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a b s t r a c t

Let G be a simple connected graph of order n � 2 with maximum degree � and minimum
degree �, and eigenvalues �1 � �2 � · · · � �

n

. It is shown that the independence number
of G can be bounded from above by �����

n

�
n and �1��

n

+��2�
�1��

n

+���
n.
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1. Introduction

Let G be a connected graph of order n � 2 with maximum degree � = �(G) and minimum degree � = �(G). In this
note we allow graphs to have loops but no multiple edges. As usual, each loop is counted once at a vertex v for deg(v), soP

v deg(v) = 2e(G) + `(G), where e(G) and `(G) are numbers of edges and loops of G, respectively. Let A = A(G) be the
adjacencymatrix ofG, whose eigenvalues, called the eigenvalues ofG also, are arranged as �1 � �2 � · · · � �

n

. Let d = d(G)
be the average degree of G. It is easy to see that for simple connected graph �

n

< 0 and � � �1 � d. In particular, if G is
d-regular, then �1 = d.

We define an independent set in a graph with loops to be an independent set in the graph with loops removed. Thus
independent sets may contain loops. Let ↵(G) be the independence number of G. A famous spectral bound, see [7,17], for
↵(G) of d-regular connected graph G is as follows.

↵(G)  ��
n

d

n. (1)

This bound can be improved as

↵(G)  ��
n

�1 � �
n

n, (2)

which is called the Delsarte–Hoffman bound; see Godsil and Newman [10] for a proof in another way as it can be implied
by (4). It is interesting to see that the bound (2) is sharp for regular graphs as the equality in (2) holds for Paley graphs of
order p2m, where p ⌘ 1(mod 4) is a prime.
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In extremal graph theory, algebraic graph theory is important; see Godsil and Royle [11]. The graphs constructed by the
algebraic method like ErdÆs–Rényi graphs [8] and norm-graphs [3] have attractedmuch attention. However, some algebraic
graphs are not regular, but nearly regular in the sense that � � � are small.

For a d-regular graph G in which each vertex has at most one loop, the spectral bound can be as follows; see Alon and
Spencer [4], and Alon and Chung [2],

↵(G)  1 + �

d

n,

where � = max{|�
i

| : 2  i  n}. This bound can be improved as

↵(G)  1 � �
n

d

n, (3)

which is itself a weakening of the case ` = 1 of Lemma 1 in this note.
From a non-regular simple graph G, we can obtain a�-regular graph G

0 by attaching each vertex v with��deg(v) loops.
Note that the independence number of G0 is the same as that of G, so ↵(G0) = ↵(G).

As regular graphs in which each vertex has at most a loop, the spectra of ErdÆs–Rényi graphs can be computed by a
technique of ErdÆs, Rényi, and Sós [9] for the uniqueness of friendship graph [1], and spectra of norm-graphs have been
found by Szabó [16]. Mubayi and Williford [14] proved that the independence numbers of above graphs are not far away
from that estimated by (3).

Note that bounds (1)–(3) are valid only for regular graphs. It was shown by Haemers [12] for simple (not necessarily
regular) graph G,

↵(G)  ��1�n

�2 � �1�n

n.

An interesting result of Godsil and Newman [10] for non-regular graphs is as follows. Let G be a simple graph with average
degree d = d(G). For an independent set S of G, let k

S

= 2
|S|
P

v2S

deg(v) � d. Then

|S|  ��
n

k

S

� �
n

n. (4)

Let us havemore such bounds for simple non-regular graphs. The following result can be viewed as bound (1) for non-regular
graphs, particularly when � � � is small.

Theorem 1. Let G be a simple connected graph of order nwith� = �(G), �(G) = � and eigenvalues �1 � �2 � · · · � �
n

. Then

↵(G)  � � � � �
n

�
n. (5)

In the following result, the coefficient of n is close to ��
n

/�1 if � � � is small, �1 ⇠ � and �
n

= o(�1) for large n, which
is true for quasi-random graphs; see Chung, Graham and Wilson [5].

Theorem 2. Let G be a simple connected graph of order nwith�(G) = �, �(G) = � and eigenvalues �1 � �2 � · · · � �
n

. Then

↵(G)  �1 � �
n

+ � � 2�
�1 � �

n

+ � � �
n.

2. Proofs

Let us first generalize (1) further as follows.

Lemma 1. Let G be a regular connected graph of order n, in which each vertex has at most ` loops, and let �1 � �2 � · · · � �
n

be eigenvalues of G. Then

↵(G)  ` � �
n

�1 � �
n

n.

