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Foreword

It is a real pleasure, indeed an honor, for me to have been invited by
Mike Capobianco and John Molluzzo to write an introduction to this
imaginative and valuable addition to graph theory. Let me therefore present
a few of my thoughts on the current status of graph theory and how their
work contributes to the field.

Graphs have come a long way since 1736 when Leonhard Euler applied
a graph-theoretic argument to solve the problem of the seven Konigsberg
bridges. At first, interest in and results involving graphs came slowly. Two
centuries passed before the first book exclusively devoted to graphs was
written. Its author, Denes Konig, referred to his 1936 publication as "The
Theory of Finite and Infinite Graphs" (translated from the German). The
results on graphs obtained during the time between Konigberg and Konig's
book were indeed developing into a theory. In the past several years a
number of changes have taken place in graph theory. The applicability of
graphs and graph theory to a wide range of areas both within and outside
mathematics has given added stature to this youthful subject. It is clear that
the full potential and usefulness of graph theory is only beginning to be
realized.

The growth of graph theory during its first two hundred years could in
no way foreshadow the spectacular progress which this area was to make.
There is little doubt that many of the early concepts and theorems (and a
few recent ones as well) were influenced by attempts to settle the Four
Color Conjecture. Undoubtedly, the development of graph theory was
favorably affected by the resistance to proof displayed by this now famous
theorem. No longer, however, is graph theory a subject which primarily
deals with the Four Color Conjecture or with games and puzzles. The
dynamic expansion of graph theory has lead to the development of many
significant and applicable subareas with its own concepts and theorems. As
with any other area of mathematics, each major theorem in graph theory
has associated with it an example or class of examples which illustrate the
necessity of the hypothesis, the sharpness of the result, or the falsity of the
converse. In this case, the examples are, of course, graphs. In many cases,
the graphs have become as famous as the theorems themselves.
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Foreword

Let me mention a few samples of the types of graphs to be found in this
book. The authors begin with one of the most famous subfields of graph
theory: colorings. There is a large variety of bounds for the chromatic
number. Graphs are presented to illustrate the sharpness in the best known
of these bounds. Pictured is the famed counterexample of Heawood which
spelled the demise of Kempe's "proof" of the Four Color Theorem.
Extremal graph theory abounds with examples which are not easily
constructed. For each known classical Ramsey number, the corresponding
extremal graph graph is herein illustrated, including the graph of order 17
for the Ramsey number r(K4 , K4 ) and the graph of order 16 for r(K3 , K3 ,

K3 ). An excellent description of the much studied "cages" is presented. The
famous Petersen graph and Heawood graph are shown here.

Sufficient conditions for hamiltonian graphs in terms of degrees of their
points are well known. Successive strengths of these results are illustrated
in these pages by means of appropriate examples. Historically, the first
example of a cubic, 3-connected, planar, nonhamiltonian graph was the
Tutte graph. This graph is shown together with other, more recent graphs
possessing these properties. A cubic, 3-connected, planar nontraceable
graph is presented. Numerous hypohamiltonian graphs are constructed.

I have noted only a very few graphs which appear in this book; however,
in this single volume are to be found some of the most interesting and
informative graphs which occur as examples and counterexamples in graph
theory.

Gary Chartrand
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Preface

This book is a compilation of some five hundred examples in graph
theory. Its purpose is to serve as a reference for researchers, instructors and
students, and it also can be used effectively as a supplementary text in
graph theory courses and those in related areas. In view of the spectacular
development of graph theory in recent years, it was felt that a book of this
kind ought to be available.

Our examples originate from three major sources: (1) counterexamples to
the converse of a theorem, (2) examples obtained by eliminating part of the
hypothesis of a theorem, and (3) examples which demonstrate whether a
bound given by a theorem is sharp or not. There are other types, which are
not easily classified. Since many of the examples are related to theorems,
this book is a central source of many of the more important results of graph
theory, together with references to where proofs and other information can
be found. In fact, a great many of the theorems appear here for the first
time in a book.

This book is divided into chapters on the principal topics in graph theory.
These are generally independent of each other. It is assumed that the reader
is familiar with basic graph theory terminology and notation as found in
Harary (1969) and Behzad and Chartrand (1971). However, specialized
terms or symbols used in an example are usually defined just before they
are used. If a definition is lacking in the text, it can be found in the glossary
or list of symbols. There is an extensively cross-referenced index, which
enables a user to look up an example under virtually any reasonable key
word. A complete list of references is also included. Within each chapter
examples are numbered "c.e" where "c" is the number of the chapter and
"e" is the number of the example within that chapter. If a theorem is
involved, it is stated first and labeled "Theorem".

We cannot conclude without acknowledging the support and encourage
ment of a number of persons. First of all, we are grateful to our wives, to
whom the book is dedicated, for their great patience in the face of almost
disastrous disruption of households, and near inexcusable neglect. We also
thank Kenneth Bowman of Elsevier North-Holland, who believed in the
project enough to offer support from the very beginning. We also thank
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Preface

Joseph Malkevitch and Adrian Bondy for some help through private
correspondence. Finally our special thanks to Prof. Gary Chartrand of
Western Michigan University, who became acquainted with our work at an
early stage. His detailed comments were responsible for many significant
improvements in the book, and his graciousness in writing the Foreword is
gratefully acknowledged.

During the preparation of part of this work, the first author was
supported in part by a research leave from St. John's University and a
National Science Foundation faculty research participation award at
Educational Testing Service. Grateful acknowledgment of this assistance is
made here.

We would be remiss if we failed to mention the help given to us by Anna
Cardiello, librarian at the Staten Island Campus, and our secretarfal pool,
Anne Bartolo, Claire Chrystal, and Diane C. Williamson. Our thanks to all
these good people.

To produce a work of this magnitude entirely error-free is too much to
expect. Any errors are of course our responsibility, and we would be most
grateful to readers who inform us of them. Let it be known that if
Capobianco (Molluzzo) is questioned about an example, his reply will be
that Molluzzo (Capobianco) "worked on that one."

Staten Island, New York 1977
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Chapter 1

Colorings

1. INTRODUCTION

There are several ways of coloring the elements of a graph. In this
chapter we first discuss various aspects of point colorings. Next we consider
line colorings, and then total colorings (i.e., colorings of both the points and
lines of a graph). We close the chapter with some examples on the
achromatic number of a graph.

2. POINT COLORINGS

A point coloring, or simply a coloring, of a graph G is an assignment of
colors to the points of G so that no two adjacent points have the same color.
The points which are assigned the same color constitute a color class. If n
colors are used, the coloring is called an n-coloring of G. The chromatic
number x(G) of G is the minimum n for which G has an n-coloring. G is n
chromatic if x(G) = n, and is n-colorable if x(G) < n.

Our first series of examples concerns bounds on x(G). Recall that the
density of G, w(G), is the number of points in a maximum clique (maximal
complete subgraph) of G.

1.1 THEOREM For any graph G, x(G) > w(G) (Sachs 1970).

For strict inequality, take G = C2n+I, n > 2. For equality, take G = Kp•

It is known, in fact, that equality is attained by any graph which does not
have P4 as an induced subgraph (Seinsche 1974).

The lower bound in example 1.1 says that a large clique forces a high
chromatic number. A surprising result is that there exist graphs with
arbitrarily high chromatic number but which have no triangles.

1.2 THEOREM For any positive integer n, there exists an n-chromatic graph
G containing no triangles.
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Colorings

We give a construction due to J. Mycielski (1955). For n = 1 or 2, take
G = Kn• For n ~ 2, suppose we have a graph Gn with X(Gil) = n and which
contains no triangles. Let VI, V2, ••• , Vp be the points of Gn• Form Gn+1 by
adding p + 1 new points UI, ••• , up, Up+h and for each i, 1 < i <p, let U;

be adjacent to Up+1 and all points to which V; is adjacent. We exhibit G3 and
G4

Figure 1.2.1

One can see that using this construction a graph with X = m, W = n can
be obtained for any two integers n, m, m ~ n ~ 2. Whether this generates
the smallest such graph or not is not known.

Note that Kelly and Kelly (1954) and B. Descartes (1954) show how to
construct a graph with given chromatic number and girth (the length of a
shortest cycle in G) greater than 5. L. Lovasz (1968) has shown how to
construct a graph with arbitrarily given chromatic number n ~ 2 and girth
g ~ 2.

~(G) and ~(G) denote the minimum and maximum degrees of the points
of G respectively.

1.3 THEOREM For any connected G, X(G) < 1 + max ~(G'), where the
maximum is taken over all induced subgraphs G' of G.

For equality, let G = Kltn• Thus, X(G) = 2. For inequality, let G = Knt,.,

n > 1. Since G is bipartite, X(G) = 2. The upper bound of the theorem,
however, is n + 1 (Szekeres and Wilf 1968).

1.4 THEOREM For any G, X(G) < 1 + ~(G).

If G is connected, equality holds if and only if G is complete or an odd
cycle (Brooks 1941).
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Point Colorings

Note also that for arbitrary nand m, n < m + 1, there exists a graph G
with X = n and ~ = m. If n = m + 1, simply take Kn• If n < m + 1, take
the graph shown below.

m points

The next example is an expansion of example 1.4 which includes
disconnected graphs.

1.5 THEOREM If ~(G) = 2 and if G does not have a component which is
an odd cycle, or if ~(G) ~ 3 and G does not have K~+t as a component, then
X(G) < ~(G).

It is easy to see that for any integers n, m, n ~ m ~ 2, a graph G with
X = m, ~ = n exists. Just take G = Km U Kt,n (Brooks 1941).

The next bound is in terms of E, the maximum eigenvalue of the
adjacency matrix of G.

1.6 THEOREM If G is connected, then X(G) < 1 + E.

Equality holds if and only if G is complete or is an odd cycle. The proof
is long and will be omitted (Wilf 1967).

The next example gives upper and lower bounds on the chromatic
number of G in terms of the number of points p and the number of lines q
of G.

1.7 THEOREM For any graph G,

p2 ~ X(G) ~ 1 + ... /2q(p - 1)
p2-2q~ ~ V p .

To attain both bounds simultaneously, let G = Kp• In this case they are
both equal to to p. For strict inequality on both sides, let G = Cp, p ~ 5
(Harary 1969; Behzad and Chartrand 1971).

Recall that the point independence number of G, f3o(G), is the maximum
number of mutually non-adjacent points in G.

1.8 THEOREM For any G, p/f3o < X(G) < p + 1 - f3o.

To attain both bounds simultaneously, let G = Kp • Then f30 is 1 and both
bounds are equal to p.

J



Colorings

For strict inequality on both sides, let G = C2m n ~ 3. Then Po = nand
X = 2 (Harary and Hedetniemi 1970).

We now compare the upper bounds given by the two examples above,
and also the lower bounds. It is found that neither is superior to the other,
i.e., there are graphs for which the bounds of example 1.7 are better and
also graphs for which the bounds of example 1.8 are better.

Take G = Cp, where p is even. Then the upper bound of example 1.7
reduces to

1 + y2(p - 1),

and that of example 1.8 to 1 + !p. Hence for p ~ 8 the bound of example
1.7 is better. However, taking G = Kt,p-h we see that the upper bound of
example 1.7 is

1 + (p - 1)V1IVP
while that of example 1.8 is 2. Hence for p ~ 3, example 1.8 has the better
bound.

Once again take G = Cp with even p. Then the lower bound of example
1.7 is pl(p - 2), while that of example 1.8 is !p. Hence for p ~ 5, the
bound of example 1.8 is better. However, taking G = Kt,p-h we see that the
lower bound of example 1.7 is

p
p - 2 + 21p'

while that for example 1.8 is pl(p - 1), so that for p ~ 3, example 1.7 has
the better bound.

1.9 THEOREM If e is the length of a longest path in G, then X(G) < e + 1.

For strict inequality, let G = Kt,n. Then e = 2 and X = 2. For equality,
let G = Kp• Then e = p - 1 and X = P (Gallai 1968).

As a matter of fact, for any integers n, m, 2 < m < n + 1, there is graph
G with X(G) = m and e(G) = n. Take G to be the graph shown below.

• •• 0--0
"""'-......._--~---_/

Length n-m +1

An elementary homomorphism E of G is an identification of two non
adjacent points of G.

1.10 THEOREM For any graph G and any elementary homomorphism E,

X(G) < X(E(G» < 1 + X(G).
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Point Colorings

Both bounds can be attained. For the lower bound, take G = KI,m n > 1.
For the upper bound, Let G = P2n and let E identify the two pendant
vertices (Harary, Hedeniemi, and Prinz 1969).

