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Let () be the maximum size of a subset of vertices of a graph (0 that induces a
tree. We investigate the relationship of G to other parameters associated with Gt
the number of vertices and edges, the radius, the independence number, maximum
cligue size and connectivity, The central result is a set of upper and lower bounds
for the function f(x, p), defined to be the minimum of (G} over all connected
graphs with # vertices and » -1 +p edges. The bounds obtained yield an
asymptotic characterization of the function correct to leading order in almost all
runges. The results show that fim, p) is surprisingly small; i parlicular
fin, en)=2loglogn+ Oflogloglog v) for any constant ¢ =0, and f(nn'*7)=
2log(l+1/7)1+4 for 0=y <1 and » sullficiently large. Bounds on #( () are oblained
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Ramsey-type function, Nik, ¢), the smallest integer so that every connected graph
on Nk, 1) vertices has either a clique of size & or an induced tree of size 1. Tight
bounds for #{G) from the independence number x(G) are also proved. It is shown
that every connected graph with radius r has an induced path, and hence an
induced tree, on 2r— | vertices., 1 1486 Academic Press, Inc.

I INTRODUCTION, DEFINITIONS AND MAIN RESULTS

Let #{G) be the maximum size of a subset of vertices of a graph & that
induces a tree. We investigate the relationship of 1(G) to other parameters
associated with G: the number of vertices and edges, the radius, indepen-
dence number, maximum clique size and connectivity.
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By a graph we will mean an undirected graph without loops or multiple
edges. Unless otherwise stated, all graphs are assumed to be connected. If G
is a graph, V(G) and E(G) denote its vertex and edge set. An edge between
v and w is denoted by {v, w>. We write n(G), e(G), and a{G), respectively.
for the number of vertices of G, the number of edges of G and the indepen-
dence number of G. The acycloromic number. p((G), is defined for connected
graphs to be ¢(G)—n(G)+ 1.

If W< V(G), the graph induced on W is written G .. G — W denotes the
graph induced on V(G)— W.

The function p(G) is defined to be the maximum size of a subset of ver-
tices that induces a path; trivially, p(G) < #{G). P, denotes the graph con-
sisting of a path of n vertices.

For any vertices v, we V(G), d (v, w) is the distance from ¢ to w, if there
is no ambiguity we write simply d(v, w). We will often use the triangle
inequality, d(v, w)<d(v, x)+d(x, w). The diameter of G is defined by
diam(G7) =max {d{v. w): v, we V(G)}. The centraliry of a vertex v, written
ci(v), is the maximum of d(v, w) over all vertices w e V(). The radius of G
is given by rad(G)=min{c(r): vel(G)}. A vertex ¢ for which
clv)=rad(() is a center of G.

A vertex of G whose neighbors form a clique is called a simplicial vertex
of G.

If ve 1(G) and k is a positive integer, multiplying v by k means replacing
v by a clique on k vertices, cach inheriting the edges that v had. A graph G’
1s a multiple of G if it can be obtained from & by multiplying vertices.

The Ramsey number R{a, b) [or positive integers a and b is the smallest
integer # so that every graph on n vertices has cither a clique of size a or an
independent set of size b.

All logarithms are to the base 2.

The main results of this paper are upper and lower bounds on () (or
p(G)) in terms of certain parameters or structural properties of G.
(Throughout, inequalities involving n may hold only for n sufficiently
large.) In Section 2 we relate 1(() to the radius by establishing:

THEOREM 2.1. p(G)=2rad(G)— 1. for any connected graph G.

Sections 3 through 7 are concerned with bounds on () which can be
stated in terms of ¢(G) and »(G). Since a connected graph has at least
n(G)—1 edges it is convenient to state our results in terms of the
acyclotomic number p(G). For n=1 and 0<p < ("3") let %(n, p) denote
the class of connected graphs G with n(G)=n and p(G)=p. We define
uin, p)=max{((G): Ge%(n, p); and f(n, p)=min{(G): Ge%(m p)}. In
Section 3 we prove the following easy result.

THEOREM 3.1, win, p)=min{e ()= ("3 )—pl
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In Section 4 we begin our study of f(n, p), which is considerably more
complicated than u(n. p). We state several upper and lower bounds which
are then proved in Sections 5, 6, and 7. These bounds provide a nearly
exact asymptotic description of f(», p). The following theorem gives this for
three important ranges:

TuereorEM 4.1. (1) fin, p) = 2n/(p + 2) + onilp + 2)), for p =
a{n/log log n).

(1) fln, en)=2loglog n+ O(log log log n), for any constant ¢ > 0.
(it} For n  sufficiently large and O<y<l, fln.n''7)=
2logll + 1y 4+ &, where —2<e<4.

These results indicate that ({G) can be surprisingly small for relatively
sparse graphs. The constructions which realize the value of f(n. p) are line
graphs of trees, and are described in Sections 5 and 6. Section 8 establishes
the following relationship between /() and the independence number of .

