching Number Lower Bound

Table 3.1: A list of each lower bound in the order considered.

3.1 L1: Chromatic Number Bound

Recall that χ(G) is the chromatic number of the graph G.

THEOREM 3.1. For any graph, α ≥ n
χ

.

Proof. Let G be a graph with a proper coloring using χ colors and have maximum indepen-

tent set, I. Since every set of vertices with the ith color is independent in G, |Xi| ≤ |I|= α .

Thus n(G) = |X1|+ |X2|+ ...+ |Xχ |

≤ |I|+ |I|+ ...+ |I|
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Figure 3.1: A graph for which n
χ

gives a better estimate for α than any of the other lower
bounds. α=4, n=12, e=20, χ = 3,∆ = 4, d̄ = 3.34,λ1 = 3.41

= α +α + ...+α = χα , proving the theorem.

While not an efficiently computable bound (its as difficult as α to compute [14]), this

bound has turned out to give results better than any other lower bound for a handful of

graphs.

Graph α
n
χ

L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Figure 3.1 4 4 3 3 3 3 3 3 3 3 0 2.87 0

Table 3.2: Values for α , n
χ

, and the other lower bounds for which n
χ

is best.

3.2 L2: Brook’s Bound

Recall that ∆ is the maximum degree of a graph. Brook’s Theorem says if a graph is not

complete nor and odd cycle, then χ ≤ ∆ .

THEOREM 3.2. For any graph, α ≥ n
1+∆

.

This bound can be obtained by combining Brook’s inequality and the previous lower

bound.

Proof. Let G be a graph with chromatic number χ = k. We know χ ≤ 1+∆ [36]. By 3.1,

α ≥ n
χ

. Thus α ≥ n
1+∆
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This lower bound for the independence number of a graph is efficiently computable.

However, since the maximum degree will always be greater than or equal to the average

degree (∆ ≥ d̄), Turan’s Bound will always provide a more accurate estimate.

3.3 L3: Turan’s Bound

THEOREM 3.3 (Turan [15]). For any graph, α ≥ n
1+d̄ .

Using just the order and average degree, d̄, of a graph G, Turan’s Bound is another

efficiently computable bound. Wei shows that the Caro-Wei Bound in the next section, will

always be at least as large as n2

2e+n , which equals n
1+d̄ [15].

3.4 L4: Caro-Wei Bound

The following bound is due independently by Caro and Wei. The proof we present is adapted

from [2].

THEOREM 3.4 (Caro-Wei [4][38]). For any graph, α ≥ ∑v∈V
1

1+d(v) .

Proof. Let G be a graph on n vertices and A an independent set. Let τ be a random

permutation of the vertex set V such that, labelled, the permutation is τ = v1, ...,vn. A

vertex vi will be in A if there are no edges from vi to v j where i < j. The probability

of v being included in the independent set A, is d(v)!
(d(v)+1)! =

1
d(v)+1 since there are d(v)!

permutations of v and its neighbors where v is the rightmost vertex. The expected size of

A is ∑v∈V Prob(v ∈ A) = ∑v∈V
1

d(v)+1 . Since A is an independent set, |A| ≤ |I| where I is a

maximum independent set. Thus α ≥ ∑v∈V
1

1+d(v) .

Not only is this bound better than Turan’s Bound, it is also better than Brook’s Bound.

Even though it is better than these two, the Residue of a graph is better than all three and
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will always produce a better estimate for the independence number of a graph that is at least

as good as these [13].

3.5 L5: Wilf’s Bound

It was shown above (Brook’s Bound) that α ≥ n
∆

,unless G is an odd cycle or a complete

graph in which case α ≥ n
∆+1 , where n is the cardinality of the vertex set and ∆ is the

maximum degree of vertices of G. This bound is weak if G = Kn,n. In this case, α = n but

d n
1+∆
e= 2. Recall that λ1 is the largest eigenvalue of G. Using the fact that λ1 ≤ ∆ [7], Wilf

improved this bound to get a formally similar bound.

THEOREM 3.5 ([41]). For any graph, α ≥ n
1+λ1

[40].