1.11 THEOREM For any graph G,
(1) 2y]J < X(G) + X(G) < p + 1,
(2) p < X(G)X(G) < «p + 1)/2)2.

The only graphs that attain the upper bound in (1) are Kp, Kp, and Cp

(Fink 1966). The lower bound in (1) is attained, for example, by K I or C4•

The only graphs which attain the upper bound in (2) are KJ, K2, K2, and
Cs (Fink 1966). The lower bound is attained, for example, by Kpo

We close this subsection on bounds on the chromatic number with two
examples: one connecting X(G) with the girth g of graphs of genus 1, and
one which connects X(G) with the chromatic number of any permutation
graph of G.

The genus of a graph G, y(G), is the minimum genus of a surface in
which G can be embedded. To define a permutation graph of G, let the
points of G be labeled VI, V2, ••• , vp and let ex be any permutation in the
symmetric group of order p. The permutation graph e(G) is the union of
two copies of G together with all the lines Vi Va(i)' 1 < i < p.

1.12 THEOREM Ify(G) = 1, and G has girth g, then X(G) < 7 ifg = 3;
X(G) < 4 if g = 5; X(G) < 3 if g ~ 6.

The bounds are sharp except possibly for g = 5. For g = 3, take
G = K7• For g = 6, let G be the graph in figure 1.12.1, in which numerals
indicate colors (Kronk 1972).

2

2u-------+-~----__o

2

Figure 1.12.1

5



Colorings

The diagram in figure 1.12.2 shows an embedding of K7 on the torus
using the usual representation in which opposite sides of the rectangle are
identified.

Figure 1.12.2

The fact that K7 can be embedded on the torus follows from the
Heawood map coloring theorem, which states that the maximum chromatic
number among all graphs which can be embedded in a surface of genus n is

7 + VI + 48n
2

for n > 0 (Ringel and Youngs 1968). Now that the four color conjecture
has been established (Appel and Haken 1976), we can change n > 0 to
n ~ o.

The method used to solve the four color problem goes back to Kempe
(1879), who thought he had proved the conjecture by "showing" that if a
vertex v were adjacent to five others which were colored with four colors,
then one of these colors could always be freed to be used for v. He used
paths in the graph (although in his original paper everything is done in
terms of maps) having adjacent points of alternating colors, and inter
changed the colors on these in order to free a color for v. Heawood's
counterexample in figure 1.12.3 (Heawood 1890; Saaty 1972) shows that
Kempe's procedure may not always work. The four colors are indicated by
letters b, r, y, g. A path from VI to Vn with points colored alternately rand
g, say, will be called an r-g chain from VI to Vn.

6



Point Colorings

b

Figure 1.12.3

6

y(r)

There is a b-g chain from 2 to 4, and also a b-y chain from 2 to 5, so that
interchanging colors on either chain will not free a color for v. There is no
r-g chain from 1 to 4, so that one can interchange rand g along the r-g
chain starting at 1 (colors in parentheses). But this does not free r for v,
since 3, adjacent to v, is also colored r. This clearly must be changed to a
y. But if we attempt this by interchanging y and r along the r-y chain
starting at 3, then 6 and 7 both become colored r. Thus it is possible that
even though each interchange removes an r, both may not remove both r's.

Note that if y(G) = 0 (i.e., G is planar), then x(G) < 4. Hence if G has
odd girth, x(G) = 3 or 4. Take C2n+1 for the former and W2n+1 for the latter.
If G has even girth, then x(G) can be 2, 3, or 4. Take C2n, C2n U C2n+}, and
the Mycielski graph G4 (see example 1.2) respectively.

7



Colorings

1.13 THEOREM For a graph G and any permutation graph, e(G), of G,
x(G) < x(e(G» < {~x(G )}.

The bounds are attainable. For the lower bound, take G = K2, and the
identity permutation. Then X(G) = X(e(G» = 2.

For the upper bound, take G = C4, and ex = (12)(3)(4). Then X(G) = 2
and X(e(G» = 3 as shown below. (Chartrand and Frechen 1969).

3 2

Figure 1.13.1

Graphs which are critical with respect to chromatic number have been
widely used in the study of graph colorings. A graph G is x-critical [X
minimal] if for any point v [line e] of G, X(G - v) < X(G) [X(G - e)
< X(G)]. If X(G) = nand G is x-critical (x-minimal), then G is said to be
n-x-critical (n-x-minimal). The only l-x-critical graph is K1; the only 2-X
critical and, if isolates are ignored, the only 2-x-minimal graph is K2; the
only 3-x-critical and, if isolates are ignored, the only 3-x-minimal graphs
are the odd cycles. The graph G4 of example 1.2 is 4-x-critical. At this
writing no characterization of n-x-critical or n-x-minimal graphs is known
for n ~ 4.

1.14 THEOREM Every connected x-minimal graph is x-critical.

The converse is false. The graph shown below is x-critical but not x
minimal, since X(G) = X(G - e) = 4 (Harary 1969).

8



Point Colorings

1.15 THEOREM If G is n-x-critical, n > 1, then G is (n - I)-line
connected.

The converse is false. Let G = K1+ 2K,,-1. Then A = n - I, X = n, but
G is not n-x-critical (Dirac 1952).

1.16 THEOREM If G is connected and n-x-minimal, n > 1, then G is
(n - 1)-line-connected.

The converse is false: use the same example as in example 1.15 (Dirac
1952).

1.17 THEOREM If G is n-x-critical, or if G is connected and n-x-minimal,
then 8(G) ~ n - 1.

The converse is false. Let G = K"+l - x. Then X = n,8 = n - I, but G
is not n-x-critical and hence not n-x-minimal (Dirac 1952).

The number of ways of coloring the points of a graph may be studied by
means of the chromatic polynomial or "chromial" of G. The chromial of
the labeled graph G, XG(A), is the number of different colorings of G using
at most A colors. We define XG(A) = 0 if A< X(G). For reference we list
some well-known proerties of the chromial of G. Let XG(A) = a"A"
+ a,,-l A,,-l + · · · + al A+ ao; then:

(1) The degree of XG(A) is p, Le., n = p.

(2) ap = 1.

(3) ao = O.

(4) ap-l = -q.

(5) The coefficients alternate in sign.

(6) The smallest r such that a, =1= 0 is the number of components of G.

(7) If G is connected, la, I ~ «p - 1)/ (r - I».

(8) See example 1.18 below.

1.18 THEOREM If G is a connected graph, then XG(A) < A(A - I)p-l, Aa
positive integer. (Read 1968).

The converse is false. Take G = nK3• This is not connected, but

and

9
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But

1 "A - 1
A- 2 > A(A - 2)"

Therefore,

"An("A - l)n("A - 2)n < "A("A _ 1)3n-l.

It is obvious that isomorphic graphs have the same chromial. We have,
however, the following example:

1.19 There exist non-isomorphic graphs with the same chromial.

Any two trees with the same number of points and which are not
isomorphic provide such an example. Also, the two non-isomorphic non
trees shown below have the chromial "A6

- IO"As + 42"A4
- 90"A3+ 95"A2

- 38"A (Read 1968).

None of the necessary conditions (1)-(8) on a polynomial are sufficient
for the polynomial to be the chromial of some graph. Indeed, a polynomial
with several of these properties need not be a chromial.

1.20 A monic polynomial with alternating signs and 0 constant term need not
be a chromial.

The polynomial "A4
- 3"A3+ 3"A2 is an example, because if it were the

chromial of a graph G, then G would have 4 points, 3 lines, and 2
components, i.e., G = K3 U K1• But the chromial of this graph is "A4

- 3"A3

+ 2"A2 (Harary 1969).
A graph is uniquely n-colorable if x(G) = n and every n-coloring of the

points of G induces the same partition of the points into n color classes.

10



Point Colorings

1.21 THEOREM In the n-coloring of a uniquely n-colorable graph the
subgraph induced by the union of any two color classes is connected.

The converse is false. The graph shown in figure 1.21.1 with two different
3-colorings has the property that in any 3-coloring the subgraph induced by
the union of any two color classes is connected (Cartwright and Harary
1968).

2

3 2

2

3

Figure 1.21.1

1.22 THEOREM A 2-connected, 3-chromatic plane graph with at most one
non-triangular region is uniquely 3-colorable.

The converse is false. The graph below is uniquely 3-colorable, plane, and
3-connected (hence 2-connected), but has more than one non-triangular
region (Chartrand and Geller 1969).

Figure 1.22.1

1.23 THEOREM If G is uniquely n-colorable, then G is (n - I)-connected.

The theorem can not be improved. G = Kn is uniquely n-colorable and
has Ie = n - 1 (Chartrand and Geller 1969).

11
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3. LINE CHROMATIC NUMBER

The line chromatic number of a graph G, Xl (G), is the minimum number
of colors that can be assigned to the lines of G so that no two adjacent lines
have the same color. The following example gives bounds on Xl obtained
by V. G. Vizing (1964).

1.24 THEOREM For any graph G, ~(G) < XI(G) < ~(G) + 1.

We give classes of graphs which attain these bounds. Xl (Kn,m) = max(n,
m), and it is not difficult to show that if G is regular with an odd number
of points, then XI(G) = ~(G) + 1.

1.25 THEOREM For any graph G,
(1) 2[(p + 1)/2] - I < XI(G) + XI(G) < p + 2[(p - 2)/2],
(2) 0 < Xl (G )XI (G) < (p - 1)(2[p/2] - 1).

All bounds can be attained. For both lower bounds, take G = Kp• Then
XI(G) = 0 and

if p is odd,

if p is even.

For both upper bounds, take G = KI,p-l, P > 2. Then

- {p - 1
X.(G) = p _ 2

if p is even,

if p is odd,

and XI(G) = P - 1 (Alavi and Behzad 1971).
An n-line coloring of a graph G is a coloring of the lines of G with n

colors in such a way that no two adjacent lines have the same color. A
monochromatic triangle is one all of whose sides are of the same color. A
well-known theorem states that every 2-line coloring of K6 has at least one
monochromatic triangle. Less well-known is a result of A. W. Goodman
which states that there are at least two such monochromatic triangles
(1959). The next example gives all 2-line colorings of K6 with exactly two
monochromatic triangles.

1.26 THEOREM There exist 2-line colorings of K6 with exactly two
monochromatic triangles which have 0, 1, or 2 common points. Furthermore,
the triangles have different colors if and only if they have just one point in
common.

Figure below illustrates all of the 2-line colorings referred to above. The
solid lines are considered to be of one color, and the dashed lines of the
other color (Harary 1972).

12



The Total Chromatic Number

Figure 1.26.1

1.27 There exist cubic planar graphs which are 4-line chromatic (Behzad and
Chartrand 1971).

4. THE TOTAL CHROMATIC NUMBER

We now consider coloring both the points and lines of a graph. The total
chromatic number X2(G) of a graph G is the minimum number of colors
required to color the elements (i.e., points and lines) of G so that associate
elements (i.e., adjacent points or lines, or incident points and lines) are of
different colors. Bounds for the total chromatic numbers of certain classes
of graphs have been obtained.

1.28 THEOREM X2(Kn,m,p) < ~(Kn,m,p) + 2 for any Kn,m,p.

For equality, take K2,2,h for which ~ = 4 and X2 = 6.
For strict inequality, take KI,I,h for which ~ = 2 and X2 = 3 (Rosen

field).
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4

Colorings

1.29 THEOREM X2(Kn,n, ... ,n) < ~(Kn,n, ... ,n) + 2 for all n.

The bound is always attained by a bipartite graph. Below is a tripartite
graph for which the bound is attained. 1

1

6~
3

___4 5~
2

Behzad (1965) conjectured that for any graph G,

X2(G) < ~(G) + 2.

This has come to be called the total coloring conjecture, and is known to
be true for graphs with ~ < 3 (Vijayaditya 1971).

5. THE ACHROMATIC NUMBER

An elementary homomorphism E of a graph G is an identification of two
non-adjacent points of G. A homomorphism fJ of G is a finite sequence of
elementary homomorphisms. A homomorphism fJ of G is complete of order
n if fJ(G) = Kn• The achromatic number of a graph G, t/;(G), is the
maximum order of all complete homomorphisms of G. Our first example
gives a bound on \f; (G) in terms of 130 (G), the point independence number
of G.

