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Abstract

The independence number of the graph of a fullerene, the size of the largest set of vertices such that no two are

adjacent (corresponding to the largest set of atoms of the molecule, no pair of which are bonded), appears to be a useful

selector in identifying stable fullerene isomers. The experimentally characterized isomers with 60, 70 and 76 atoms

uniquely minimize this number among the classes of possible structures with, respectively, 60, 70 and 76 atoms. Other

experimentally characterized isomers also rank extremely low with respect to this invariant. These findings were ini-

tiated by a conjecture of the computer program Graffiti.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

A conjecture of the conjecture-making program
Graffiti [3,4,12] and a feature of that program for

identifying stability sorting patterns led to the ob-

servation that, for the very limited (less than 50)

number of examples of stable and presumed un-

stable fullerenes known to the program, the stable

isomers had smaller independence numbers than

the unstable ones. It was originally Graffiti�s
qThe authors would like to thank Thomas Schmalz, Douglas

Klein and Alexandru Balaban for helpful discussions.
* Corresponding author. Fax: +713-743-3505.

E-mail addresses: siemion@math.uh.edu (S. Fajtlowicz),

clarson@math.uh.edu (C.E. Larson).

URLs: http//:math.uh.edu/~siemion, http//:math.uh.edu/~clar-

son. ">

0009-2614/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S0009-2614(03)01133-3
Conjecture 899 in [7], that the independence

number on an n-atom fullerene is no more than

ðn=2Þ � 2, and its associated stability pattern that
led the first author to make this conjecture. Graffiti

can, in principle, make conjectures about invari-

ants of any objects that can be represented by a

computer. The conjectures are of the form of in-

equalities between functions of invariants. For

fullerenes, the difference between the sides of an

inequality (itself an invariant) can be sorted by

smallest or largest values. When the known stable
fullerenes appear at the top (or bottom) of this list,

this difference suggests itself for investigation [5–7].

Upon announcing the above conjecture at a

conference in the Fall of 2001, Patrick Fowler,

while initially very skeptical, later that same day

confirmed that icosahedral C60 is the unique model

minimizing its independence number in the class of
ed.
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mathematically possible classical fullerenes with 60

atoms, and that C70 ðD5hÞ is the unique model

minimizing this number in the class of 70-atom

isomers [5]. The second author has since computed

that stable C76 also minimizes its independence

number in the class of 76-atom isomers and that
the known stable isomers of C78 and C84 also rank

very low with respect to this invariant – that is,

those eight stable, best-characterized (according to

[9]) fullerenes rank very low with respect to their

independence numbers. We are not aware of any

physical or chemical justifications that would ex-

plain these exceptional statistics.

We will compare this topological invariant with
other predictors of fullerene stability, including the

isolated pentagon criteria, the uniformity of hex-

agonal environments, and the second moment of

the hexagon neighbor signature.

Determining the criteria which distinguish the

most stable fullerenes have been given new impetus

by the recent rational synthesis of stableC60 by Scott

and his colleagues [17]. Itmay one day be possible to
synthesize heretofore unseen fullerenes based on

blueprints of isomers predicted to be stable.
2. Predictors of fullerene stability

Fullerenes with a wide range of numbers of

carbon atoms have been produced in experiment.
Isomers with 60, 70, 76, 78 and 84 atoms have been

produced in sufficient quantity to be characterized

by NMR spectroscopy. The term �stable� is am-

biguous, is used to refer alternately to thermody-

namic and kinetic stability and, less formally, it is

applied to those fullerenes that have actually been

observed. These uses of the term are presumably

related. For the purposes of this Letter we will
refer to those fullerenes that have been produced

in bulk quantity as �stable fullerenes�. These in-

clude at least C60 ðIhÞ, C70 ðD5hÞ, C76 ðD2Þ,
C78 ðD3Þ, C78 ðC2vÞ (2 kinds), C84 ðD2Þ and

C84 ðD2dÞ [9]. (In the numbering scheme of [9]

these are C60:1, C70:1, C76:1, C78:1, C78:2, C78:3,

C84:22 and C84:23.) One problem chemists face is

characterizing the stable fullerenes that appear in
experiment from the sometimes enormous num-

bers of possible isomers. Suppose, for instance,
that a certain n-atom fullerene is produced. Can it

be predicted ahead of time what it will be? What

rules are there that can limit the space of possi-

bilities? Another interesting question, not ad-

dressed here, is predicting from which atom classes

the stable fullerenes will come from. Is it likely that
there will be stable 100-atom fullerenes? There has

been speculation on how fullerenes �grow� – but the
final story has not yet been told. It will surely re-

late to this question.