THEOREM 8.2, For any connected graph G with n vertices and any integer
lsm=in—1)/2:

(mr—1)n
—_—f
m

G => 1 implies 1(G)y=2m+ 1

| 1
() = u +1 implies  1(G)22m+2
m

and these bounds ave best possible; for any 1<m < (n—1)2 there exist
graphs G (m.n) and G-(m,n) on n vertices with (G )= (m— 1) n/m and
NGy =2m, and o(GL)=((m—1)n+ 1)/m and ((G,)=2m+ 1.

In Section 9 we relate f(G) to the maximum clique size of G. The
function ¢(n, k) 1s defined o be the minimum of #(G) over all graphs with »
vertices and no clique of size &. We obtain the following bounds on ¢(n, k):

THEOREM 9.1. (i) ¢(n, k) = 2loga/((k —2) loglogn) —3 for k = 3.
nz4.
(i) eflm 3)<e \; log i for some constant ¢.
(iit)  eln, k)< 2 login— 1)loglk —2)]+ 2 for k =4
Theorem 9.1 can be restated as a “Ramsey”™ type theorem.
THEOREM 9.1°.  For any positive integers k=3 and t =2 there exists a

minimun infeger N(k, 1) such that every comnected graph on at least N(k, 1)
vertices has either a cligue of size k or an induced tree of size t. Moreover
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(i) Nk O<2Rk—1,0"""2 for k=3,122
(i)  There exists a constant C, so that

V30> R(3.1)zc
MR ) '{Iogr}’

(iii) Nk, O)z(k—2)7"*41 for k=4

Section 10 contains some open problems. It is worth noting that com-
puting 1(G) for an arbitrary connected graph & 1s difficult.

Prorosimion 1.1, The problem “given a connected graph G and integer 1.
is ((G) =17 is NP complete.

Proof. The problem “given a graph H and integer k does H have an
independent set of size k7" is a well-known NP-complete problem [4].
Given M and k. let # be the number of vertices of / and let & be the graph
obtained by adjoining a path on » vertices to H, one endpoint of which is
joined by an edge to every vertex in H. The problem of whether / has an
independent set of size & is easily seen to be equivalent to whether G has an
induced tree of size n+ k. ]

II. BoUNDS ON p((7) FROM THE RADIUS

If v and w are two vertices of maximum distance, then since the shortest
path between them is an induced path, we have

ProrosiTioN 2.1 p(G)=diam(G)+ 1.

A related fact is

THeEOREM 2.2, plG)=2rad(G)— 1.

Note that since rad(() can be as large as diam(G). this theorem may
give as much as an extra factor of 2 over the bound of Proposition 2.1. The
following proof of Theorem 2.2 was provided by Fan Chung, replacing a
cumbersome proof given in a previous version of the paper.

Proof. Let G=(V, E) have radius r. We can assume, by induction on
| V], that no connected induced subgraph of G has radius r. Let v, be a ver-
tex that is not a cutpoint. Since the graph induced on ¥ — v, is connected, it
has radius less than r; let v, be a center of this graph. Then d{v,, w)<r—1
for w+# v, and so d(v,, v,) must equal r. Let vy, v,..., v, be a shortest path
from v, to ©,. Therc exists a vertex w with d(v,. w)=r. Therefore
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dlvg, w)=r—2 and also dlv,, w)<r—1 since w#v,. Let P be a shortest
path from v, to w. If any vertex « in P is adjacent to v, for some j= 2, then

divg, w)=d(vg, u) + d{u, w) Z dlvg, v)) — 1+ d(;;j, wj—1

2 d(vy, v;) — 2+ d{vy, wh—d(vs. v) 21,

a contradiction. Henee v,, v, ..., vy, v, followed by P is a path of 2r-1 or
2r vertices that fails to be induced only if ¢, is adjacent to some vertex of P.
Il P has r— 2 vertices this is impossible since d(v,, w)=r—1. Il P has r— 1
vertices then ¢, may be adjacent to the first vertex of P. In that case,
deleting v, yields the desired path. |

1. Ax Upper BOUND ON #((G) FROM THE NUMBER OF EDGES

In the next few sections we compute bounds on #(G) from the number of
vertices and edges of G. Recall from the introduction that %(n. p) is the
class of connected graphs with # vertices and n— 1 + p edges and u(n, p) is
the maximum of #(G) over all graphs in %(n, p).

THEOREM 3.1, u(n p)=min{r: (5)>("3")—p}.

Proof. Fix # and p and let i*=min{r: (H>("3")—pl. Il GEF(n, p)
and 7 is an induced tree in G, then since T has [T]—1 out of a possible
(141) arcs, we have p<("5") = (") + T|—1 or (", ")<(",")—p. hence
[T <™.

Conversely, we can construct a graph G in %(n, p) with {(G)=* by
taking a tree 7" on r* vertices, a clique C on n— ¢* vertices and adding the
required number of edges between I"and C. ||

IV. Tue FuncTion f(n, p)

Next we tackle the problem of describing the function f(n, p), defined in
the introduction to be the minimum of #(G) over graphs with n vertices and
n+ p—1 edges. Unlike u(n, p), the computation of f(n, p) is in general dif-
ficult. We first state a theorem which describes f(n. p) in three important
ranges,

THeorem 4.1. (i) f(n, p) = 2n/(p + 2) + olnflp + 2)) for p =
o(n/log log n).