1.30 THEOREM \f;(G) < p - 130 (G) + 1 for any graph G.

For equality take G = P3. Then \f;(P3) = 2, 130 = 2, and p = 3. A
complete homomorphism demonstrating that \f; = 2 is obtained by identi
fying the endpoints of P3 (Harary, Hedetniemi, and Prins 1969).

Since it can be shown that X(G) < \f;(G), one might conjecture an
inequality such as the right side of (1) in example 1.11 for \f;. The next
example shows this cannot be so.

1.31 There exist graphs for which \f;(G) + \f;(G) > p + 1.

G = P4 is such a graph. P4 -.., P4 and \f;(P4 ) = 3. The complete homo
morphism demonstrating this is obtained by identifying the endpoints of P4

(Harary and Hedetniemi 1970).

I M. Rosenfield, On the total coloring of certain graphs (private communication).
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1.32 THEOREM For any graph G and any elementary homomorphism £,

t/!{G) - 2 < l/;(£(G» < l/;(G).

Both bounds can be attained. For the upper bound, take G = P3 and
£(G) = P2• Then, l/;(G) = l/;(£(G» = 2.

For the lower bound, let G be the graph below with £(G) shown on the
right. £(G) is obtained by identifying the two points of degree 3. That
t/!{G) = 5 and l/;(£(G » = 3 can be seen by the complete homomorphisms
obtained by identifying points with the same numbers (Harary and
Hedetniemi 1970).

4 2 2

2

2 4

Figure 1.32.1

Our final example connects X and l/;.

1.33 THEOREM For any graph G, l/;(G) + X(G) < p + 1.

For equality, take G = K2• Then t/!{K2 ) = 2 and xCK2 ) = 1 (Harary,
Hedetniemi, and Prins 1969).
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Chapter 2

Connectedness

In this chapter we discuss connectedness and connectivity of graphs and
several related concepts: local connectedness; critical and minimal graphs;
line connectivity; critically and minimally n-connected graphs; cyclic
connectivity; 3-connected planar graphs; connectivity of line and total
graphs; and toughness of graphs.

A Vo - Vn walk in a graph G is an alternating sequence of points and lines
of G, VO, Xh Vh X2, V2, ••• , X n , Vm beginning and ending with a point, in
which each line is incident with the two points immediately preceding and
following it. A path is a walk in which all points are distinct. The length of
a walk or path is the number of lines in it, counting repetitions of a line. A
graph is connected if and only if there is a path between every pair of
points. If G is not connected, it is said to be disconnected.

If a graph has too few lines, it cannot be connected; if it has enough lines,
it must be connected.

2.1 THEOREM If q < p - 1 for a graph G, then G is disconnected.

The converse is false. Let G = en U Pm. Then p = n + m, but q = n
+ m - 1.

2.2 THEOREM For a graph G, if q > (p - l)(p - 2)/2, then G is
connected.

The converse is false. Any tree with p > 3 will do.
The neighborhood of a point v in a graph G is the subgraph of G induced

by the points adjacent to v. A graph is said to be locally connected if each
of its points has a connected neighborhood.

The next two examples show that connectedness and local connectedness
are independent concepts.
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2.3 If G is connected, it is not necessarily locally connected.

Consider any tree T with p ~ 3 points. If v is any point of T with
d(v) ~ 2, then the neighborhood of v is not connected (Chartrand and
Pippert 1974).

2.4 If G is locally connected, it is not necessarily connected.

Let G = Kn U Kn• G is locally connected, since the neighborhood of any
of its points is K n- 1 (Chartrand and Pippert 1974).

A connected component, or simply a component, of G is a maximal
connected subgraph of G. A point v is a cutpoint of the graph G if G - v
has more components than G. A line x is a bridge of G if G - x has more
components than G.

2.5 If v is a cutpoint of G, then it is not necessarily a cutpoint of every induced
subgraph containing it.

Form G as follows: take Cp with points labeled clockwise from 1 through
p, join points 2 and p, then join point 1 to a new point labeled p + 1. The
point 1 is then a cutpoint of G but is not a cutpoint of the subgraph induced
by points 1, 2, and p.

A graph is non-separable if it is connected, is non-trivial, and has no
cutpoints. A block of a graph is a maximal non-separable subgraph.
Although a block cannot be separated by removing a single point, it may
be by removing two or more. The minimum number of points IC(G) whose
removal disconnects G or reduces G to a point is called the point
connectivity, or simply the connectivity, of G.

2.6 THEOREM If H is a spanning subgraph of G, then IC(H) < IC(G).

To show equality and inequality, let G be the cycle Cp , p ~ 4, with the
points labeled clockwise 1 through p, together with the chord joining points
1 and 3. Then IC(G) = 2. For equality in the theorem, let H be the cycle Cpo
For inequality, let H be a spanning tree of G.

The next example shows that in the theorem of example 2.6, the
condition that H must be a spanning subgraph cannot be dropped.

2.7 If H is a subgraph of G, then it is not necessary that IC(H) < IC(G).

Let G be any separable graph with blocks B1, ••• , Bk at least one of
which, say B}, is not K2• Then IC(B1) ~ 2 > IC(G) = 1.

A graph G is a IC-critical block if G is a block and for every point v, G - v
is not a block. G is a IC-minimal block if G is a block and for every line x,
G - x is not a block.
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The next two examples show that the concepts of Ie-critical and Ie-minimal
blocks are independent.

2.8 A Ie-minimal block is not necessarily Ie-critical.

Consider the graph G = Kn,m, m > n ~ 2, which has connectivity n. If
x is any line of G, then Ie(G - x) = n - 1. G is not Ie-critical, however, since
if v is a point of G in that part of G with m points, then Ie(G - v) = n (Dirac
1967).

2.9 A Ie-critical block is not necessarily Ie-minimal.

Let G = Kn,n + x, n ~ 3, which has connectivity n. The removal of any
point v reduces the connectivity by 1. However, Ie(G - x) = n.

The minimum number of lines A(G) whose removal disconnects G is
called the line connectivity of G. The minimum degree of the points of G is
denoted 8(G). The fundamental inequality relating Ie(G), A(G), and 8(G) is
Whitney's inequality (1932):

2.10 THEOREM For any graph G, Ie(G) < A(G) < 8(G).

The restriction imposed by this inequality cannot be improved, in the
following sense: for any integers b, c, and d such that 0 < b < c < d, there
exists a graph G having Ie(G) = b, A(G) = c, and 8(G) = d. We now
construct such graphs.
Case 1 If b = c = d, then G = Kb+1 is the required graph.
Case 2 If b < c = d, then G = 2Kc- b+1 + Kb is the required graph. It is
obvious that 8(G) = c and that Ie(G) < b. By the inequality of example
2.15 with n = b, it follows that G is b-connected and hence Ie(G) = b. That
A(G) = c follows easily from the theorem of example 2.12.
Case 3 c < d. The required graph is formed as follows:

c-b+ 1 lines

b -1 lines

It is obvious that 8(G) = d, A(G) = c, and Ie(G) = b.

19



Connectedness

Note that the above graphs are the smallest graphs with the desired
properties in the sense of having the fewest points (Chartrand and Harary
1968).

2.11 THEOREM Among all (p,q) graphs, the maximum connectivity is 0
when q < p - 1 and is [2q/p] when q ~ p - 1.

The following examples illustrate equality:
Case 1 2q/p = 2k, k an integer. The required graph is H2k = (Cp)k.
Case 2 2q/p = 2k + 1, k an integer. The required graph H2k+1 is formed
by first taking H2k and then joining the p/2 diametrically opposite points.

In each of the above cases, IC(H,) < r, since H, is regular of degree r. To
disconnect H, in case 1, it is necessary to remove two disjoint subsets of k
consecutive points along the circumference of Cp- To disconnect H, in case
2, in addition to removing the 2k points as for case 1, at least one more
point must be removed to break the diametric adjacency. Hence, in either
case IC(H,) ~ r.
Case 3 [2q/p] = r, p or q even. Form H, as in case 1 or 2. The required
graph H is formed by adjoining q - (rp/2) lines at random. It is easy to
show that IC(H) = r.
Case 4 [2q/p] = r, p and r both odd. Form H'-l as in case 2 and label its
points 0, 1, ... ,p - 1. Then adjoin points i and j if and only if i - j
= (p - 1)/2, thus forming the required graph H. It is again easy to show
that IC(H) = r (Harary 1962).

Note that among all (p, q) graphs, the maximum line connectivity is 0
when q < p - 1 and is [2q/p] when q ~ p - 1. The graphs of example 2.11
illustrate equality.

If 8(G) is big enough, then IC(G) or A(G) can be forced to equal 8(G).

2.12 THEOREM If G has p points and 8(G) ~ [p/2], then A(G) = 8(G).

The converse is false. Let n < [p/2] be given. Construct G as follows:
take B = Kn,n if p is even, or Kn,n+l if p is odd; take two additional sets of
points Sl and S2 each with [p/2]-n points, and join each point of Sl to
every point of one of the parts of B, and each point of S2 to every point of
the other part of B. Then A(G) = 8(G) = n < [p/2].

The theorem cannot be improved, in the sense that for any p there exists
a graph G with 8(G) = [p/2 - 1] = d and having A(G) = d - 1. If p is
even, let G consist of two copies of Kd+1 with one of the points in the first
copy joined to d - 1 of the points in the second copy. If p is odd, let G
consist of one copy of K d+1 and one copy of Kd+2 with one point of Kd+1

joined to d - 1 of the points in Kd+2•

2.13 THEOREM If 8(G) ~ p - 2, then IC(G) = 8(G).
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The theorem cannot be improved, since G = 2 K2 + Kp-4 has 8(G )
= p - 3 and IC(G) = 8(G) - 1.

2.14 THEOREM For any graph G with p ~ 2,
(1) 1 < A(G)+A(G) <p-I,
(2) °< A(G)A(G) < M(p),

where

[P;I]{P;l}
M(p) = (p; 3 )(p ; 1)

if p = 0, 1, 2 mod 4,

if p = 3 mod 4.

The bounds are sharp. Kp attains the upper bound of (1) and the lower
bound of (2). K1,p-l attains the lower bound of (1). For the upper bound of
(2), let G be a regular graph of order p with A(G) = 8(G) (see example 2.11)
where 8(G) = [(p - 1)/2] if p = 0, 1,2 mod 4 or (p - 3)/2 if p
= 3 mod 4. Then G is regular and 8(0) = {(p - I)/2) if p = 0, 1,
2 mod 4 or (p + 1)/2 if p = 3 mod 4. Since 8(G) ~ (p - 1)/2, by the
theorem of example 2.12, it follows that A(G) = 8(G) (Alavi and Mitchem
1971).

Note that the same bounds hold for similar expressions with IC replacing
A in example 2.14. The graphs of example 2.14 demonstrate that the
resulting inequalities are also sharp.

A graph is n-point-connected, or simply n-connected, if IC(G) ~ n.
Similarly, G is m-line connected if A(G) ~ m. The next series of examples
deals with partial or full characterizations of n-connected graphs.

2.15 THEOREM If 8(G) ~ (p - 2 + n)/2, where 1 < n < p - 1, then
G is n-connected.

The converse is false. Let G = ~,p ~ 6. Then n = 3, since every wheel
is 3-connected, but (p - 2 + n)/2 = (p + 1)/2 > 8(G) = 3.

The theorem cannot be improved. If p - 2 + n is even, let d = (p - 2
+ n)/2 - 1. To the graph 2Kd- n+2 + Kn- 1 add a new point v adjacent to all
points in one copy of Kd- n+2 and all points of Kn- 1• Call the resulting graph
G. Then d(v) = d + I and thus 8(G) = d and IC(G) = n - 1.

If p - 2 + n is odd, let G = 2Kd- 2+n + Kn- h where d is defined as above.
Then 8(G) = d and IC(G) = n - 1.

If G is 2-connected, then every two points of G lie on a cycle. The
following theorem extends this result to n-connected graphs.

2.16 THEOREM If G is n-connected, n ~ 2, then every set of n points of G
lie on a cycle.
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The converse is false. G = Cp, p > 3, is only 2-connected.
The theorem cannot be improved, in the sense that every set of more than

n points need not lie on a cycle. Let G = Kn,m, m > n > 2, which is n
connected. The set of points in the part of G containing m points cannot all
lie on a cycle (Dirac 1960).

The following theorem is a characterization of 3-connected graphs due to
W. T. Tutte (1961).