The problem that Curl, Kroto and Smalley

faced when they found 60-atom carbon clusters in

their experiments was to identify the structure of

these molecules. They initially proposed a soccer
ball structure for the C60 molecules they had pro-

duced, but this is only one of 1812 isomers (up to

chirality) consistent with the fullerene hypothesis.

Their proposed model has isolated pentagonal

faces, while none of the others do.

Schmalz et al. [16, p. 206] predicted that struc-

tures with isolated pentagons would be more fa-

vorable than ones with abutting pentagons, which
could contain �destabilizing conjugated 8-circuits�.
Kroto�s name became associated with this criterion

when, shortly thereafter, he proposed his Isolated

Pentagon Rule (IPR), that stable fullerenes will

have isolated pentagons [11]. No fullerene with

fewer than 60 atoms can satisfy this criterion. Of

the stable fullerenes, all those with 60 or more

atoms have isolated pentagons.
This rule does suffice to characterize both the

60 and 70-atom isomers that were found – as there

are unique isomers in the classes with 60 and 70

atoms that have isolated pentagons. This rule does

not suffice to uniquely characterize the fullerenes

with 76, 78 or 84 atoms – as there are two 76 atom

isomers with isolated pentagons, five among the 78-

atom isomers and 24 among the 84-atom isomers.
The rule does, though, greatly reduce the number of

possible structures that must be considered: from

19 151 to 2 in the case of 76-atom isomers, from

24 109 to 5 for 78-atom isomers and from 51 592 to

24 for 84 atom isomers. As the number of atoms n
increases, the number of n-atom fullerene isomers

increases rapidly – as does the number of isomers

with isolated pentagons. If a 100-atom fullerene
were to appear in experiment, for instance, there

are 285 914 structures consistent with the fullerene
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hypothesis – 450 of which have isolated pentagons.

If a 120-atom fullerene were to appear in experi-

ment, there are 1 674 171 possible 120-atom iso-

mers, 10 744 of which have isolated pentagons.

As the isolated pentagon criterion cannot be

used to characterize the lower fullerenes (those
with fewer than 60 atoms) and suffices to uniquely

identify candidate structures for only a handful of

the higher fullerene classes, chemists have looked

for other rules of thumb to help limit the search in

characterizing those fullerenes that appear in ex-

periment.

Besides steric criteria for stability (the IPR

rule), electronic criteria were also quickly pro-
posed: in particular, that closed shell structures

would be more favorable than open shelled struc-

tures (which have a 0.0 HOMO–LUMO gap) and

that structures with larger HOMO–LUMO gaps

would be favorable to those with smaller ones [14].

C60 ðIhÞ, for instance, has the largest gap among

60-atom isomers. C70 ðD5hÞ also has the largest

gap in the class of 70-atom isomers. For other
classes, the fullerenes that have been produced

often rank high with respect to this measure (see

Table 1), but this criterion is not enough to un-

iquely characterize these fullerenes.

Liu et al. [13] proposed that fullerenes that

minimized their number p of pentagonal adjacen-

cies (that is, the number of pairs of abutting pen-

tagonal faces) would be favorable. This criterion is
clearly a generalization of the isolated pentagon

rule, since, for a fullerene with isolated pentagons,

the number of pentagonal adjacencies is zero. For
Table 1

HOMO–LUMO data for experimentally produced fullerenes

Atoms Isomer Number of isomers HOM

60 C60:1 ðIhÞ 1812 0.75

70 C70:1 ðD5hÞ 8149 0.52

76 C76:1 ðD2Þ 19 151 0.34

78 C78:1 ðD3Þ 24 109 0.25

C78:3 ðC2vÞ 0.18

C78:2 ðC2vÞ 0.34

84 C84:22 ðD2Þ 51 592 0.34

C84:23 ðD2dÞ 0.34

Rank is by largest value of HOMO–LUMO. Max and Min are the

numbers in parentheses record the number of isomers that share the
the lower fullerenes and those few other classes of

isomers without isolated pentagons, this criterion

applies while the isolated pentagon rule does not.