Since 1+λ1 is an upper bound for χ [40], Wilf’s Bound will always provide us with

a lower estimate for the independence number than the Chromatic Number Bound since

n
χ
≥ n

1+λ1
.

3.6 L6: Hansen Lower Bound

THEOREM 3.6. For any graph, α ≥
⌈

n− 2e
(1+b2e/nc)

⌉
+

⌈
n−
⌈

n− 2e
1+b2e/nc

⌉
·(1+b2e/nc)

(2+b2e/nc)

⌉
=

⌈
2n− 2e

d2e/ne
d2e/ne+1

⌉
[16] [17].

In 1975, Hansen gives the first expression as lower bound for the independence number

of a graph [16]. A simpler form of this expression was provided in [13] and is given on the

right hand side. Also in [13], the authors prove that the residue of a graph will always be

greater than or equal to the Hansen Lower Bound.
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3.7 L7: Average Distance

Siemion Fajtlowicz’s computer program GRAFFITI conjectured the following bound [12].

It was then proved by Fan Chung [5].

THEOREM 3.7 (Average Distance [5]). For any connected graph, α ≥ D̄.

The average distance of a graph D̄(G) of a connected graph G will be equal to the

independence number α if and only if G is a complete graph. From the data it is unclear

whether a graph exists where D̄(G) is a better bound than any other lower bound considered

here, or if it may be implied by some other lower bound.

3.8 L8: Residue

Siemion Fajtlowicz’s computer program GRAFFITI also conjectured the following bound

[12]. It was originally proved by Favaron, Maheo, and Sacle and a few other proofs have

since been published [13].

THEOREM 3.8 (Residue [13]). For any graph, α ≥ R.

The residue, R, as defined in Section 1.3 can also be given by n−d where d is the depth

of the graph. The depth of the graph is just the number of steps it takes the Havel-Hakimi

process to terminate. Not only is this an efficiently computable bound, it out performs

Brook’s Bound, Turan’s Bound, Hansen’s Lower Bound, and the Caro-Wei Bound. A graph

where R gives a better estimate for the independnce number than any other lower bound can

be soon in Figure 3.2 and the values for α,R and each of the other lower bounds can be seen

in Table 3.3.
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Figure 3.2: A graph for which Residue gives a better estimate for α than any of the other
lower bounds considered here. α=3, n=8, e=15, χ = 4,∆ = 6, d̄ = 3.75,λ1 = 4.066

Figure 3.3: A graph for which Radius gives a better estimate for α than any of the other
lower bounds considered here. α=4, n=14, e=28, χ = 4,∆ = 4, d̄ = 4,λ1 = 4
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Graph α Residue L1 L2 L3 L4 L5 L6 L7 L9 L10 L11 L12
Figure 3.2 3 3 2 1.14 1.68 1.8 1.58 1.7 1.46 2 2 1.71 0

Table 3.3: Values for α , Residue, and the other lower bounds for graphs in which Residue
is better than any of the others considered.

Graph α Radius L1 L2 L3 L4 L5 L6 L7 L9 L10 L11 L12
Figure 3.3 4 4 3.5 2.8 2.8 2.8 2.8 2.8 2.12 3 0 2.88 0

Table 3.4: Values for α , Radius, and the other lower bounds for graphs in which Radius is
better than any of the bounds considered.

3.9 L9: Radius

The following bound was conjectured by Siemian Fajtlowicz’s computer program GRAFFITI

[12] and was proved by Erdös, Saks and Sos [10].

THEOREM 3.9. For any graph, α ≥ r, where r is the radius of a graph.

Erdös, Saks, and Sos proved Theorem 3.10. They write that their original proof was

simplified by Fan Chung. Chung’s proof is reproduced below [10].

THEOREM 3.10. For a connected graph G, p(G)≥ 2r−1.