(it) f(n en)=2loglog n+ Ofloglog log n) for any constant ¢ > .
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(iii) For O<y<!| and n sufficiently large, f(nn''?)=
2logll + 1/y) + & where —2<e<4.

Theorem 4.1 can be deduced [rom five theorems which we state here and
prove in the next three sections. The first three give upper bounds on
fin, p) and the other two give lower bounds.

TheorEM 4.2, For p<(n—1)/2.

fln,p)<2 (:% +log[(p+2)]-1 )
THeorREM 4.3, For p=8n,

fin, p)<2logllog p/(Llog(p/n) ] —2)) + 3.
THEOREM 4.4, For 32< p <8n,

fin, p)<2loglog p ~i—2—mI o

——— + ¢, log log |
p+p]og]0gp+"og og log p

for some constanis ¢, and ¢;.
THeOREM 4.5, fim p)=2n/(p+2).

THEOREM 4.6. For n =4 and p =z n/log logn

310 log p+ log log log n+ 2
- gIogp—Iﬂgn+5]og10glogn+4 '

flnp)z

These theorems can be combined to give a nearly exact asymptotic
description of f(n p). The only gap in this description is when
p=cnfloglogn for some constant ¢ in which case we know that
fin.p)=c loglogn + olloglogn), where ¢, is between max(2, 2/¢) and
24 2/c.

The proofs of the upper bounds in Theorems 4.2, 4.3, and 4.4 are
obtained by construction. The graphs used in the construction are line
graphs of trees. The lower bounds in Theorems 4.5 and 4.6 are proved in
Section 7.

Before proceeding with these proofs we investigate some properties of
f{n. p) which will be needed later.

It is clear that f(n, ("5'))=2 and f(n ("5')—1)=3. We consider first
the question: how small can p be so that f(n p)=3? The following
proposition characterizes graphs for which {(G)=3.
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ProrosiTioN 4.7, If G is connected then 1(G) <3 if and only if the com-
plement of G is a union of disjoint complete bipartite graphs and isolated ver-
tices.

Proof. 1f t(G)<3 then G has no independent set of size 3. This follows
from Theorem 8.1 but can be proved directly. For if x, 3. and z are an
independent set then dix, y)=d(y, z)=2. since diam(G)<HG)—1=2
Thus x and y have a common neighbor ¢ and y and z have a common
neighbor w. If v=wu. G has an induced 4-star and otherwise G has an
induced 4-path.

Therefore the complement of G is bipartite; let C be a connected com-
ponent of G with bipartition X and Y. If C has an induced path on four
vertices then so does @, thus diam(C)=2. If xe X and ye Y then d(x, y) is
odd, but then d(x. y) must be one. Therefore C is a complete bipartite
graph.

On the other hand, if & is a union of disjoint complete bipartite graphs
and isolated vertices then it contains no induced triangle or 4-path, so
contains no induced 4-star or 4-path and ((G)<3. |

As a simple consequence of this proposition we obtain:

Prorosimion 4.8. For any n=3, the smallest value of p such that
[in, p)=31is p=(n—2)/4 Moreover, for any p with (n—2)/4<p<("3"),
fln, p) is either 3 or 4.

Proof, By Proposition 3.1 we know that #(G)=3 only if G consists of
disjoint complete bipartite graphs, and since G is connected, ( has at least
two components, The number of edges in G (when n=n(G) is fixed) is thus
maximized if G consists of the complete bipartite graph on (n—1)/2 and
(n—1)/2 vertices together with one isolated vertex. In this case,
p(G)=(n—2)%4.

If p>(n—2)"/4. we can add additional edges to the graph constructed
above to obtain a graph in %(n, p) whose largest induced tree has at most
4 vertices. ||

It seems natural to suppose that, like u(n. p). f(n. p) should be a decreas-
ing function of p, ic. the fewer the number of edges, the larger the size of
the tree one is forced to have. However, if we take p=(n—2)*/4+2 with
n=9, we find that there is no G in %(n, p) satisfying the conditions of
Proposition 4.7. Therefore, f(n, (n—2)*/4+2) > f(n, (n— 2)*/4) and f(n, p)
can decrease with p.

It is the case. however, that f(n. p) is “almost™ a decreasing function of
p, in the sense that increasing p cannot increase f(n, p) by very much.

Lemma 4.9, Suppose Ge%in,.p,) na<sny, and p,=2p,. Then
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(i) there exists a graph G'e %(n., p.) so that (G )<1(G)+2
(i) if & has a simplicial vertex then there exists a graph Ge %(n;, p,)
so that (G )< G+ 1.