2.17 THEOREM G is 3-connected if and only if G is a wheel or can be
obtained from a wheel by a finite sequence of operations of the following types:

(a) The addition of a line.
(b) Replacing a point v, having d(v) > 4, by two adjacent points u and v

in such a way that each point formerly adjacent to v is adjacent to
exactly one of u and w, and in the resulting graph d(u) > 3 and
d(w) > 3. We refer to this operation as a split.

Neither operation by itself characterizes 3-connected graphs. To see that
operations of type (a) alone do not suffice, consider the prism which has Cp

as base. We illustrate the case p = 5.

The prism cannot be obtained from W2p by the addition of lines, since Jt2p

has 4p - 2 lines and the prism has only 3p lines.
To show that operations of type (b) alone do not suffice, consider K3,n,

n > 4, which is 3-connected. It is an easy matter to see that no matter how
the "central" point of a wheel is split, one cannot obtain enough lines to
construct K3,n'

The following theorem of Whitney (1932a) characterizes n-connected
graphs.
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2.18 THEOREM A graph is n-connected if and only if every pair of distinct
points are joined by at least n point-disjoint paths.

The theorem cannot be improved, in the sense that there exist n
connected graphs for which it is not possible to find n + 1 paths between
every pair of points. Consider Kn,n+h n ~ 2, and let u and v be two distinct
points in the part containing n + 1 points. Since any path between u and v
must contain points alternately in the two parts of Kn,n+h it is impossible to
find n + I point disjoint paths between them.

The next example is the line analogue of Whitney's theorem.

2.19 THEOREM G is m-line connected if and only if every pair of distinct
points are joined by at least m line disjoint paths.

The graph of example 2.18 shows that this theorem cannot be improved.
A graph is critically (minimally) n-connected if it is n-connected and for

every point v (line x) of G, G - v (G - x) is m-connected, m < n. The
following example shows that these concepts are independent.

2.20 The concepts of critically and minimally n-connected graphs are inde
pendent.

To show that neither concept implies the other, first consider the
complete bipartite graph Kn,n+h which has connectivity n. It is minimally n
connected, since IC(Kn,n+l - x) = n - 1 for any line x. It is not critically n
connected, since if a point v of that part of K n,n+l containing n + 1 points is
removed, we obtain Kn,m which is n-connected.

Next, let G = Kn,n + x, n ~ 3. Clearly IC(G) = nand G is critically n
connected. G is not minimally n-connected, however, since IC(G - x) = n
(Behzad and Chartrand 1971).

2.21 THEOREM If G is critically n-connected, n ~ 2, then
8(G) < (3n - 1)/2.

The converse is false. Let G = Kn,n+h n ~ 2. Then IC(G) = nand
8(G) = n. Hence, 8(G) = n < (3n - 1)/2. If v is any point of G in the
part containing n + 1 points, however, G - v = Kn,n is still n-connected
(Bondy 1969a).

A set L of lines of a 3-connected graph G is a cyclic cutset of G if G - L
has two components each of which contains a cycle. The cyclic connectivity
CA(G) of a graph G is the minimum cardinality taken over all cyclic cutsets
of G. If no such set exists in G, then CA(G) is defined to be 00. See the
glossary for the definition of planar graphs.
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2.22 THEOREM If G is planar and 4-connected, then CA(G) < 00.

The converse is false. Consider the following graph G:

CA(G) = 7, but IC(G) = 3 and G is not planar, since it contains Ks as a
subgraph (Plummer 1972).

It can be shown that there exist planar 4-connected graphs with
arbitrarily high cyclic connectivity (Plummer 1972). We have, however, the
following theorem: If G is a 5-connected planar graph, then CA(G) < 13.
It is not difficult to construct 5-connected graphs with CA(G) < 9. The next
two examples show 5-connected planar graphs with CA(G) = 10 and
CA(G) = 11 respectively.

2.23 A 5-connected planar graph with CA(G) = 10 (Plummer 1972).

Figure 2.23.1

24



Connectedness

2.24 A 5-connected planar graph with CA(G) = 11.1

Figure 2.24.1

It is not known at this writing if there exist 5-connected planar graphs
with CA(G) = 12 or 13. (See examples 9.25-9.28 for a discussion of the
relation between cycle connectivity and hamiltonian graphs.)

The next two examples deal with 3-connectivity and planarity.

2.25 THEOREM Every 3-connected planar graph is uniquely embeddable in
the sphere.

The theorem cannot be improved to 2-connected planar graphs. Consider
the following:

1 J. Malkevitch, private communication.
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6 H

Figure 2.25.1

G is embedded so that no face is bounded by 5 lines. H, however, has two
faces so bounded (Whitney 1932a).

2.26 THEOREM Every maximal planar graph of order p ~ 4 is 3-connect
ed.

The converse is false. Any wheel ~,p ~ 5, will do (Whitney 1932b).
The next series of examples concerns the relation between the connectiv

ity of G and the connectivity of its line graph, iterated line graphs, and total
graph. For the definitions of these terms see Chapter 5 or the glossary.

2.27 THEOREM If IC(G) = n, then IC(L2(G» ~ 2n - 2.

For equality, let G = Cpo Then n = 2 and IC(L2(G» = IC(Cp) = 2.
For inequality, let G be any graph with IC(G) = nand A(G) = 2n - 1

(see example 2.10). Since G is (2n - I)-line connected, L(G) is (2n - 1)
connected, and therefore L2 (G) is (2n - 1)-connected. Hence IC(L2(G»
~ 2n - 1 > 2n - 2. (Chartrand and Stewart 1969).

2.28 THEOREM If G is n-connected, n ~ 2, then L(G) is n-connected.

The theorem cannot be improved. Take two copies of Kn+1 with points
labeled 1 through n + 1 and I' through (n + 1)' respectively. Now join the
points i and i' for 1 < i < n. We illustrate the case n = 2.

26
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It is easy to see that IC(G) = IC(L(G» = n (Chartrand and Stewart 1969).

2.29THEOREM IfA(G) = m, thenA(L(G» > 2m - 2. Ifm =1= 2, equal
ity is achieved if and only if there exist two adjacent points in G with degree m.

The theorem cannot be extended to include m = 2. Consider the graph
G below and its line graph.

G

A(L(G» = 2A(G) - 2 = 2, but there are no adjacent points in G of degree
2. The removal of lines x and y will disconnect L(G ) (Chartrand and
Stewart 1969).

2.30 THEOREM if G is m-line-connected, m > 1, then T(G) is (m + 1)
connected.

The theorem is best possible. To see this, form the graph G as follows:
identify two copies of Km+ 1 at one point v. The point v is a cutpoint of G,
and A(G) = m. L(G) has connectivity m, and the m points which discon
nect L(G) together with v will disconnect T(G). Thus IC(T(G» = m + 1
(Behzad 1969).

2.31 THEOREM If G is m-line-connected, T(G) is 2m-line connected.

The theorem is best possible. A(Km+1) = m, 8(T(Km+1» = 2m, and
hence, by Whitney's inequality, T(Km+1) is at most 2m-line-connected
(Behzad 1969).

2.32 THEOREM If G is n-connected, T(G) is 2n-line-connected.

The theorem is best possible. IC(Kn+1) = n, 8(T(Kn+1» = 2n, and hence,
by Whitney's inequality, T(Kn+1) is at most 2n-line-connected (Behzad
1969).

2.33 THEOREM If G is n-connected, n > 1, then T(G) is (n + 2
+ [l(n - 2)])-connected.
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The theorem is not best possible. For the graph G constructed in example
2.31 we have IC(G) = 1, but IC(T(G» = m + 1 > 2 if m > 2 (Behzad
1969).

The connectivity of a graph is a measure of its tendency to stay
connected as points are removed. Another measure, the toughness of a
graph, is due to Chvatal (1973) and is the subject of the next three examples.
For the relation between toughness and hamiltonicity see example 9.7.

Let k(H) denote the number of components of the graph H. The graph
G is t-tough if k(G - S) > 1 implies lsi> t · k(G - S) for every set S of
points of G. If G is not complete, the largest t for which G is t-tough is called
the toughness of G and is denoted by T(G). If G = Kp, then T(G) is defined
as 00.

2.34 THEOREM For any graph G, T(G) > IC(G)/f3o(G).

The theorem cannot be improved. Let G = Km,m m < n. Then T(G )
= m/n (Chvatal 1973).

2.35 THEOREM IfT(G) isfinite, then T(G) < IC(G)/2.

The theorem cannot be improved. Let G = Km x Km m, n > 2. Then it
can be shown that T(G) = (m + n - 2)/2 = IC(G) (Chvatal 1973).

2.36 THEOREM If f3o(G) ~ 2, then T(G) < (p - f3o(G»/f3o(G).

The theorem cannot be improved. Let G = Km x Km m < n. Then
(p - f3o)/f3o = m/n = T(G) (Chvatal 1973).
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Chapter 3

Independence and Coverings

In this chapter we study various graph theoretic parameters that measure
the degree of non-adjacency in a graph and others that measure the extent
to which lines and points cover each other. In addition, we give several
examples on factorization and point arboricity.

A point and a line are said to cover each other if and only if they are
incident. Two points (lines) cover each other if and only if they are
adjacent. A set of points (lines) of a graph G which covers all the lines
(points) of G is called a point (line) cover of G. The smallest number of
points (lines) in a point (line) cover is the point (line) covering number of G.
The point (line) covering number is denoted by ao(al)' A set of points
(lines) of G is independent if no two of them are adjacent. The largest
number of points (lines) in an independent set of points (lines) is the point
(line) independence number of G, and is denoted by PO(PI).I

The first three examples relate ao, a., f30, PI to each other and to two
other parameters. The next two examples consider the special case where G
is bipartite.

3.1 THEOREM For any graph G, ao(G) ~ 8(G).

For strict inequality in the theorem, let G = Cn, n ~ 5. Then ao(Cn)
= {n/2} > 2 = 8(Cn ).

For equality in the theorem, let G = Kn,m' Then ao(Kn,m) = min(n, m)
= 8(Kn,m)'

3.2 THEOREM For any graph G, (1) ao ~ PI and (2). al ~ Po.

For strict inequality in both (1) and (2), let G = Kp , p > 2. Then
ao(Kp ) = p - 1 > [p/2] = PI (Kp ) and al (Kp ) = [(p + 1) /2] > 1
= Po(Kp )

For equality in both (1) and (2), let G = Kn,m' Then ao(Kn,m) = PI (Kn,m)
= min(n,m) and al(Kn,m) = Po(Kn,m) = max(n,m).

3.3 THEOREM For any graph G, Po(G) < fJ(G), where fJ is the minimum
number of cliques the union of whose vertices is V(G).

1 /30 is also known as the internal stability number.
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For strict inequality in the theorem, let G = C2n+I . Then /3o(C2n+I ) = n
< n + 1 = 9(C2n+I ).

For equality, let G = Kp. Then /3o(Kp) = 9(Kp) = 1 (Sachs 1970).

3.4 THEOREM If G is bipartite, ao(G) = /31 (G).

The converse is false. Let G be an odd cycle C2n+1 with a pendant vertex
attached to one of its points. Then ao(G) = /31 (G) = n + 1. But G is not
bipartite, since it contains an odd cycle (Konig 1931).

3.5 THEOREM If G is bipartite, q < ao(G)/3o(G), with equality holding
only for complete bipartite graphs.

The strict inequality may hold for non-bipartite graphs. Let G = C2Ir+1,
n ~ 2. Then ao(G)/3o(G) = (n + l)n > 2n + 1 = q.

Even if equality holds, the graph may not be bipartite. Let G be the
following graph:

where there are n copies of Kp , p = 2n. Then ao(G) = n(p - 1) + 1,
/3o(G) = n, and ao(G)/3o(G) = q.

The next series of examples concerns some relations between covers,
minimum covers, and minimal covers; and between maximal independent
sets of points and lines, and maximum independent sets of points and lines.

A point (line) cover is is a minimum point (line) cover if it contains ao
points (al lines). A point (line) cover of G is minimal if no proper subset of
it is a point (line) cover of G. An independent set of points (lines) of G is
maximum if it contains /30 points (f31 lines). An independent set of points
(lines) of G is maximal if no proper superset of it is an independent set.

3.6 Not every point cover contains a minimum point cover.

Consider any star KI,p_l. The set of points of degree one is a point cover
but does not contain a minimum point cover, since the point of degree
p - I is the minimum point cover.

3.7 Not every line cover contains a minimum line cover.
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Independence and Coverings

Let G be KI,p_1 + x. The set of lines incident with the point of degree
p - 1 is a line cover of G. It does not contain a minimum line cover,
however, since the set of lines of G excluding the two lines adjacent to x is
the minimum line cover.