Proof. Let G be a graph with radius r. We can assume by induction on |V | that no connected

induced subgraph of G has radius r. Let vr be a vertex that is not a cutpoint. Since the graph

induced on V − vr is connected, it has radius less than r. Let vo be a center of the graph

induced on V−vr then d(vo,w)≤ r−1 for w 6= vr, and so d(vo,vr) must be r. Let vo,v1, ...,vr

be a shortest path from vo to vr. There exists a vertex w with d(v2,w) ≥ r. Therefore

d(v0,w)≥ r−2 and also d(v0,w)≤ r−1 since w 6= vr. Let P be a shortest path from vo to

w. If any vertex u in P is adjacent to v j for some j ≥ 2, then d(v0,w) = d(v0,u)+d(u,w)≥

d(v0,v j)− 1+ d(v j,w)− 1(v0,v j)− 2+ d(v2,w)− d(v2,v j) ≥ r, a contradiction. Hence

vr,vr−1, ...,v1,v0 followed by P is a path of 2r− 1 or 2r vertices that fails to be induced
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only if v1 is adjacent to some vertex of P. If P has r−2 vertices this is impossible since

d(v1,w)≥ r−1. If P has r−1 vertices then v1 may be adjacent to the first vertex of P. In

that case, deleting vo yields the desired path.

COROLLARY 3.11. For any graph, α ≥ r.

Proof. Let G be a graph. Let p(G) denote the number of vertices in a longest induced path

in G. We know that there is an independent set with d p(G)
2 e vertices. Clearly α ≥ p(G)

2 and

by Theorem 3.10 p(G)
2 ≥ 2r−1

2 = r− 1
2 . Thus α ≥ r− 1

2 , and since r is an integer, α ≥ r.

Therefore α ≥ r.

A graph where r gives the best estimate for the independence number can be seen in

Figure 3.3, and the values of α,r and the other lower bounds can be seen in Table 3.4

3.10 L10: Critical Independence Number

A critical independent set, Ic, is an independent set such that |Ic|− |N(Ic)| ≥ |J|− |N(J)|

for any independent set J. Ic is a maximum critical independent set if it is of maximum

cardinality. The critical independence number αc, is the cardinality of a maximum critical

independent set [23]. Clearly α ≥ αc.

THEOREM 3.12. For any graph, α ≥ αc.

Recall that König-Egervary (or KE) graphs, as defined in Section 2.6, are graphs that

have n = α +α
′

vertices. The critical independence number αc will be equal to α for

KE graphs, which includes all bipartite graphs. Ermelinda DeLaVina’s computer program

GRAFITTI.pc made the following conjecture [8] and it was proved by Larson.

THEOREM 3.13. A graph G is KE if and only if α = αc. [23]
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Figure 3.4: A graph for which αc gives a better estimate for α than any of the other lower
bounds considered here. α=5, n=8, e=15, χ = 2,∆ = 5, d̄ = 3.75,λ1 = 3.873

Figure 3.5: A graph for which αc gives a better estimate for α than any of the other lower
bounds. α=3, n=6, e=8, χ = 2,∆ = 3, d̄ = 2.67,λ1 = 2.73

A graph for which αc is a better bound than the other lower bounds for the independence

number can be seen in Figure 3.4, and the values for α , αc, and the rest of the lower bounds

can be seen in Table 3.5.

Graph α αc L1 L2 L3 L4 L5 L6 L8 L7 L9 L11 L12
Figure 3.4 5 5 4 1.33 1.68 1.75 1.64 1.7 1.46 3 2 1.72 2
Figure 3.5 3 3 3 2 2 2 2 2 2 2 2 1.69 0

Table 3.5: Values for α , αc, and the other lower bounds for graphs in which αc is best.

3.11 L11: Harant Bound

The authors of [19] develop a lower bound to the output of the Algorithm MIN, which is

a procedure of constructing an independent set. The algorithm MIN consists of choosing

a vertex vδ of minimum degree, and then deleting it and its neigbors. We are left with a
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Figure 3.6: A graph for which the Harant Bound gives a better estimate for α than any of
the other lower bounds considered here. α=13, n=28, e=42, χ = 3,∆ = 3, d̄ = 3,λ1 = 3

graph of n− (|N(v)|+1) vertices. We continue the process of taking a vertex and deleting

its neighbors until there are no vertices left. Let I be the set of minimum degree vertices

chosen in this process. This set is not uniquely defined, as there may be more than one

vertex of minimum degree at any given step. I will always be an independent set in V .

Let kmin be the cardinality of a smallest set I obtained from the MIN algorithm, then

kmin ≥ 1
2 [(2e+n+1)−

√
(2e+n+1)2−4n2].