Proof. We prove (ii) first. Let w be a simplicial vertex of G and let H be
a connected induced subgraph of G with n, vertices including w: then
plH)<p, and 1(H)<1(G). Let C be the clique in H consisting of w and its
neighbors.  List the wvertices of H—C as ¢,,vs...t, so  that
H—{v, ts,..t,} 1s connected for each 1<j<k and let H, denote the
graph obtained from H — {v,, v,... v; | by multiplying w by j+ 1. Since H,
is the complete graph and H,=H, there exists an index i such that
plH)Zp,=p(H, ;). Let G’ be the graph obtained from H, by deleting
p(H,) — p. edges incident to w, which is possible since w has degree at least
pH)—=ptH, ) in H. Now p(G')=p, and p(G)<HH)+1<
t{H)+ 1 <1(G)+ 1. This completes the proof of (ii).

To prove (i), let w be a non-cutpoint of G and delete all edges incident
on w except one. The resulting graph /f has t(H)<1(G)+1 and is in
%(n,, py), where p) < p, and w is a simplicial vertex. Now apply (ii) to the
graph H. 1

An immediate consequence of Lemma 4.9 is

THEOREM 410, For ny=n, and p, < ps. fing, p))+2=1f(n,. ps).

V. Ling GrApHS OF TREES

Recall that the line graph G = L(H) of a graph H is the graph whose ver-
tex set is the edge set of H, with two vertices in  joined by an arc if their
corresponding edges are incident on a common vertex in f.

Proposimion 5.1, (i) If H is any graph and G is its line graph then
HG)=p(G)=p(H)—1.

(it) If H is a tree then t(G)=d{H).

Proof. Line graphs have no induced K, ; so every induced tree of G is a
path and ((G)=p(G). M vy, vs,..., v, induces a path in H thene,.e.....e,
is an induced path in G, where e,= {v,, v;, | »soplG)=plH)— 1.

On the other hand, an induced path e,..., e, in G corresponds to the
(not necessarily induced) path v,....v, ., in H, where e,= (v, v, ). IfH
is a tree then every path is induced and therefore p(G)=p(H)—1.
Moreover d{H)=p(H)}— 1 for a tree, hence (ii). ||
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The line graph construction will be used to obtain graphs with given n
and p for which ¢(G) is small. These examples will be built from two special
classes of trees.

A balanced regular tree, B(c. k), is a rooted tree in which k vertices have
degree ¢ and the remainder are leaves, with the depth (or equivalently,
height) of any two leaves differing by at most one.

If 55, 8, §3400 8 are integers, the Javered tree T(sq, §y...., 5,) is a rooted
tree of depth k + 1 whose root has s, sons and each vertex at distance /
from the root has s, _, sons.

In Section 7, we use these classes of trees to bound f{n, p). For p small
relative to n(p = o(n/log n)) we use the line graphs of B(3, k) with a path
attached to each leaf. For p > 8n we use the line graphs of layered trees in
which the numbers s, satisfy s,=57 /2. For intermediate values of p we
use the line graph of a tree consisting of a layered tree with a copy of
B(3, k) attached to each leaf.

In order to describe the precise constructions and prove the bounds we
will need a clear statement of the relationship between a tree and its line
graph. The following can be easily verified by the reader.

LEmMMa 52. Let T be a tree on m vertices with degrees (d,. ds..... d ).
and let G be its line graph. Then
(1) wlG)=m—1
(i) plG)=2, (%)

(il)  the number of simplicial vertices of G equals the number of leaves

of T. 1

V1. Proors oF THE UpPER Bounps oN f(n, g)

In this section we prove Theorems 4.2, 4.3, and 4.4.
Proof of Theorem 4.2.  We first state the following lemma, which follows
from Proposition 5.1 (ii) and Lemma 5.2.

Lemma 6.1.  The line graph L of Ble, k) satisfies:

(i) nLy=(c—=1)k+1

(i) p(L)y=(3")k

(i) L has (¢—2) k+ 2 simplicial vertices

(iv) fL)<2[logk/logle—1)T]42.

Given n and p < (n—1)/2. construct the line graph of B(3, p). It has
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2p +1 vertices, p+2 simplicial vertices, and acyclotomic number p. To
each of its free vertices attach a path on either [(n—2p—1/(p+2)] or
[ (n—2p—1)(p+2)] vertices to obtain a graph with n vertices,
acyclotomic number p. and longest induced path of length
2loglpg+2)+(n+3)/(p+2)—1) (See Fig 6.1). This proves Theorem
42. 1

Proof of Theorern 4.3, For positive integers s, 5,,..., 5, we will write T}
to denote the layered tree 7(sq. 5;..... 5,). L, to denote the line graph of T,

and v;, m;, and p, to denote, respectively, the number of vertices, the num-
ber of simplicial vertices, and the acyclotomic number of L,.