3.8 Not every minimal point (line) cover is minimum point (line) cover.

Both statements are illustrated by the following graph:

xl ~
~ n--------~u2

{VI,V2,V4'VS} is a minimal point cover. It is not minimum, however, since
{V., V3, vs} is a point cover.

{X2' X3, X4, X6} is a minimal line cover. It is not a minimum, however, since
{X., X2, xs} is a line cover.

3.9 Not every maximal independent set of points is a maximum independent
set.

Consider Kn,m, the complete bipartite graph with parts PI and P2 having
nand m points respectively, where n < m. Then PI is a maximal independ
ent set but is not maximum, the unique maximum independent set being P2•

3.10 Not every maximal independent set of lines is a maximum independent
set of lines.

In the above graph, k ~ 1, and {xo, X2 , X4, ••• ,X2k} is a maximal set of
k + 1 independent lines. It is not maximum, however, since {XO,XI,X3' ••• '

X2k+I} is a set of k + 2 independent lines.
When searching a graph for a minimum point cover it is natural to first

consider points of maximum degree. Likewise, when searching for a
maximum independent set, a likely candidate at which to begin is a point
of minimum degree. The next two examples show that this need not be the
case.
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3.11 Not every point of maximum degree is contained in a minimum point
cover.

Construct a graph G as follows: Take Kn - x, and let v be one of the
points of degree n - 2. Attach to v a path of length 2. Call the point of
degree one u. Then v has maximum degree but cannot be in any minimum
cover. If v were in a minimum point cover, then u would be also. The
subgraph of Kn - x induced by the points unequal to v is Kn- 1 and thus
requires n - 2 points to cover all its lines. Hence any cover containing v
must contain n points and so cannot be minimum, since ao(G) = n - 1.

3.12 Not every point of minimum degree is contained in a maximum
independent set of points.

Construct a graph G as follows: To the odd cycle C4k+1 , k ~ 1, add a
point v adjacent to two points on the cycle which are adjacent. Denote by
x the line on the cycle joining the two points to which v is adjacent. Let u
be the point on the cycle which is diametrically opposite line x. Let I be an
independent set containing u. Since the points adjacent to u cannot be in I,
excluding the triangle containing v, there can be 2k - 2 other points in I.
Since only one point of the triangle containing v can be in I, I contains 2 k
points. It is easy to see, however, that /3o(G) = 2k + 1.

Related to coverings is the concept of external stability. The external
stability number aoo(G) of a graph G is the minimum number of points
needed to cover the point set of G.

3.13 THEOREM For any graph G, aoo(G) < ao(G).

For equality in the theorem, let G = Kn,m. Then aoo(G) = ao(G)
= min(n,m)

For strict inequality, let G = Kp , p ~ 3. Then aoo(G) = 1 < p - 1
= ao(G).

Important in the study of the point covering and point independence
numbers are those points and lines whose removal change ao or /30, and
those graphs all of whose points or lines are such.

A point v (line x) of G is ao-critical (ao-minimal) if ao(G - v)
< ao(G) [ao(G - x) < ao(G)]. A graph in which every point (line) is an ao
critical point (ao-minimalline) is an ao-critical (ao-minimal) graph.

Although every graph must contain an ao-minimal point, we have the
following:

3.14 Not every graph contains an ao-minimalline.

Consider the path on 2n + 1 points, P2n+l. Then ao(P2n+1) = nand
aO(P2n+1 - x) = n for every line x of P2n+1•
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A point is ao-critical if and only if a minimum point cover contains it.
The corresponding statement for lines is not true, as is shown by the next
two examples.

3.15 If a minimum line cover of a graph G contains line x, then x need not
be ao-minimal.

Consider the cycle C2m and let x be anyone of its lines. Then
C2n - X = P2m and hence ao(C2n ) = ao(P2n ) = ao(C2n - x) = n.

3.16 If a line x of G is ao-minimal, then there need not be a minimum line
cover containing x.

Let G be the following graph:

Line x is ao-minimal, since ao(G - x) = n + 2. Since at(G) = n + 2, any
minimum line cover must contain n + 2 lines. Let C be a cover containing
x. To cover v, one of the lines adjacent to x must be in C. To cover the
points of the cycle C2n+t, n + I lines must be used. Thus C contains n + 3
lines and cannot be minimum.

The next two examples deal with partial characterizations of ao-minimal
graphs.

3.17 THEOREM Every ao-minimal graph is ao-critical.

To show the converse is false, consider any even cycle C2n• e2n is ao
critical, since ao(C2n ) = nand ao(C2n - v) = ao(P2n- t ) = n - 1. C2n is not
ao-minimal, however, since for any line x of C2n we have ao(C2n )

= ao(C2n - x) = ao(P2n ) = n.

3.18 THEOREM Every ao-minimal graph is a block in which any two
adjacent lines lie on an odd cycle.

To show the converse is false, construct a graph G as follows: Start with
an 8k - 1 cycle with points labeled 1 through 8k - 1, k > 1. Put an
additional point v adjacent to 2k + 1 and 6 k. Finally, join v to 1 by a path
of 2k - 1 new points. We illustrate the case k = 1.
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6u-------eJ----~3

5 4

Figure 3.18.1

0:0 = 5k. If x is either of the lines (v,2k + 1) or (v, 6k), then G - x has
0:0 = 5k. Every pair of adjacent lines, however, lie on an odd cycle
(Beineke, Harary, and Plummer 1967).

A graph G is 13o-minimal if for every line x, 130 (G - x) > 130 (G). Note
that by a well-known theorem of Gallai (1959), for any non-trivial
connected G, 0:0 ( G) + 130 G) = p. It follows that G is 13o-minimal if and
only if G is o:o-minimal. The next two examples give partial characteriza
tions of 13o-minimal graphs.

3.19 THEOREM If G is connected and f3o-minimal, and G =1= K2, then each
line of G is contained in an odd cycle having no chords.

The converse is false. Let G consist of two odd cycles identified at one
point v. Then 13o(G) = 13o(G - x), where x is any line incident with v
(Andrasfai 1967).

3.20 THEOREM If G is 13o-minimal and has no isolates, then d(v) < p
- 2130 + 1 for all points v of G.

The theorem cannot be improved. Let G = C2n+1• Then p - 2130 + 1
= 2n + 1 - 2n + 1 = 2 = d(v) for all v in G.

The graph K2 shows that the condition of having no isolates cannot be
removed.

In addition, the converse of the theorem is false. Take two copies of C2k+1

with points labeled clockwise 1 through 2k + 1 and l' through (2k + 1)'
respectively. Join the points i and i' for 1 < i < 2k. The resulting graph G
has 130 = 2k. Thus p - 2130 + 1 = 3, and d(v) = 3. But G is not 130
minimal, since if x is any of the lines ii', 1 < i < 2k, then 130(G - x) = 2k
(Andrasfai 1967).
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Related to independence and coverings is the concept of a graph
possesing a factorization. An n-factor of a graph G is a spanning subgraph
which is regular of degree n. G is n-factorable if it is the line disjoint union
of n-factors. It is easily seen that if G is n-factorable, it must be regular.
Every graph which is regular of degree 1 is trivially I-factorable. Every
connected regular graph of degree 2 (i.e., every cycle) is I-factorable if and
only if it is an even cycle. The next example concerns I-factors of cubic
graphs.

3.21 Not every cubic graph has a i-factor.

Consider the following graph G:

x

z

y

Figure 3.21.1

To cover the point v., any I-factor must contain one of the three lines x,
y, or z. Assume a I-factor F contains x. Then F cannot contain z. Then the
set S = {V2,V3,V4,VS,V6} cannot be covered by the lines of F, since S
contains an odd number of points.

In 1891 J. Petersen showed that every cubic graph which does not have
a I-factor must have at least three bridges. He also proved that every
bridgeless cubic graph is the line-disjoint union of a I-factor and a 2-factor.
We have, however, the following example.

3.22 Not every bridgeless cubic graph is i-factorable.

The graph P which shows this is the well-known Petersen graph:
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Independence and Coverings

Figure 3.22.1

We shall refer to the VI V2 V3 V4 Vs VI cycle as the outer cycle, the
V7 V9 V6 Vs VlOV7 cycle as the inner cycle, and the remaining lines as the
connecting lines.

The connecting lines form an obvious I-factor. This I-factor cannot,
however, appear in any I-factorization of P, since each of the inner and
outer cycles would have to be I-factorable, which they are not. Further
more, it is easy to see that the only other possible type of I-factor contains
exactly one of the five connecting lines. This being the case, the five
connecting lines cannot all appear in a I-factorization of P, since any such
factorization must contain exactly three I-factors (Petersen 1891).

Another concept related to independence and coverings is point arbori
city. The point arboricity p(G) of a graph G is the minimum number of
subsets into which the point set of G may be partitioned so that each subset
induces an acyclic subgraph. Although there is no known formula for p(G)
for arbitrary G, several upper bounds have been attained.

3.23 THEOREM For any graph G,

where the maximum is taken over all induced subgraphs.

The theorem cannot be improved. Let G = Kpo Then
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Independence and Coverings

I+ [max;(G/)J
(Chartrand and Kronk 1969).

3.24 THEOREM If G is planar, p(G) < 3.

For the strict inequality take G = K4 •

To construct a graph G of point arboricity 3, we begin by considering T,
the Tutte graph (1946).

Figure 3.24.1

Now let G = T*, the dual of T. Assume that p(G) = 2. This implies that
the regions of T can be partitioned into two sets neither of which contains
a cyclic sequence of regions. Color all the regions of one of the sets a and
all the regions of the other set b. Let the region R1 be colored a. Then
exactly two of the regions incident with the point v must be colored b, say
R3 and R4• It then follows that Rs must be colored a.
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Suppose R9 is colored b. If RIO is colored a, then R11 must be colored b,
which implies Rs and R6 must be colored a. But then, no matter how R7 is
colored, a monochromatic cycle of regions is created. If RIO is colored b, R7

must then be colored a. No matter how R6 is colored, we again obtain a
monochromatic cycle of regions.

It follows that R9 must be colored a.
Suppose, however, that R6 is now colored a. Then Rs and R7 must be

colored b, which implies that RIO must be colored a. But then, no matter
how Rll is colored, a monochromatic cycle of regions is created. On the
other hand, if R6 is colored b, R7 and Rs must be colored a, which implies
Rll must be colored b. No matter how RIO is now colored, we obtain a
monochromatic cycle of regions.

Since the assumption p(G) = 2 leads in all cases to a contradiction, and
since G is not a tree, it follows that p(G) = 3 (Chartrand and Kronk 1969).

The next example relates the point arboricity and chromatic number of
a graph.

3.25 THEOREM p(G) < X(G) < 2p(G).

To attain the upper bound in the inequality any tree will do.
To attain the lower bound any even cycle will do.
To obtain strict inequality on both sides, let G = K2n+I • Then p(G)

= n + 1, but X(G) = 2n + I (Kronk 1970).
Note that if the upper bound in example 3.24 were not attainable (i.e., if

for planar G, p(G) < 2), then by example 3.25 the four color conjecture
would be true!

We conclude the chapter with an example on the line core of a graph.
The line core of a graph G is the subgraph of G induced by the union of all
independent sets I of lines, if any, that contain (Xo(G) points.

3.26 Not every graph has a line core.

Let G = C2n+ l • Then /31 (G) = n < n + 1 = (Xo(G). Hence, G can have
no set I of independent lines containing (Xo(G) points (Dulmage and
Mendelsohn 1958).
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Chapter 4

Extremal Problems

1. RAMSEY NUMBERS

Most of the examples in this chapter deal with Ramsey numbers, and we
have collected them together in this special section. The Ramsey number,
r(Fi, Pi), of the graphs Fi and Pi is defined as the smallest integer n such that
for any graph G of order n, either Fi is a subgraph of G or Pi is a subgraph
of G. This can be looked at from the point of view of edge colorings:
r(Fi, Pi) is the smallest integer n such that if we color the edges of K" using
two colors, then it contains either Fi of color I or Fi of color 2.

The first problem of this type which one generally encounters is the
determination of r(K3 , K3 ). This turns out to be 6. That 5 is too small is
shown by the 5-cycle Cs. Neither it nor its complement, also Cs, contains
K3• (See example 4.22.) The remainder of this section will be devoted to
examples of the above type. For various Fi and Pi, graphs G of order one
less than r(Fi, Pi) will be given which do not contain Fi and whose
complements do not contain Fi.