THEOREM 3.14. For any graph, α ≥ 1
2 [(2e+n+1)−

√
(2e+n+1)2−4n2].

Since this bound is in terms of the order n and size e of a graph G, this bound is efficiently

computable. In the data collected, there is a graph for which this bound provides a better

estimate for the independence number then the other lower bounds, except the Chromatic

Number Bound. Since the Chromatic Number Bound is not efficiently computable, this

graph is included.

Graph α Harant L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L12
Figure 3.6 13 7.43 9.3 7 7 7 7 7 4.06 7 7 0 0

Table 3.6: Values for α , the Harant Bound, and the other lower bounds for which the Harant
Bound is best.
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3.12 L12: Matching Number Lower Bound

THEOREM 3.15. α ≥ n−2α
′

Proof. Let M be a maximum matching and let V
′
(G) =V (G)\V (M). Clearly α ≥ |V ′(G)|.

Note |V ′(G)|+ |V (M)|= n. So, α ≥ |V ′|

= n−|V (M)|

= n−2α
′
, thus proving the theorem.

According to the data there are on bounds where the Matching Number Lower Bound

is better than any other lower bound considered. We do not know whether there is a graph

where this bound is better than any others, or if it is implied by another bound.

3.13 Other Lower Bounds

This section contains bounds which were not included in our investigation. We do not have

any examples that demonstrate that these bounds can be better than the investigated bounds.

We also do not know the relationships, if any, that exist between these and the investigated

bounds.

THEOREM 3.16. For any graph, α ≥ ∑v∈V
1

1+d(v)(1+max{0, d(v)
d(v)+1 −∑v∈V

1
1+d(v)}) [32].

λl1 is the maximum eigenvalue of the Laplacian matrix and U+
1 and U−1 are defined as

follows:

U+
1 = min(u j)i>0

1
(u j)i

and U−1 = min(u j)i<0
1

|(u j)i| . For 1≤ j ≤ n, where u j is the normal-

ized eigenvector corresponding to λ j, (u j)i is the ith− entry of u j.

THEOREM 3.17. For any graph, α ≥ n2

n(∆+1)+(∆+1−λl1)max{(U+
1 )2,(U−1 )2} [26].

Let CW (G) denote the value of the Caro-Wei Bound for a graph G, and Let qi =
1

1+di

where di is the degree of vertex vi.
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THEOREM 3.18. For any graph G, α ≥ (CW (G))2

CW (G)−∑i j∈E(G)(di−d j)2q2
i q2

j
[18].

Let λ1 be the maximum eigenvalue of the adjacency matrix. S is given by the sum of the

entries of the normalized eigenvector corresponding to λ1.

THEOREM 3.19. For any graph, α ≥ S2

S2+λ1
[41].

Recall that a cut vertex is a vertex v such that G− v, the graph formed by deleting v

and all incident edges, has more components than G and that C denotes the number of cut

vertices.

THEOREM 3.20. For any graph, α ≥ 1+ C
2 . [22]
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Special Bounds

The bounds we investigated were for general graphs. We include for completeness other

bounds for the independence number which do not apply for general graphs. Recal that n

is the number of vertices v of a graph, d(v) is the degree of vertex v, and d̄ is the average

degree of all vertices. Also recall that the maximum degree and minimum degree of a graph

G are given by ∆ and δ , respectively. The maximum eigenvalue of a graph’s adjaceny matrix

is given by λ1.

THEOREM 4.1. For triangle-free graphs such that ∆ ≥ 4, α ≥ 2n
∆+3 [11].

THEOREM 4.2. For connected graphs with maximum degree ∆ that do not contain Kq,

α ≥ 2n
∆+q [11].

THEOREM 4.3. For triangle-free graphs with ∆ ≥ 3, α ≥ 5n
5∆−1 [35].

THEOREM 4.4. For triangle-free graphs with ∆ ≤ 3, α ≥ 5n
14 [21].

THEOREM 4.5. For triangle-free graphs with d̄ > 0, α ≥ n ln d̄
100d̄ [33].