Lemma 6.2 For any sequence §y, §y...5, of positive tegers and
O<jsr
(i) m=us4857°""8;
(i) vo=ml+ Unig+ m+ o0+ 1(m, )
(i} p, = (m 2N (se—1) + (s, =1)my + (s:—1)m+ -+
(s;—1)m;_ ) —s,+1
(iv) oL)y=2+2

Proof.  Let C, be the clique in L, corresponding to the s, edges incident
on the root of T,. The graphs L, with distinguished cliques C, can be con-
structed inductively as follows: L, = Cy is a clique on s, vertices. Given L,
and distinguished clique C, let L; be the graph obtained by adding an
additional vertex that is connected to every vertex in C,. L, consists of
5, copies of L;in which the s, , added vertices are joined as the clique
Cris

i

Fii, 6.1, The construction for Theorem 4.2 with r =45 and p = 10 consisting of (3, 10}
with 12 paths of 2 vertices adjoined, Note 1(G)=p(G]1= 10,
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Viewed in this way it is straightforward to obtain the recurrences:

M =185 g = 5y3
=+ 18, Uy ="5p.

+ 1 1.5'0 1
IJJ—I_\J+l(p;+3r_I}+(J ; )- ﬂU:( 2 ):
L) =1tL;)+2, tLo)=2,

which are solved as given by the lemma. ]

Our aim is to construct a tree with small diameter whose line graph has
a prescribed number of vertices and acyclotomic number. In order to do
this it is useful to consider the question: for a fixed number of vertices and
radius + how should s, 5,...5 be chosen so as to minimize the
acyclotomic number of L(s,...., s,). To get a rough answer we approximate
the total number of vertices in L{sg,.., 5,) by s,5, - ,, and minimize p,
subject to this fixed. Consider how p, changes if we permit only s, and 5, _
to vary.

By Lemma 6.2 (iii) we have that p, is approximately

5

S

m § 52 & & 1 L

1 Z +1
Pesot i g B By )
2\ mg m, m, o om; m, |

- i r

1 '}

Note that the only terms which vary if s, and s,,, change (but their
product remains constant) are the terms

$i4 1 Siei
+.‘-.’._’:_(.,-r+i+_')_

o omy o my &

Minimizing s,+ s, , /s; subject 10 5,5, , a constant yields 5, | =57/2,

Thus we conclude that a reasonable choice for the sequence sq, 5;,..., 5, 18
to choose one satisfying the above recurrence. Our aim now is, given v and
p, to construct such a sequence.

LEMMA 6.3, If 50, 8,00 8, is @ sequence of integers satisfving s,, | <s3/2
then p,fm_ <s,.

Proof. By Lemma 6.2 (iii), p, < (m,/2)(s¢ +8,/mg+ =+ +5,/m,_ ;). An
easy induction shows that, a:,summg Sip 1 €532 forall i, s, /m; <502
Thus p < (m,2)(s0 + 50/2 +850/2°+ - + sl,;'?.’] < (mrisg) |

For any integer ¢ =2, define the sequence o,4. 0., 0,5... DY Lhe
recurrence o, ,=2% ¢,,=(a,, ,)*/2. Solving this yields o, ,= 2 "’2'“"
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LeMMa 6.4. The graph Lio,,. 0, ..., 0,,) satisfies
(!) ”Ijzz,wl?'[r;-lll).-"' 1
(i) p,<2%m,

Jor each j=0.

Proof. (i) Follows from Lemma 6.2 (i) and (ii) from Lemma 6.3. |

Now given n and p, set g=|[log{p/m)]—1 and r=[log(logp/
(Llog(p/n) ]—2))7 and consider the graph L(o,,, 0, ... 7,,). By Lemma
6.4 “]. m, = 2+ 1ol 1nar=1 I|; 2Md— 12r+! “. Now we huvc,

. \_ logp y
2= 1y={]10e2 =2 (7_|
e 4 ([ . ﬂ} ) loglpin) -2 ,)

%

=I0gp—iog%+22]0gn+2

so m, z2lEnt 2y

Let & be the largest index so that L, has fewer than a vertices; we must
have k<r. Choose s.,, as small as possible so that G=L(s,,,
O, e Oy 4-  Syyq) has at least n  vertices. We have 1G)=
20k + 1)+ 2<2r + 2. We claim that p(G) < p, in which case by Lemma 4.9
(i) there exist G in Fnp) with HG)=HG)+1<2r+3=
2log(log p/(| log(p/n) | —2))+ 3 as required to prove Theorem 4.3,

Now by Lemma 64 p(G)<2'm(G)=2""""! m(G)< pm(G)/2n.
Therefore it suffices to show that m(G)/2n < 1. By the choice of 5, _,, we
know that H=L(6,y, 0, @85, —1) has fewer than n vertices
(assuming s, , | = 2; the case s, ., =1 is trivial). Now by Lemma 6.2 (ii) we
can see that n(G)<2n(H) so we have m(G)=n(G)<2u(H)<2n as
required to finish the proof of the theorem. |

Proof of Theorem 44. Given »n and p with 32<p<8n let
ny=[p/8loglogp| and p,=8n . By the conmstruction of the previous
theorem, there is a tree 7, whose line graph L, satisfies 2n, 2m(L,) = n,,
plLy)<p, and

HLy)<2log(log p/ log p,/ny |—2)+3<2loglog p+ O(1).