Raghavachari [15] argued that steric strain

would be minimized if the environments of the

hexagons were as �uniform� as possible. For in-
stance, the hexagonal faces of C60 ðIhÞ all have

three neighbors which are hexagons. Using this

criteria, he was able to identify the two 84-atom

fullerene isomers which had been produced in ex-

periment.

This criterion though will be of less utility as the

size of the considered fullerenes increases. In this

case there will be large numbers of isomers with 60
hexagons having exactly 5 neighboring faces which

are hexagons and ðn=2Þ � 70 hexagons where all

the neighboring faces are hexagons.

Fowler also proposed a quantitative version of

Raghavachari�s criterion. He considered the sec-

ond moment of the hexagon neighbor signature,

H ¼
P

k2hk, where hk is the number of hexagons

with k hexagonal neighbors. Fowler�s criterion is
that fullerenes which minimize H are more likely

to be stable than those that do not [9]. This index is

highly selective for those fullerenes that have been

produced in bulk (see Table 2). This index will be

minimized by any fullerene in which no hexagon is

adjacent to two pentagons (those where 60 differ-

ent hexagons have a single pentagonal neighbor).

For larger fullerenes, the number of fullerenes with
the minimum hexagon signature will grow very

large. (For 100-atom fullerenes, 38 models – all

IPRs – minimize this index).
O–LUMO Rank Max Min

66 1 0.7566 0.0 (5)

93 1 0.5293 0.0 (8)

36 11 0.3993 0.0 (16)

32 241 0.6333 0.0 (2)

02 2120

81 13

49 24 (2) 0.6962 0.0 (11)

49 24 (2)

largest and smallest values within the corresponding class. The

corresponding rank or value.



Table 2

Second moment of the hexagon signature H for experimentally produced fullerenes

Atoms Isomer Number of isomers H Rank Max Min

60 C60:1 ðIhÞ 1812 180 1 520 180

70 C70:1 ðD5hÞ 8149 330 1 700 330

76 C76:1 ðD2Þ 19 151 428 2 776 420

78 C78:1 ðD3Þ 24 109 462 4 780 450

C78:3 ðC2vÞ 454 2

C78:2 ðC2vÞ 460 3

84 C84:22 ðD2Þ 51 592 548 1 (3) 920 548

C84:23 ðD2dÞ 548 1 (3)

Rank is by largest value of this index. Max and Min are the largest and smallest values within the corresponding class. The numbers

in parentheses record the number of isomers that share the corresponding rank or value.
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3. Graph-theoretic independence and the separator

The independence number (sometimes called the

stability number) of a graph is the size of the largest

set of vertices (or nodes) such that no two are

adjacent (corresponding to the largest set of atoms

of the molecule, no pair of which are bonded). For

instance, the independence number of a 5-ring is 2,
that of a 6-ring is 3, and that of the truncated

icosahedron is 24 (as every vertex belongs to one

of the twelve pentagonal faces and, as each of

these faces is contains no more than 2 members of

a largest independent set, the independence num-

ber can be no more than 24 see Fig. 1).

Minimization of this index is often highly se-

lective: it uniquely selects the stable 60, 70 and 76-
atom isomers from their respective classes – and all

those fullerenes that have been produced in bulk

rank first or second within their respective atom

classes (see Table 3). That stable fullerenes tend to

minimize their independence numbers is, at pres-

ent, simply a statistical observation – no physical
Fig. 1. (a) The truncated icosahedron with pentagons highlighted an
or chemical justification has been proposed. Fur-
thermore, this predictor, used alone, will fail to

predict the stability of sufficiently large capped

nanotubes (which are fullerenes), as the indepen-

dence numbers of these fullerenes will be larger

than that of other isomers having the same number

of atoms.

Buckminsterfullerene, it is worth noting, has

many 24-element independent sets, but the one
displayed in Fig. 1 plays a special role in the

chemistry of fullerenes and in the non-standard

representation of icosahedral C60 [2,8]. This

24-element independent set, in fact, is the unique

one (up to isomorphism) in which every vertex not

in the independent set shares an edge with two

vertices in the independent set and, the first author

has proved, is the only fullerene with 60 or more
atoms that contains such an independent set [2].

This fact may relate to the exceptional stability of

icosahedral C60.

As far as we know, the possible chemical signif-

icance of graph-theoretical independence appears
d (b) with a 24-vertex maximum independent set highlighted.