THEOREM 4.6. For planar graphs, α ≥ n
4 (Four Color Theorem).

THEOREM 4.7. For planar graphs, α ≥ 2n
9 . Even though n

4 ≥
2n
9 , the proof of this theorem

does not use the four color theorem [1].

THEOREM 4.8. For triangle-free graphs, α ≥ n(d ln d̄−d̄+1)
(d̄−1)2 [33].

THEOREM 4.9. For triangle-free graphs, α ≥∑v∈V f (d(v)) where f (d(v)) = 1+(d2(v)−d(v)) f (d(v)−1)
(d2(v)+1)d(v) ≥ 1

[34].
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THEOREM 4.10. For triangle free planar graphs with ∆ = 3, α ≥ 3
8n [20].

THEOREM 4.11. For graphs where ∆ 6= δ , α ≤ n(λ1−δ )
λ1

[26].
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Difficult Graphs

5.1 Difficult Graphs for Upper Bounds

The graphs in Figures 5.1 to 5.4 are examples of graphs for which no efficiently computable

upper bound considered equals the independence number α . Values for each of the upper

bounds considered, as well as α , can be seen in Table 5.1.

Graph α U1 U2 U3 U4 U5 U6 U7 U8 U9
Figure 5.1 2 5 3 6 10 5 5 5 8 5
Figure 5.2 2 5 3 6 10 5 5 5 8 4
Figure 5.3 4 5.5 6 6 11 α f ≥ 5.5 5 6 7 7
Figure 5.4 2 6 5 5 9 4 4 5 8 4

Table 5.1: Values for α and all upper bounds considered for graphs in which no bound
equals α .

5.2 Difficult Graphs for Lower Bounds

The graph in Figure 3.6 as well as the graphs in Figures 5.5 to 5.8 are examples of graphs

for which no lower bound considered equals the independence number α . Values for α and

each of the lower bounds considered can be seen in Table 5.2.

5.3 Super Difficult graphs: Difficult Graphs for Upper and Lower bounds

In this section we include graphs in which no bound equals the independence number. The

graphs in Figures 5.10 to 5.15 have no bounds which equal the independence number. Values
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Figure 5.1: A graph where none of the upper bounds considered here give the value for α .

Figure 5.2: A graph where none of the upper bounds considered here give the value for α .
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Figure 5.3: A graph where none of the upper bounds considered here give the value for α .

Figure 5.4: A graph where none of the upper bounds considered here give the value for α .

Figure 5.5: A graph where none of the lower bounds considered here give the value for α .
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Figure 5.6: A graph where none of the lower bounds considered here give the value for α .

Figure 5.7: A graph where none of the lower bounds considered here give the value for α .
This is the graph in Figure 2.1. Note that the Cvetcovic Upper Bound predicts α .

Figure 5.8: A graph where none of the lower bounds considered here give the value for α .
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Figure 5.9: Figure 2.7 is reproduced here for the reader’s convenience. A graph where none
of the considered lower bounds gives the correct value for α . Note that α f predicts α . α = 3
and α f = 3.5.

Graph α L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Figure 3.6 13 9.3 7 7 7 7 7 4.06 7 7 0 7.43 0
Figure 5.5 3 1.75 1.16 1.48 1.55 1.43 1.5 1.3 2 2 0 1.5 1
Figure 5.6 3 1.75 1.16 1.32 1.35 1.29 1.33 1.27 2 2 0 1.33 1
Figure 5.7 3 2.66 2 2 2 2 2 1.57 2 2 0 2.069 0
Figure 5.8 4 3 1.2 1.97 2.11 1.84 2 1.72 3 2 0 2.02 1
Figure 5.9 3 1.75 1.16 1.63 1.03 1.29 1.5 1.28 2 2 0 1.33 1

Table 5.2: Values for α and each of the lower bounds considered for which no efficiently
computable bound equals α .

for α and each of the upper bounds and lower bound considered for which no bound equals

the independence number can be seen in Tables 5.3 and 5.4.
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Figure 5.10: A graph where none of the considered upper bounds or lower bounds gives the
correct value for α .

Figure 5.11: A graph where none of the considered upper bounds or lower bounds gives the
correct value for α .
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Figure 5.12: A graph where none of the considered upper bounds or lower bounds gives the
correct value for α .