Now let ny=[(n—n(L,))ym(L)] and p.=T(p—p(L))/m(L,)]—2. By
the construction for Theorem 4.2 there exists a tree 7, whose line graph L,
has n, vertices. acyclotomic number p,, and
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T, +37]
3 -‘_2 _— g 2 _I
HG,) < (p;+2 +loglps+2)7] )

2n

€l S 4 eloglogl
I ploglogp—i_c BoRERRL

for some constants ¢, and ¢,. Now let T, be the tree obtained by taking T,
and m(L,) copies of T, and joining each leal of T', to the root of some copy
of 75, and let Ly=L{T,). This yields a graph with at least n vertices,
acyclotomic number at most p,, and

ﬁLﬂéﬁLﬂ+nLﬂ+2g2bgbgp+2%
i

oy n

— L e loglogl ol
+,ulo;,logp ¢, log log log p+ O(1).

Finally applying Theorem 4.10 and adjusting the constants give the desired
bounds. ||

Remark. Graphs with high connectivity; The constructions used in this
section produce graphs with a large number of cutpoints (every vertex of
the line graph of a tree is either a simplicial vertex or a cutpoint).
Nevertheless, the results obtained are not very semsitive to vertex connec-
tivity, except for small p (less than a certain constant times n).

By multiplying each vertex of a graph G by the integer x we obtain a x-
vertex connected graph G' with nG)=0G). w(G )=k n(G) and
PG Y<K (p(G)+n(G)). Using this construction we can obtain, for exam-
ple.

THEOREM 6.5, For any integer x =2 there exists a constant ¢(k) so that
for ¢ elx) and sufficiently large n, there exists a graph G in %(n, cn) with
vertex connectivity k so that 1(G)=f(n, cn)+ ol fin. cn)).

Similar results can be formulated in cases where p grows faster than a
constant times n.

VII. Proors oF THE LOwER BOUNDS ox f(n, p)

Proof of Theorem 4.5. Fix f; we show by induction on p(G) that any
connected graph G with = 2n(G)/(p(G)+ 2) has an induced tree on f ver-
tices. The result is trivial if p(G)=0. Assume p(G) >0 and that the result
holds for all G* with p(G') < p(G). Let C be the subset of vertices that are
contained in some cycle of  and let v and w be vertices in € whose dis-
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tance from each other is maximum. Let S(v) (resp. S(w)) denote the graph
obtained from (' by deleting the component of G —uv (resp. G —w) which
contains w (resp. v).

Every vertex in S(v) is farther from w than v is so S(¢)n C= {v}, and,
similarly S(w)~ C= {w}|, therefore S(v) and S(w) must induce trees in G.
If |S(r) +|S(w)] =/ then S(r)u S(w)u |a shortest path from w to v}
induces a tree in (7 of size at least f. So assume | S(v)| + |S(w)| <f—1 and.
without loss of generality, |S(¢)l=h<(f—1)/2. Note that S(v) spans a
graph with h— | edges and v has at least 2 edges in G — S(v), since ve C.
Thus H=G —S(r) has n—b vertices and p(H)<p(G)— 1. It is easy to
verily then that 2n{H)/(p(H)+ 2) = [ so, by induction, H, and therefore G,
has an induced tree on f vertices. ||

Proof of Theorem 4.6. Let G=(V. E) with n=n(G). p=p(G), and
t=1(G). We show that ¢ is bounded below by the quantity given in the
theorem. It is routine to verify that this quantity is less than or equal to
2log log n, so it suffices to prove the bound under the assumption that
1< 2loglogn Let ¢* be a center of @, let r=rad(G) and partition V into
sets Vo= {v*}. V,, Vi, V,, where V,={w|d(t*, w)=i}. An edge
between two vertices in the same block V, is said to be internal to V. Let
n,= V,| and let a, be the number of edges internal to V.

If w is any vertex not equal to ¢* and we I, then w is joined to some
vertex in ¥, . Thus at least n— 1 edges of G are not internal so the total
number of internal edges is at most p. In particular, we have

LemMMa 7.1 torl<i<sr a,<p.

Lemma 7.2. For 1 <i<r, V, containg no independent set of size
n_r—=1)+ 1L

Proof. 11 1< ¥V, is independent then since every vertex in [ is joined to
some vertex in ¥, at least [f|/(n,_,) of these vertices have a common
neighbor in ¥, . which induces a star on |/|/(n, )+ 1 vertices which can
not be bigger than . so |[fl<n, _(t—1). |

Lemma 730 For l<si<r.a.z(n/20n/n,_(t—1)—1).

Proaf. The bound follows from Lemma 7.2 and the complementary
form of Turan's theorem [6]. which says that a graph on m vertices with
no independent set of size x + 1 has at least (m/2)(m/x— 1) edges. |

We can now use these results to bound the size of V.
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Levma 74, I k < logl(log p + logloglogn + 2)/(log p — logn +

Slogloglogn+4)) then
(=2 "
e < (24p) < 4(log log n)*”

Proof. The sccond inequality is an unpleasant but simple calculation.
(The inequality obtained by taking the log of both sides follows from the
assumption r<2loglogn and the fact that for & as hypothesized,
1—-2*<(logn—4loglogn—2)/(logp+loglogn+2)). The first in-
equality is proved by induction on A. If k=0, it is trivial. Now suppose
k>0and n, <(2tp)' > We show that n, <./2n, _, pt which suffices
to prove the induction step.