Fig. 2. The unique 100-atom IPR isomer with minimum inde-

pendence number.

Table 3

Independence number data for experimentally produced fullerenes

Atoms Isomer Number of

isomers

Independence

number

Rank Max Min

60 C60:1 ðIhÞ 1812 24 1 28 24

70 C70:1 ðD5hÞ 8149 29 1 33 29

76 C76:1 ðD2Þ 19 151 32 1 36 32

78 C78:1 ðD3Þ 24 109 33 1 (3) 37 33

C78:3 ðC2vÞ 34 2

C78:2 ðC2vÞ 33 1 (3)

84 C84:22 ðD2Þ 51 592 36 1 (17) 40 36

C84:23 ðD2dÞ 36 1 (17)

Rank is by smallest value of Independence Number. Max and Min are the largest and smallest values within the corresponding

class. The numbers in parentheses record the number of isomers that share the corresponding rank or value.
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first implicitly in the findings of Taylor, who dis-
covered that the bromine decoration in C60Br24
determines a maximum independent set in C60 [18,

p. 126], and then explicitly in the conjectures of

Graffiti. The first author�s presentation onGrafitti�s
conjectures at the 1998 DIMACS Workshop on

Discrete Mathematical Chemistry led shortly to [8].

The independence number is, in general, diffi-

cult to compute. For those isomer classes for
which we have data, the range of values for this

index is very small – for these classes the difference

between the largest and smallest values of the in-

dependence number is never more than five. Nev-

ertheless, the percentage of models that minimize

their independence number is often suprisingly

small. In the case of 100-atom isomers, for

instance, there are 450 fullerene IPRs, only one of
which minimizes its independence number

(C100:321ðTÞ, Fig. 2). There are exceptions,

though, 355 of 14 246 74-atom isomers that mini-

mize their independence number. We do not know

for which isomer classes this invariant will be

highly selective.

Another conjecture of Graffiti led the first au-

thor to predict that the separator of a fullerene, the
difference between the largest and next largest ei-

genvalue of the associated graph (corresponding to

the difference in the energy levels of the two lowest

energy p-orbitals in the H€uuckel theory) is a selector
of fullerene stability [10].

On its own the separator is not a particularly

strong selector – but it is effective in combination

with other selectors (see Table 4). When restricted
to the class of fullerenes with isolated pentagons,

for instance, those fullerenes which have been

produced in bulk rank very high.
Fowler has written that there is no known

physical or chemical reason that the separator

would be useful in predicting fullerene stability

[10, p. 143]. These orbitals contribute negligibly to

the molecules total p-energy. This may be. Nev-

ertheless, the fact that there is no known existing

reason for the satisfaction of some criterion to be

of predictive value does not mean that it is not. It
is just such anomalies that have led to theoretical

advances in the past. In fact, one of the virtues of

an automated conjecture-making program is that

it may find simple, interesting conjectures totally

overlooked by humans – as Grafitti already has

found such conjectures.



Table 4

Separator data for experimentally produced fullerenes

Atoms Isomer Number of

isomers

Separator Rank IPR Rank Max Min

60 C60:1 ðIhÞ 1812 0.2434 1 1 0.2434 0.0907

70 C70:1 ðD5hÞ 8149 0.1864 269 1 0.2031 0.0668

76 C76:1 ðD2Þ 19 151 0.1690 1183 2 0.1913 0.0633

78 C78:1 ðD3Þ 24 109 0.1588 3714 5 0.1845 0.0664

C78:3 ðC2vÞ 0.1721 134 2

C78:2 ðC2vÞ 0.1652 1399 3

84 C84:22 ðD2Þ 51 592 0.1666 20 5 0.1721 0.0519

C84:23 ðD2dÞ 0.1721 1 (2) 1 (2)

Rank is by largest value of separator. IPR Rank is rank by largest separator among the IPR fullerenes. Max andMin are the largest

and smallest values within the corresponding class. The numbers in parentheses record the number of isomers that share the corre-

sponding rank or value.
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We are indebted to Gunnar Brinkmann�s Full-
gen program for producing complete lists of all the

mathematically possible fullerenes in each atom

class [1]. The second author is responsible for all

the computations in this Letter. A longer version

of this Letter, originally submitted and subse-

quently shortened due to length restrictions, dis-

cussed the correctness of the computations.
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