Figure 5.13: A graph where none of the considered upper bounds or lower bounds gives the
correct value for α .
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Figure 5.14: A graph where none of the considered upper bounds or lower bounds gives the
correct value for α .

Figure 5.15: A graph where none of the considered upper bounds or lower bounds gives the
correct value for α .

Figure 5.16: For the reader’s convenience Figure 3.1 is recreated here. An instance of a
graph where none of the considered upper bounds or lower bounds gives the correct value
for α .
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Graph α U1 U2 U3 U4 U5 U6 U7 U8 U9
Figure 5.10 5 6 7 10 12 6 6 6 8 9
Figure 5.11 5 6 8 10 12 α f ≥ 6 6 6 8 9
Figure 5.12 6 7 8 12 14 7 7 7 9 11
Figure 5.13 9 11 10 30 22 11 11 11 15 19
Figure 5.14 5 6 8 10 12 6 6 6 8 9
Figure 5.15 4 5.5 6 5 11 5.5 5 6 8 7
Figure 5.16 4 7 6 10 12 α f ≥ 6 6 6 9 9

Table 5.3: Super Difficult Graphs: Values for α and all upper bounds considered for graphs
in which no bound equals α .

Graph α L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Figure 5.10 5 4 3 3 3 3 3 2.1 3 3 0 3.1 0
Figure 5.11 5 4 3 3 3 3 3 2.03 3 3 0 3.1 0
Figure 5.12 6 4.67 3.5 3.5 3.5 3.5 3.5 1.24 4 4 0 3.67 0
Figure 5.13 9 7.33 5.5 5.5 5.5 5.5 5.5 2.6 6 4 0 5.8 0
Figure 5.14 5 4 3 3 3 3 3 2.12 3 3 0 3.19 0
Figure 5.15 4 2.75 2.2 2.2 2.2 2.2 3 1.67 3 2 0 2.25 1
Figure 5.16 4 4 3 3 3 3 3 3 3 3 0 2.87 0

Table 5.4: Super Difficult Graphs: Values for α and each of the lower bounds considered for
which no bound equals α .
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Open Questions and Conjectures

Recall that n is the number of vertices of a graph and λ1 is the maximum eigenvalue of the

adjacency matrix. The residue of a graph is given by R. The annihlation number number

and fractional independence number are given by a and α f , respectively.

1. According to all the considered graphs, R≥ n
1+λ1

. Is R≥ n
1+λ1

?

2. From the graphs considered, there was no instance where a < α f by more than 1
2 . It

was always the case that either α f = a or α f = a+ 1
2 . We conjecture α f ≤ a+ 1

2 .

3. In the investigation of the upper bounds, the annihilation number was never the best

bound for any graph. Is there a graph where a is a better upper bound for α then any

of the others considered here, or is it implied by some other upper bound?

4. In our investigation of the upper bounds, the Hansen Upper Bound was never better

than any other bound for any graph. Does a graph exist such that the Hansen Upper

Bound is better than any of the other upper bounds considered? Or is this bound

implied by another bound?

5. For most of the graphs considered in our investigation, n− e
∆
≤ n−

⌈n−1
∆

⌉
. Clearly this

is not true for trees. Since a≤ n− e
∆

[29] and for sufficiently large e, n− e
∆
≤ n−

⌈n−1
∆

⌉
is true, we conjecture that a≤ n−

⌈n−1
∆

⌉
.

6. In our investigation of the lower bounds, the Average Distance Bound was never better

than any other bound for any graph. Does a graph exist where the Average Distance



44

bound is better than any other lower bound considered, or is it implied by another

lower bound?

7. In our investigation of the lower bounds, the Matching Number Lower Bound was

never better than any other bound for any graph. Is there a graph where the Matching

Number Lower Bound is better than any of the other lower bounds considered, or

could it be implied by another lower bound?.

8. Several upper and lower bounds were mentioned in section 2.10 and 3.13, and were

not included in our investigation. The question remains open whether these may ever

be better than any of the investigated bounds.

9. Find new bounds for the independence number of a general graph that predict the

values of α for the difficult graphs.
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