Case 1. n, = t*n,_,. By Lemmas 7.1 and 72, p = a, =
(my _/2)(m/(ny _ ((t—1))—1). Under the case assumption this is greater
than p2/(2¢m, ) so n, <./ 2pn, | as required.

Case 2. ng<it'n,_,. By the induction hypothesis and the second
inequality, m, | =a/4(loglogn)®. Since p is at least n/loglogn and

t<2loglogn. we have n, ,<2ploglogn/8(loglogn)® <2p/t*. Thus
' <2pn,_ 1 so by the case assumption n, < V2 ot

Lemma 7.5 rlG) = 1 +log((log p+logloglog n+2)/(log p—log n+
Sloglog n+4))

Proof. At least one of the Vs has size at least (n—1)/r, since V.., V,
partition V' —¢* By Theorem 2.1, (n—1)/r = (n—1)/(t+1)/2 = (2n—2)/
(2loglogn+1) By Lemma 74, il k<log((logp+logloglogn+2)/
(log p—log n+ 5logloglog n +4)) then a, < n/4(log log n}* which for n =4
is at most (2n— 2)/(2 log log n + 1). Thus, for & bounded as above no level
has size (n—1)/r, so the radius must be at least logi(logp +log log
logn+2)(logp—logn+Slogloglogn+4)). |

Applying Theorem 2.1 and this corollary yields the desired bound on 1
and proves the theorem. ||

It should be noted that the above proof shows that the graph G not only
has a tree of the required size, but that it has such a tree that is either a
path or a star.

VIII. Bounns oN (((r) FROM THE INDEPENDENCE WUMBER

In this section we derive bounds on /() in terms of the independence
number (7). We begin with a simple upper bound on ().
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ProrosiTioN 8.1, 1(G)<22(G) and this bound is best possible.

Proof. 1f T is a maximum induced tree of G then an independent set in
T is independent in G. Since trees are bipartite we have
2WG) 22T =2 |T/2=1G)/2. For any = the graph G= P, attains the
bound. |

Next we consider the problem of using «(G) to get a lower bound on
HG). Trivially, for =(G)=1, (G)=2 and for 2(G)=2, t(G)=3. In the
prool of Proposition 4.7 it was shown that if 2(G) =3, 1(G)= 4. How large
an independence number is needed to guarantee an induced tree of size 57
Surprisingly, no constant x is sufficient. In fact, as we will see there exist
graphs on n vertices with o> n/2 for which 1(G)=4.

THeEOREM B.2.  For any connecied graph G with n vertices and any integer
l<=m=<(n—1)2,

—1
a(Gl:»iﬂ—m-ﬁH implies  #(G)=2m+1

J(G}:v(m_l”,n-i—]

+ 1 implies HG)=2m+2
and these bounds are best possible: for any 1<m<(n—1)/2, there exist
graphs G (m,n) and G.(m,n) on n vertices with a(G)>(m—1)n/m and
HG ) =2m and 2l G,) > ((m—1)n+1)/m and 1{G,)<2m+ 1.

Proof.  We first construct graphs G,{m, a) and G,(m, n) to show the
bounds are best possible. Write #=gm+r, where 1 <r<m. The graph
G (m. n) consists of ¢ stars with m vertices whose centers are connected as
a clique C. The remaining r vertices are each connected to each vertex in
the chque (See Fig. 8.1). All the vertices not in C are independent so
2G )=glm—1)+r=>i(m—1)/m)n The maximal induced trees of G con-
sist of one vertex from C and all its neighbors outside C (m + r total ver-
tices) or two vertices of € together with their stars (2m vertices).

If m=1modn (r#1 above) then the graph &,(m,n) also serves as
Galm,n). If, however, m=1modn then 2(G(m,u))=((m—11n+1)/
n+ 150 G (m, n) does not meet the requirements for G5(m, n). In this case
let G,(m, 1) consist of (¢— 1) stars of size m with centers connected as a
clique with the remaining m+ | vertices connected to the clique. This
graph has 2(G.(m,n))=(m—1)n+1)m+1 and o(G)=2m+1 as
required.

Next we show that the lower bounds on () hold for all graphs. Fix m;
let ¢ be a connected graph with vertex set V of size n and let [ be an
independent set in G of size 2 > (m— 1 )(n)/m+ 1. We show by induction on
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n that #(G)=2m+1 (a nearly indentical argument shows that
HG)z2m+2 il a>((m—1)n+1)/m+1). If n<2m then the assumption
about z gives o = n which is impossible. For n=2m + 1, then 2= 2m and G
must be a star of size 2m + 1. So suppose n< 2m + 1.