It is of interest to note that the determination of Ramsey numbers even
in the case of complete graphs is still an unsolved problem. There are,
however, some results giving bounds.

THEOREM For any n, m ~ 2,

and strict inequality holds if the terms on the right are both even (Greenwood
and Gleason 1955).

THEOREM r(K",Km ) < (n:~12) (Erdos and Szekeres 1935).

THEOREM If s = min(n, m), then r(K", Km ) ~ 2is (Bondy and Murty
1976).

39
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The table given below is based on papers by Chvatal and Harary (1972a,
b). Example 4.46 is from Greenwood and Gleason (1955). Examples
4.47-4.55 are from Chartrand and Schuster (1972). In cases for which the
drawings would be too complicated, the complements are not shown.

EXAMPLE 1) Fi G G r(1), Fi)

4.1 K2 K2 K I K I 2
4.2 K2 P3 K2 K2 3
4.3 K2 2K2 K3 K3 4
4.4 K2 K3 K2 K2 3
4.5 K2 P4 K3 K3 4
4.6 K2 Klt3 K3 K3 4
4.7 K2 C4 K3 K3 4
4.8 K2 Klt3 + X K3 K3 4
4.9 K2 K4 - X K3 K3 4
4.10 P3 C4 K2 U K I P3 4
4.11 P3 Klt3 + X 2K2 C4 5
4.12 P3 K4 - X 2K2 C4 5
4.13 P3 K4 3K2 7

4.14 2K2 2K2 K3 U K I Klt3 5
4.15 2K2 K3 K3 U K I Klt3 5
4.16 2K2 P4 K3 U KI Klt3 5
4.17 2K2 Klt3 K lt3 K3 U K I 5
4.18 2K2 C4 K3 U KI Klt3 5
4.19 2K2 Klt3 + X K3 U K I Klt3 5
4.20 2K2 K4 - X K3 U K I Klt3 5
4.21 2K2 K4 K3 U 2KI 6

4.22 K3 K3 Cs Cs 6
4.23 K3 ~ K3t3 2K3 7
4.24 K3 K lt3 K3t3 2K3 7
4.25 K3 K lt3 + x As in 4.24 7
4.26 K3 C4 7
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4.27
4.28

As in 4.26

Ramsey Numbers

7
9

4.29

4.30
4.31
4.32
4.33

4.34
4.35

Not shown

P4 P4 K I ,3 K3 U K I

P4 K I ,3 K I ,3 K3 U K I

P4 C4 - X K I ,3 K3 U K I

P4 K I ,3 + X 2K3

As in 4.33
3K3

14

5
5
5
7

7
10
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4.36
4.37
4.38
4.39
4.40
4.41

4.42
4.43

KI ,3

KI ,3

KI ,3

KI ,3

C4

KI ,3 + X

K I ,3 + X

KI ,3 + X

K I ,3

C4

K I ,3 + X

K4

K4

K I ,3 + X

As in 4.22
As in 4.22

2K3 K3,3

As in 4.35
As in 4.35

2K3

As in 4.41
Not shown

6
6
7
10
10
7

7
10

4.44

4.45

42
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4.46a

16 o

Not shown 18

4

5

9 8

4.47 C3 C4 K3,3 2K3 7
4.48 C3 Cn Kn-I,n-I 2Kn- 1 2n - 1
4.49 C4 C4 Cs Cs 6
4.50 C4 Cs 2K3 K3,3 7
4.51 C4 C6 KI,s Ks U KI 7
4.52 C4 Cn KI,n-1 Kn- I U KI n + 1
4.53 Cs Cs K4,4 2K4 9
4.54 Cs Cn(n > 5) Kn-I,n-I 2Kn- 1 2n - 1
4.55 C6 C6 K2•S K2 U Ks 8
4.56 Ps KI.3 C4 2K2 5
4.56 Ps Ps K4 U KI KI.4 6

a To see that neither example 4.46 nor its complement contains a K4 , note that the vertices
have been labeled with elements of the galois field of residue classes modulo 17. Futhermore,
two vertices are adjacent if and only if their labels differ by a quadratic residue of 17, i.e., by
1, 2,4, 8, 9,13,15, or 16. Now suppose there is a K4 either in G or G. Without loss of generality
we can assume that one of its vertices is labeled (0), and we can call the others a, b, c. Hence,
the numbers a, b, c, a - b, a - c, b - c are either all residues or all non-residues. Now we can
form B = ba- I and C = ca- I and consider the numbers 1, B, C, B-1, C - 1, B - C. All of
these must be quadratic residues. But we can see that this is impossible by observing the list
of residues given above (Greenwood and Gleason 1955).

4.56 Harary had conjectured that if Pi and Pi have no isolates, then

r(Fi, Pi) ~ min (r(Fi ,Fi), r(Pi, Pi».
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This is false. The counterexample below is due to Galvin (Hakimi 1962).

but r(KI ,3,KI ,3) = 6 and r(Ps,Ps) = 6.

Proofs:

(1) r(Ps, KI,3) = 5. We will show that if we color the edges of Ks with
two colors (drawn as solid or dashed lines), then we must have
either a solid Ps or a dashed KI ,3 as a subgraph. In order to avoid a
dashed KI ,3, each point must be incident with at most two dashed
lines, and therefore, with at least two solid ones. Under such
circumstances it is easy to see that a solid Ps is unavoidable. On the
other hand, the diagram below shows that r(Ps, KI,3) > 4.

, /:

" /,,/
X

/ "
/ "

" "..,.

(2) r(KI ,3,KI ,3) = 6. Here, in K6 each point must be incident with at
most two dashed lines and with at most two solid lines. This is
clearly impossible. On the other hand, see example 4.36.

(3) r(Ps, Ps) = 6. Any point of a K6 must be incident with at least
three lines of the same color. Once again, a little experimenting will
show that a solid Ps or a dashed Ps is unavoidable. On the other
hand, the diagram below shows that r(Ps, Ps) > 5.

@\ I ,/
\ I

~~-

2. GENERALIZED RAMSEY NUMBERS

The Ramsey number, r(Fi, Pi, ... ,Fk ), of the graphs F;, i = 1, 2, ... , k,
is defined as the smallest integer n such that if the edges of Kn are colored
using k colors, then for some color i an i-colored F; can be found as a
subgraph.

Once again, there are some results giving bounds, which are analogous to
the two color case.
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THEOREM

r(Kn" Kn2 , · · ., Kn.) < r(Kn,-I, Kn2 , ... , Kn.) + r(K"J' Knrl , •.. , Kn.)

+ ... + r(Kn"Kn2' ••• ,Kn.-I) - k + 2

(Bondy and Murty 1976).

THEOREM

(Bondy and Murty 1976).

Note that because r(K2 , K3 , K3 ) = 6, we have from the first of these
theorems

r(K3 ,K3 ,K3 ) < 17.

Greenwood and Gleason (1955) have shown that indeed equality holds in
the above. The graph below of order 16, shows this. It contains no solid 3
cycles, no dashed 3-cycles, and no independent sets of 3 points.

Figure 4.1
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The next two examples, 4.57 and 4.58, present theorems which give exact
values for (generalized) Ramsey numbers for certain classes of F;s (the so
called "stars and stripes"). This is a rather rare sort of result in Ramsey
theory.

4.57 THEOREM If nt, n2, ... , nc are positive integers and nt
= max(nl' ... ,nc ), then

c

r(n1K2,n2K2' ... ,nc K2) = nl + 1 + ~ (n; - 1)
; ..... 1

(Cockayne and Lorimer I975a).

Here is the way to construct an example showing that less than the above
value will not do: Partition the vertices of Knl+~f_l(nl-l) into sets J1', i = 1, 2,
••• , C, so that \Jtl\ = 2nl - 1 and 1J1'1 = n; - 1 for i = 2,3, ... , c. Color

with the first color all edges which are incident with two vertices in JtI. For
each i = 2, 3, ... ,c, color with the ith color all edges both of whose
vertices are in J1' and all edges which are incident with one vertex in J1' and
one in J:j where} < i. It will then be the case that no monochromatic n;K2

exists for any i.

4.58 THEOREM Let r(Kt,ml' Kt,m2' ... ,K1,m,) = r, and ~:==l (m; - 1) = ~.

Then
(1) if ~ is odd, r = ~ + 2;
(2) if ~ is even, and all m; are odd, r = ~ + 2;
(3) if~ is even and some m; is even, r = ~ + 1 (Cockayne and Lorimer

I975b).
The following shows how to construct examples showing that values less

than the above will not do:

(1) Since ~ is odd, KI.+1 is the union of ~ I-factors. Let .Fi, i = 1,2,
... , t, be a partition of the I-factors such that IF; I = m; - 1.
Color the edges of each of these sets with a different color. It will
then be the case that no monochromatic subgraph K1,m1 will occur
for any i.

(2) Let the vertices of KI.+1 be v;, V2, ... , VI.+h and let d(v;, Vj) be the
shortest distance from v; to Vj along the cycle v;, V2, , VI.+1 in that
order. The set of possible distances is D = {I, 2, 3, ,i~}. Let D;,
i = 1,2, ... , t, be a partition of D such that for each i, ID;I
= !(m; - 1), and let E; be the set of edges (Vk'V.s) for which
d(vk' v.s) ED;. Coloring each E; with a different color will then
produce no monochromatic subgraphs K1,ml. This is so because for
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each vertex v and each nED there are precisely two other vertices
u, w such that d(v, u) = d(v, w) = n, i.e., each vertex has degree
m; - 1 in E;.

(3) Since ~ is even, K'1:. is the union of (~ - 1) I-factors. Partition the
set of one factors into Fi, Pi, ... , F; with IF;I = m; - 1 for i = 1,
2, ... , t - I, and IF; I = mt - 2. Color the edges of each of these
sets with a different color.

3. OTHER EXTREMAL PROBLEMS

4.59 THEOREM The smallest number n such that for every n-connected
graph and every set of two pairs of distinct points there exist point disjoint paths
joining each pair ofpoints is not less than 6 (Larman and Mani 1970).

The diagram below shows a 5-connected graph in which no point disjoint
paths exist between the points labeled 1 and 2 and those labeled 3 and 4.

Figure 4.59.1

A compatible mapping of a graph G is one from its set of vertices, V, onto
V such that any two adjacent points in G map into two adjacent points. If
the set of all compatible mappings of a graph consists of just the identity
mapping, the graph is called rigid.
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4.60 THEOREM Let G be rigid. Then for p ~ 8, 1j, < q < Rp, where the
two bounds are given by the following table.

p 8 9 10 I I 12 13 14 15 16 17 k

~ 14 16 14 14 15 15 17 17 19 19 k+2
Rp 17 25 34 43 53 64 76 89 103 118 (~) - k - 1

These bounds are sharp. We illustrate the lower bound of the first case
(Hell and Nesetril 1970).

The next series of examples involves the concepts of internal and external
stability. A set of vertices, S, of a graph G is said to be internally stable if
no two vertices of S are adjacent, and every vertex of G is adjacent with
some vertex in S. In other words, S is an independent set of vertices which
covers the vertices of G. The cardinality of a maximum internally stable set
is called the internal stability (number, coefficient) of G. This is also called
the point independence number, denoted f3o. We will usually use the latter
term.

The external stability (number, coefficient) of G is the minimum number
of points needed to cover the points of G. This is denoted am.

4.61 THEOREM (Turan) The minimum number of edges in a graph of order
p with point independence number f30 ~ 1 is

where p = tf30 + r, 0 < r < f30 (Vijayaditya 1968a).

To obtain a graph with the above properties, follow the procedure given
in example 4.62, eliminating the last step of drawing lines from x to Xi,

i = 2, 3, ... , f3o.
It should be noted at this point that there is also a theorem of Turan

(1941) regarding a maximum number of lines. It is probably one of the first
results in extremal graph theory, and reads as follows.
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THEOREM The maximum number oj'lines among all graphs of order p with
no 3-cycles is [!p2].

For even and odd p, respectively, the graphs K!p,!p and Kl!PJ,(!p> have no 3
cycles and [!p2] lines (Harary 1969).

4.62 THEOREM The minimum number of edges in a connected graph of
order p and internal stability Po is

rC ~ I) + (Po - r)(~) + Po - I,
where p = tpo + r, 0 < r < Po (Vijayaditya 1968b).