Proof. Assume that G is d-regular. Then the largest eigenvalue of G is �1 = d with eigenvector V1 = 1p
n

(1, 1, . . . , 1)T . Let
V1, V2, . . . , Vn

be the ortho-normal eigenvectors corresponding to the eigenvalues d = �1 � �2 � · · · � �
n

, respectively.
Let I be an independent set of G with |I| = ↵(G), and let �

I

be the characteristic (column) vector of I . Suppose that
V (G) = {v1, v2, . . . , vn

}. The coordinate �
I

(i) of �
I

corresponding to vertex v
i

is

�
I

(i) =
⇢
1 if v

i

2 I

0 otherwise.
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Suppose that �
I

= P
n

i=1 ciVi

. Since I is independent, we have

� T

I

A�
I

=
X

i,j

a

ij

�
I

(i)�
I

(j) =
X

i2I

a

ii

,

which is the number of loops in I , and thus

� T

I

A�
I

 `|I|.
The ortho-normality of V1, V2, . . . , Vn

implies that

� T

I

A�
I

=
 

nX

i=1

c

i

V

i

!
T

A

 
nX

j=1

c

j

V

j

!

=
 

nX

i=1

c

i

V

T

i

! 
nX

j=1

c

j

�
j

V

j

!

=
nX

i=1

c

2
i

�
i

,

and
nX

i=1

c

2
i

= � T

I

· �
I

= |I|.

Furthermore c1 = � T

I

V1 = |I|/pn. Combining these together, we have

`|I| � � T

I

A�
I

=
nX

i=1

c

2
i

�
i

= �1c
2
1 +

nX

i=2

�
i

c

2
i

� �1
|I|2
n

+ �
n

nX

i=2

c

2
i

= �1
|I|2
n

+ �
n

⇣
|I| � |I|2

n

⌘
,

from which it follows that

↵(G) = |I|  ` � �
n

�1 � �
n

n,

as asserted. ⇤

We now need a result on eigenvalues; see Horn and Johnson [13].

Lemma 2. Let A, B be real symmetric matrices of order n. Let the eigenvalues �
i

(A) of A, �
i

(B) of B and �
i

(A + B) of A + B be

arranged in non-increasing order, respectively. Then for each 1  i  n,

�
i

(A) + �1(B) � �
i

(A + B) � �
i

(A) + �
n

(B).

Corollary 1. Let G be a simple graph of order n with � = �(G) and � = �(G). Let G0
be the regular graph from G by attaching

each vertex v with � � deg(v) loops. Suppose that G and G

0
have eigenvalues �1 � �2 � · · · � �

n

and �0
1 � �0

2 � · · · � �0
n

,

respectively. Then, for each 1  i  n,

�
i

+ � � � � �0
i

� �
i

.

Proof. It is easy to see A(G0) = A(G)+D, whereD is a diagonalmatrixwhose diagonal elements are��deg(v) for v 2 V (G).
Since �1(D) = � � � and �

n

(D) = 0, the assertion follows from Lemma 2. ⇤

Proof of Theorem 1. LetG0 be the graph fromGdefined in Corollary 1. ThenG

0 is�-regular and thus�0
1 = �. FromLemma1,

we have

↵(G0)  � � � � �0
n

�0
1 � �0

n

n = � � � � �0
n

� � �0
n

n.

As ↵(G) = ↵(G0), it suffices to verify that

� � � � �0
n

� � �0
n

 � � � � �
n

�
,

which is equivalent to

��
n

 ��0
n

+ �
n

�0
n

. (6)

Case 1. �0
n

� 0. Then (6) follows from the facts that �
n

< 0 and 0  �0
n

 �.

Case 2. �0
n

< 0. Thus from Corollary 1, �
n

 �0
n

< 0, and � > � + �
n

. Hence (6) follows. ⇤
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Proof of Theorem 2. Similar to the proof for Theorem 1, we have

↵(G) = ↵(G0)  � � � � �0
n

�0
1 � �0

n

n = �0
1 � �0

n

� �

�0
1 � �0

n

n, (7)

where G

0 is the graph defined in Corollary 1. Then, for each 1  i  n,

�
i

 �0
i

 �
i

+ � � �.

This and �
n

 �0
n

bound �0
1 � �0

n

as

�0
1 � �0

n

 �1 � �
n

+ � � �.

Form the fact that the function x��
x

is increasing on x � �, we have

�0
1 � �0

n

� �

�0
1 � �0

n

 �1 � �
n

+ � � 2�
�1 � �

n

+ � � 2�

as desired. ⇤

Note that the proof of Lemma 1 may give more for non-regular graph if we know more about the eigenvector of the
largest eigenvalue. Such eigenvectors are discussed in [6,15,18].
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