Let v and w be vertices in ¥ — [ such that the distance between them is
maximum. Let S(v) (resp. S{w)) denote the graph obtained by deleting
from G the component of G —u (resp. G —w) which contains w (resp. v).
Then every vertex in S(v) —v and S(w)—w is in [ (otherwise we could find
a pair of vertices in V' —/ with the distance between them greater than
die, w)), so S(v) and S(w) are stars. If |S(v)| +|S(w) =2m+ 1 then
S(r)u S(w) together with a shortest path from w to v is the desired tree.
Assume, therefore, that |S(v)| + |S(w)| < 2m and, without loss of generality,
q=|S(v)l <m. The graph G' = G — S(w) is connected has n' =n — g vertices
and an independent set of size ' =u+ 1 —g. We have

' (m—1)n
z=a+l—‘£21—q+i>7' 1—g+=
m i m m

'

={m—1}{n—q]+ I =[m-- Ihm
m m

+ 1.

So ' has an independent set of the required size and by induction has a
tree of size 2m+ 1. |}

[X. 11G) FOR GRAPHS WITH NO LArRGE CLIQUES

The construction given in Section VII which produced sparse graphs on
n vertices with largest induced tree of size 2 log log n, prescribed graphs
with very large cliques. It is natural to ask how small 1(G) can be for con-
nected graphs with no large cliques. Define e(n, k) to be the minimum of
() over all graphs with » vertices having no complete subgraph on k ver-
tices. We will prove:

Tueorem 9.1. (1) cln, k)=2logn/((k—2)loglogn)—3 for k=3,
n=4. -
(i) eln,3)<e \,"n log n for some constant ¢,.
(i) elm, k)<2login—1)loglk—2)+2 for k=4,

This theorem can be restated as a “Ramsev”-type theorem:

Turorem 9.1°.  For any positive integers k=3 and 122 there exists a
minimum integer N(k, /) such that every connected graph on at least
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Nk, t) vertices has either a clique of size k or an induced tree of size r.
Moreover,

(i) Nk, 0)<2R(k—=1,0)""2 fork=3122
(i) There exists a constant (', such that

NG, 1)> R (3. g) >, (*/log 1))

(i) Nk t)=(k=2)"7 V41 for k=4

Proof. The lower bound on ¢(n, k) (and the upper bound on N(k, 1)) is
obtained by an argument similar to that used to prove Theorem 4.6. Let &
be a graph on n vertices with no k clique and let 1=1(G). Let v* be a cen-
ter, let r=r(G) and partiion V into sets V,, V.. V,. where
V,=1v|d{v* vi=i}.

Lemma 920 For VL <i<r, nj(n, ) is less than the Ramsey number
Rik—1,1).

Proof. Every vertex in V, has a neighbor in ,_, so some vertex in
V., has at least n,/(n, ) neighbors in V. These n,/(n, ,) vertices cannot
contain a clique of size &k — 1 (otherwise G has a k cligue) nor can it have
an independent set of size ¢ or else G has a star on ¢+ 1 vertices. Thus
nfin,_)<=Rik=1,1). 1|

From this Lemma we get that n,<R(k—1,1)) and n=
Yi_om €Y _gR(k—1.ry). By Theorem 2.1 we have r<{1+1)2 so
n<TIAE R(k— 1, (f <2R(k—1,1)""* V7, proving (i) in Theorem 9.1".

Using the result of Erdos and  Szekeres [3]  that
Ria. by<(*2"2)<(b— 1)1 we get n<2(r— 1) 2012 We want to
show that ¢ must be at least 2 log n/((k —2) log log n) — 3. We can assume
that (—I<logn otherwise the claim is immediate. Thus
n<2(logn)* 12 Solving for ¢ yields the desired lower bound of
(2log n)/((k—2)loglogn)—3.

The upper bound on ¢(n. 3) and the lower bound on N(3, 1) follow from
Proposition 8.1. Since #(G) < 20(G), if G has no independent set of size 1/2
then G has no tree of size +. Thus N(3, 1) = R(3. /2). Erdos [2] showed
that there is a constant C, so that R(3, s)= Cy(s7/(log 5)°), so there is a
constant C, such that N(3,7)=C,(r*/(log 1)*) and a constant ¢, so that
eln, 3)< e /nlogn.

The upper bound on ¢in. k) (and the lower bound on Nik, t)) for k=3
is obtained by using the line graph of the regular tree
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Blk—1, (n—1)/(k—2)), with some leaves deleted if necessary to make the
number of vertices equal to n. Lemma 6.1 bounds the size of its largest
induced tree at 2(log(n— 1)/(loglk—2)+2. |

X. SoME OPEN PROBLEMS

The upper and lower bounds proved for ¢(n, &) in the last section are not
tight, particularly in the case k=3 Here the bounds were
Oflog nfloglog n) < c(n, 3)< O /nlogn). Tt would be interesting to
improve these bounds.

Although we gave an example where f(n, p) can decrcase when p is
increased, this occurs at a value of p where f(n, p)=23. If f(n, p,) =4 and
pa<p,, can f(n, p,) be greater than f(n, p,)? Also, if f(n. p)=4, is f(n p)
always minimized by the line graph of a tree?

Finally, for esthetic reasons, it would be nice to fill the last little gap in
our deseription of f(n, p) and determine the exact leading order behavior
of f(n, enflog log n).
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