We explain how to construct a graph with the above properties. Take Po
disjoint complete graphs C1, C2 , ••• , CIJo such that Ci is of order t + 1 for
i = 1, 2, ... , r, and of order t for i = r + 1, ... , Po. Since Po < p, C1 has
order at least 2. Choose a point x of C1 and join it to a point Xi of C1 for
i = 2, 3, ... , Po. A little thinking will show that the graph so constructed
has the required number of edges and internal stability.

Note that the minimum number of edges is p - 1 when Po > !p.
Note also that the extremal graph is not unique. This can be seen from

the figure below for the case p = 5, Po = 2. The graph on the left is the one
given by the construction described above.

I o
4.63 THEOREM The maximum number of edges in a connected graph of
order p and external stability 0:00 > 3 is (P-~+l) (Vijayaditya 1968a).

An extremal graph can be constructed as follows. Note first that
connectedness implies p > 20:00. Now take a complete graph of order
p - 0:00 and join each of its vertices to one of 0:00 new ones taking care that
the graph is connected. We illustrate below for the case p = 7, aoo = 3.

<r><I :
4.64 THEOREM The minimum number of edges in a graph of order p and
external stability 0:00 is p - 0:00' Any such extremal graph consists of 0:00 disjoint
stars (including K2 and K1 as possible stars).
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We leave it to the reader to draw at least two of these for the same
parameters as in example 4.63 (Vijayaditya 1967).

4.65 THEOREM The maximum number of edges in a graph of order p with
external stability at least 0:00 > 1 is

i(p - o:oo)(p - 0:00 + 2)

i(p - o:oo)(p - 0:00 + 2) + !

if p - 0:00 is even,

if p-O:ooisodd.

Extremal graphs may be constructed as follows:
Case 1 p - 0:00 is even. Take p points Xl, X2, • • • , X aoo ' YI, Y2, • • • 'YP-aoo and
join Xl and X2 to each of the y;'s. Further, join Yi to Yj iff i + j =1= p - 0:00 + 1.
Case 2 p - 0:00 is odd. Take p vertices as before. If 0:00 =1= p - 1, join Xl and
X2 to eachYi' and join Yi toyjiffli - jl =1= i(p - 0:00 - 1). If 0:00 = P - 1, do
the same except that X2 is not to be joined to the y;'s (Vijayaditya 1967).

The next series of examples deals with graphs of maximal even girth.
Some definitions are in order.

The girth of a graph is the length of a shortest cycle, if any.
A graph with the following properties is called a (D, t, d,p)-graph, and is

denoted G(D, t, d,p):

(1) The graph is of diameter D.

(2) Its girth is 2D.

(3) If a pair of points are at a distance s from each other, then there
exist t distinct paths of length s between them.

(4) The graph is of order p.

(5) Under the above conditions it can be shown that the graph is
regular. We denote its degree by d.

The examples which follow are based on a paper of Gewirtz (1969).

4.66 G(2, 2, 2, 4) exists. It is C4• This graph belongs to a special class in which
t = d. It is the only graph in this class for which D = t = 2.

This class of graphs was investigated by Singleton (1966).

4.67 G(2, 2, 5, 16) exists and is unique. It is pictured below with some edges
missing. The adjacencies not shown are as follows: Every point labeled with a
single digit n is adjacent to a point labeled with a two digit number rs if and
only if n = r or n = s.
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o

5

12 45
~--------....

3 4 ..------lIIr--------+--+--~--_. 23

15

Figure 4.67.1

4.68 G(2, 2, 10,56) exists and is unique. It is given by the figure below
(4.68.1) with missing edges analogous to those in figure 4.67.1 plus other
adjacencies among points labeled with two digit numbers so that xy is adjacent
with one of the following sets ofpoints: {ij,jk, kl, 1m, mn, nr, rs, is}, {ij,jk, ik, 1m,
mn, nr, rs, Is}, {ij,jk, kl, ii, mn, nr, rs, ms}. For example, taking xy = 12 and
i = 3, j = 4, k = 5, I = 6, m = 7, n = 8, r = 9, s = T, it turns out that
12 is adjacent with the set {34, 45, 56, 36, 78, 89, 9T, 7T}. The remaining edges
can now be obtained and are unique. We present the entire graph by means of
the adjacency matrix given in figure 4.68.2. The rows and columns of this are
arranged in lexicographical order.
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o

T

12 13 IT 23
Figure 4.68.1

2T 9T

01 11111111 1000000000000000000000000000000000000000000000
100000000001 11111111000000000000000000000000000000000000
10000000000100000000111 111110000000000000000000000000000
10000000000010000000100000001 I 11111000000000000000000000
100000000000010000000100000011 11110000000000000000000000
1000000000000010000000100000010000010000011 1110000000000
10000000000000010000000100000010000010000100001111000000
10000000000000001000000010000001000001000010001000111000
10000000000000000100000001000000100000100001000100100110
10000000000000000010000000100000010000010000100010010101
10000000000000000001000000010000001000001000010001001011
01 100000000000000000000000001010000100000100000000101101
01010000000000000000000011000000000010001011000010000001
01001000000000000000000010010100100000000000101001000100
01000100000000000000000000110000011011000000000100100000
010000100000000000000000011001010000001 10000010000001000
01000001000000000000001100001000001000100000100010000010
0100000010000000000001 1000000010010000001000011000010000
01000000010000000000110000000001000001000101000001000010
01000000001000000000100100000000100100010010000100010000
00110000000000000011000000000000000010100000111000100000
00101000000000000110000000000100001000000010000110001000
00100100000000001100000000000001 100010010000000001000001
00100010000000001001000000000100010001001001000000000100
00100001000011000000000000000000010000010100010100000010
00100000100010010000000000000000001 101000000100001010000
00100000010000110000000000001000100000001010001000000010
00100000001001 100000000000000011000000100001000010010000
00011000000100001000000000100000000000000001010101010000
00010100000001010000010100000000000000000000000000110011
00010010000100000100000000010000000001010010100000000010
00010001000000010010001000010000000100001000000100000100
00010000100001000001001000100000000001000100000010001000
00010000010000100100000110000000000100100000000001001000
00010000001000101000010001000000000000010100001000000100
00001100000100000001000001000001010000000000001010000010
00001010000010100000101000000000000000000000000000011110
00001001000000100010000101000010100000000000010000000001
00001000100000011000100000010000010000000110000000000001
00001000010000010001001010000010001000000001000000100000
00001000001010000100000100100001000000000100100000100000
00000110000100000010000010000000101000101000000000010000
00000101000010000001010000100010000000100000000001000100
00000100100010000010000100011000000000010000001000001000
00000100010001001000100001000010000000001000000100001000
00000100001000010100100010001000000001000000000010000100
00000011000001000100100000100000001100000001000000000001
00000010100000100001010010001001000000000000100000000001
00000010010010001000010000010000100100000000010000100000
00000010001001000010001001001000010000000010000000100000
00000001100100100000100000000100000000011000000011000000
00000001010000000101000001011 100000010000100000000000000
00000001001 100010000010000000000110010000001100000000000
00000000110101000000000100000001001010000010010000000000
000000001010000010100000101001 10000110000000000000000000
00000000011 110000000001000000100000001 100000001100000000

Figure 4.68.2
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4.69 G(3, 2,4,35) exists and is unique. It is shown below with adjacencies
among points labeled with six digits shown separately.

111211 112311 113411 121221 122321 123421 131231 132331 133431 212312 213412 222322223422 232332 233432 313413 323423 333433

333433

111211 0------<) 323423

131231

1212210------<) 313413

233432

112311 p-----Q 223422

132331

122321 ~_--<> 213412

Figure 4.69.1

232332

113411 o----~ 222322

133431

123421 C>---~ 212312

For further results on (D, t, d,p) graphs we refer the reader to Gerwitz
(1969).

The next series of examples consists of graphs which are called cages. A
(d, g)-cage is a regular graph of degree d and girth g with the least number
of vertices. It is known that a (d, g)-cage exists for any pair of positive
integers d, g ~ 3. Furthermore, the (2, g)-cage is eg• The (d, 3)-cage is Kd+ 1•

The (d,4)-cage is Kd,d (Bondy and Murty 1976). For d ~ 3 it can be shown
that

and

d(d-l)'-2
p ~ d- 2 if g = 2r + 1

if g = 2r.
2(d - 1)' - 2

p ~ d- 2

It is further known that if g = 5, then the above becomes p ~ d 2 + 1
and equality holds only if d = 2, 3, 7, or 57 (Behzad and Chartrand 1971).
We have in addition the following.
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THEOREM For g ~ 3,

p < ~ =~ [d(d - !)B-2 + d - 4]

(Tutte 1961).

It can be shown that for d - 1 a prime power, (d,g)-cages can be
obtained from finite projective geometries (Bondy and Murty 1976).

Pictures of some of the smaller cages follow.

4.70 (3, 5)-cage-the Petersen graph:

4.71 (3, 6)-cage-the Heawood graph:
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4.72 (3, 7)-cage-the McGee graph:

4.73 (3, 8)-cage-the Tutte-Coxeter graph (Levi graph):
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4.74 (4, 5)-cage-the Robertson graph:

4.75 (4, 6)-cage:
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4.76 (5, 5)-cage-the Robertson- Wegner graph:

4.77 The (7, 5)-cage, Hoffman-Singleton graph, pictured below has some
missing edges; namely, point i of ~ is adjacent to point i + jk(mod 5) of Qk.
The adjacencies ofpoint 2 of P2 are shown as an example.
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The eight drawings in examples 4.70--4.77 were reproduced from Bondy
and Murty (1976) with the kind permission of the authors and publishers.
The first four are unique (Tutte 1961).
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Chapter 5

Graph-Valued Functions

1. INTRODUCTION

There are many ways in which one can obtain a graph from a given
graph or from several given graphs. Probably the simplest example of this
idea is the formation of the complement G of a graph G. Chartrand
introduced the term graph-valued function for any kind of rule or procedure
which yields a unique graph (up to isomorphism always) from a given graph
or from more than one given graph. It is a mapping from a set of graphs
into a set of graphs or from the Cartesian product of several sets of graphs
into a set of graphs. Further examples are line graphs, total graphs, entire
graphs, clique graphs, block-cutpoint graphs, powers of graphs, Cartesian
products of graphs, conjunctions of graphs, sums of graphs, unions of
graphs. The subsequent sections will deal with many of these and some
others. Definitions will be given in the appropriate sections. We consider
graph-valued functions of a single graph first, and then devote the last
section to sums and products of two graphs.

2. LINE GRAPHS

Line graphs, also sometimes called interchange graphs or derived graphs,
are probably the best known of the graph-valued functions. The line graph
of a graph G, denoted L(G), is defined as follows. The set of vertices of
L(G) is the set of lines of G, and two points of L(G) are adjacent if they
have a point of G in common. Of course, one can take the line graph of the
line graph of G, L(L(G» = L2 ( G), and continue with L3 ( G) etc. These are
the iterated line graphs of G.
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5.1 A graph and its line graph:

6 L (6)

5

2

4

or, more briefly, L(K4 - x) = »-4.
The first set of examples deals with some general basic results about line

graphs, namely, which graphs are line graphs of some graph, whether
isomorphic L(G)'s yield isomorphic G's, etc. After these we look at some
examples involving planarity, and some relations between line graphs and
complements. These are followed by examples involving connectedness,
cliques, and cycles. We conclude with a few miscellaneous results.

5.2 THEOREM A graph G is a line graph if and only if none of the nine
graphs below is an induced subgraph of G (Beineke 1968).
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Line Graphs

Figure 5.2.1

5.3 THEOREM Let G1 and G2 be non-trivial connected graphs with
isomorphic line graphs. Then they are isomorphic unless they are K1•3 and K3

(Whitney 1932a).

5.4 THEOREM For p =1= 8, G = L(Kp ) if and only if (1) G is regular of
degree 2(p - 2), (2) if two points are adjacent, there are exactly p - 2 other
points each of which is adjacent with each of the original two, (3) if two points
are not adjacent, there are exactly 4 points each of which is adjacent with each
of the original two.

There are exactly three counterexamples for the case p = 8. These are
given by means of their adjacency matrices (Hoffman 1960).

001 1 1 1 0 0 0 0 0 0 1 0 1 010 1 0 101 0 1 0 1 0
00111 1 0 0 0 0 0 0 0 1 0 101 0 1 0 1 0 101 0 1
110 1 1 1 100 000 1 1 0 000 1 1 1 1 0 000 0 0
1 1 101 1 0 1 000 000 1 100 1 100 1 100 0 0
1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 000 0 1 100
111 1 1 000 0 1 000 0 000 0 0 0 1 1 1 1 1 100
o0 1 000 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 000 0 0
0001001011110011001100110000
0000101101110000111100001100
00000 1 1 110 1 1 000 000 0 0 1 1 1 1 1 100
000 0 0 0 1 1 1 1 000 1 010 1 0 1 101 0 101 0
000 0 0 0 1 1 1 100 1 0 1 0 1 0 100 1 0 101 0 1
1 0 1 000 1 000 0 101 1 0 1 0 101 1 0 000 1 1
o 1 1 000 1 000 1 0 1 0 0 1 0 1 011 1 000 0 1 1
100 1 000 100 0 1 100 1 1 0 1 000 1 100 1 1
o 1 0 1 000 100 1 001 100 1 0 100 1 100 1 1
100 0 1 000 1 001 1 0 1 001 1 000 0 0 1 1 1 1
o 100 1 000 1 0 1 001 0 1 100 1 000 0 1 1 1 1
101 1 101 1 100 1 1 0 1 0 100 1 000 000 0 0
011 1 101 1 1 0 1 0 0 1 0 1 0 1 1 0 000 0 0 0 0 0
10100 1 100 1 101 1 0 000 0 0 0 1 1 0 1 0 1 0
o 1 100 1 100 1 0 1 1 1 000 0 0 0 100 1 010 1
100 1 0 1 0 1 0 1 1 000 1 100 0 0 1 001 1 0 1 0
01010 I 0 101 0 1 001 100 000 1 100 1 0 1
10001 100 1 1 1 000 0 0 1 100 101 001 1 0
o100 1 100 1 1 0 1 0 0 001 1 000 101 100 1
100 0 0 0 0 0 0 0 101 111 1 100 101 0 100 1
o 1 0 0 0 0 0 0 0 0 0 1 1 1 111 1 000 1 0 101 1 0
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-00---0----0000000-00--00-00
0--0---0--0-0000000--00--000
0-0-0-0-0--00-0-0-0000--000
-0-00--00-0--0-0-00000--00-0
0-000-000-0---0-000-00-0---0
-0000-000--0---000-0000---0-
-00--00--00--00--0--0000000-
0--0-0-0-0-00--00---000000-0
0-00-000-00---0-00-0--0-00-0
-000-000-0-0---0000----0000
0---00--00-00----000-0000-00
-0--00--000--0--0-000-00-000
0-0-000-000---00--0-0-0-0-00
-0-000-000-0--00---0-0-0-000
0-00000000-0-0--0----0--0-00
-0000000000-0----0--0----000
000000----00-00--00-0-0--0-0
000000----000--00--0-0-00-0
00000----0--0000000000-----
0000-0--0---000000----0000-
000-00-0----000---000-000-0
00-0000-----00-0--00-000-0-0
-----0000-000000000000------
----0-00-000000000----0000--
---0--0-0000000---000-000-0-
--0----0000000-0--00-000-0-0
00----0000000-0-0-0--00-0--0
00----000000-0-0-0-00--0-00-

0-0-0-0-0--00000--00--000--0
0-0--00--0-00000----0000-00
0--00--00--000--0000--00-00
0--0-0-0-0-000--00--00000--0
-000--00--0---0000----000000
-0--00--000-------0000000000
0-000-000-0--00-0-0--00-0-0
-0000-000--0-0-0-0-00-0-0-0
0-00-000-00--00-0--00-0--0-0
-000-000-0-0-0-0-00--00--0-0
0-0-000-000--00--00-0--000-
-00-000-00-0-0-00--0-0-000-
0--000-0000--0-00-0-0--0--00
-0-000-000-0-00--0-0-0-0--00
-0--------0-0000000000--0000
-0000000000-00----------0000
000000----00--0-0-0-0---0000
000000----0000-0-0-0-000---
00000----0--0-000000--0-0-0
0000-0--0---0-0000--000--0-0
000-00-0----0-00--0000-000-
00-0000-----0---000000-0--00
-----0000-000-000000--0-0-0-
----0-00-0000-0000--000--0-0
---0--0-00000-00--0000-000--
--0----000000---000000-0--00
00----000000000-0-0-0-00---
00----000000---0-0-0-0--0000
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5.6 THEOREM A graph is isomorphic to its line graph if and only if it is
regular of degree two (Schwartz 1969; Ghirlanda 1963).

This is not true if loops are allowed. Note that the line graph of a loop is
again a loop:

6 =L (G)

5.7 THEOREM The line graph of a graph G is planar if and only if G is
planar, no point has degree exceeding 4, and any quadravalent vertex is a
cutpoint (Behzad and Chartrand 1971).

The example below shows that the last condition is essential.

6

2

L (6)

5

(The subgraph obtained by removing the lines 3 7 and 6 5 is homeomorphic
to Ks; retain points 1,2,4,6,7, but repress 3 and 5.)

The above theorem is not the only characterization of graphs with planar
line graphs. The following result gives one in terms of forbidden subgraphs.

5.8 THEOREM A graph has a planar line graph if and only if it has no
subgraph homeomorphic to K3,3, Kl,s, K1 + P4, or K2 + 1<3 (Greenwell and
Hemminger 1972).

5.9 THEOREM Both G and G are line graphs if and only if G is complete,
or null, or one of the following: P3 ,]i3, K2 U 2K1 , 2K2 , P3 U K1 , P4 , K4
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- x, C4 , K t ,3 + x, P3 U 2Kt , 2K2 U K t , C4 U K t , Ps, Cs, C6 , 3K2 , Ps U
K t , Cl, C6 U Kt , P4 U Kt , or any of the graphs below; (Beineke 1971).

Figure 5.9.1

5.10 THEOREM The only graphs with complements isomorphic to their line
graphs are Cs and the one pictured below (Aigner 1969).



Line Graphs

The line graph (and complement) of this is the graph drawn in example
5.38.

5.11 THEOREM For n ~ 2, if G is n-connected, then so is L(G) (Char
trand and Stewart 1969).

The integer n is taken greater than 1 in order to avoid the case G = K2•

The converse is false. Take G to be K4 - x. This has connectivity 2. L(G)
is »-5, which has connectivity 3. See also example 2.28.

In fact K(Kt,n) = 1 but K(L(Kt,n)) = n - 1. Hence the difference in
connectivity can be made arbitrarily large in this case. It is not known
whether for any two integers n, m, 1 < n < m, there exists a graph G such
that K(G) = nand K(L(G)) = m. The problem does not appear to be
trivial.

Equality of connectivity for G and L(G) is achieved by any cycle. These
are not the only graphs which do this, however. See 5.12.

5.12 THEOREM If G is m-line-connected, then L(G) is (2m - 2 )-line
connected (Zamfirescu 1970).

The converse is false. Take G to be Kt,3. This has A = 1. L(Kt,3) = K3

which has A = 2, so that m = 2. See also example 2.29.
Similarly to example 5.11, A(Kt,n) = 1 while A(L(Kt,n)) = n - 1. The

corresponding problem to that stated in example 5.11 also does not seem
easy.

Any cycle gives equality of A'S for G and L(G). There are also other
graphs which do this. For example, the one shown below has both K and A
the same for itself and its line graph.

Ie = 2
X =2

L(G)

Ie = 2
X= 2

The next example involves the clique graph of a graph as well as the line
graph. The clique graph of a graph G, K(G), is formed by taking the set of
cliques of G as the vertices and making two of them adjacent if they have
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at least one point in common. For example,

G K(G)

5.13 THEOREM G is the line graph of a tree if and only if no two cliques of
G have more than one point in common and K(G) is a tree (Hedetniemi and
Slater 1972).

Both conditions in the "if" part are required. Take G = K4 - x. Then
K(G) = K2, but G is the line graph of KI ,3 + x.

Take G = Cn. Then K(G) = L(G) = Cn.
The next example is similar.

5.14 THEOREM G = L(H), where H has no 3-cycles, if and only if no two
cliques of G have more than one point in common and K(G) has no 3-cycles.

Both conditions in the "if" part are required. Take G = KI ,3, which is not
the line graph of anything, and whose clique graph is K3•

Take G to be

This also is not the line graph of anything. (See G3 of example 5.2.) Its
clique graph is C4•

The next two examples deal with the concept of cycle multiplicity. The
cycle multiplicity of a graph G, CM(G), is defined as the maximum number
of line disjoint cycles in G.

5.15 THEOREM For any graph G,

CM(L(G» ~ CM(Ge ) + ~ [d~l) [d(Vi~ - 1] J.

66



Line Graphs

where Ge is the subgraph induced by points of even degree, and [ ] is the greatest
integer function (Simoes-Pereira 1972a).

The following example shows that strict inequality is possible.

2

G L(G) ~---1--~3

5 4

The bound given in the theorem is 2, while CM(L(G» = 3. (The cycles
126, 234, and 456 are line-disjoint.)

5.16 THEOREM If G is a forest, then

CM(L(G» = ~ [d~i) [d(Vi~ - 1] ]
(Simoes-Pereira 1972a).

The converse is false. Both sides of the above equation are equal to 1 for
G shown below.

G L (6)

5.17 L(G) hamiltonian does not imply G hamiltonian.

Take G = Kt,n'

5.18 L(G) hamiltonian does not imply G eulerian.

Same example as in 5.17.
Note that it is true that if G is eulerian, then L(G) is both eulerian and

hamiltonian, and if G is hamiltonian, then so is L(G) (Harary 1969). For
further material along these lines, see chapter 9.
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The final example in this section involves the notion of J-detachment, or
detachment modulo J, where J is a subgraph. There will be several
examples which make use of this concept in the next section on total
graphs. We need the following definitions. Let H be a subgraph of G. Then
a vertex of H is called a vertex of attachment of H in G if it is incident with
a line of G not in H. If J is another subgraph of G, then H is said to be J
detached (or detached modulo J) in G if every vertex of attachment of H is
a vertex of J. As an illustration consider

G

H

2

4

3

2

6

Figure 5.19.1

cI

K

5

4

3

5

~
3

6

Here, 2 and 5 are vertices of attachment of H in G, and H is not J-detached.
On the other hand, K is J-detached (Tutte 1967).

A natural question to consider is whether L(H) is L(J )-detached in L(G)
if H is J-detached in G. The following example shows that this is not true
in general. Conditions under which it is true are not known to us.
Conditions for which it is true for total graphs are given in the next section
(example 5.23).

5.19 H J-detached in G does not imply that L(H) is L(J )-detached in L(G).

Take G = K t,3 + x, H = K3 , J = K2• Then L(G) = K4 - x, L(H)
= K3, and L(J) = Kt (Simoes-Pereira 1972b).
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3. TOTAL GRAPHS

A natural extension of the notion of line graph is the graph valued
function known as a total graph. To define this we let V(G) and E(G) be
the sets of vertices and edges of a graph G respectively. We then call
V(G) U E(G) the set of elements of G. Two elements are said to be
associated if they are either adjacent or incident. (This includes the
adjacency of two lines i.e., two lines with a common point.) The set of
vertices of the total graph of G is the set of elements of G, and two vertices
are adjacent in the total graph of G if they are associated in G. We denote
the total graph of G by T(G).

5.20 A graph and its total graph

2

6

9 Ok---+---+--+--~!LJ 5

7

T(G)

2

1 51\
\ 8 6

~ / J,
V 7 3
4

G

4 3

Figure 5.20.1

5.21 THEOREM For any graph G,

CM(T(G» ~ q + CM(Ge ) + ~ [d~;} [d(Vi~- 1]1
where the notation is the same as in example 5.15, and q is the number of lines
as usual (Simoes-Pereira 1972a).

The following example shows that strict inequality is possible.
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G T{G)

Figure 5.21.1

7

Here, the bound given by the theorem is 8, while CM(T(G» = 9. (The
cycles 125, 1910, 10117, 765, 6811, 289, 345, 256, 5810 are line
disjoint.)

5.22 If a subgraph H of G is J-detached in G, then it does not follow that
T(H) is T(J )-detached in T(G ).

Take G = Kt,4 + X, H = K3 , J = P3. Then the respective total graphs
are given below.

G T(G)

TCH>O
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We do have, however, the following theorem: T(H) is T(J)-detached in
T(G) if and only if H is J -detached in G and every line of H which is
incident to a vertex of attachment of H is a line of J (Simoes-Pereira 1972b).

For the next two examples we need the notion of J-connected (connected
modulo J). Let Hand J be subgraphs of G. Then the subgraph H n J is
the one whose vertices are vertices of both Hand J, and whose lines are
lines of both Hand J. Now H is said to be J-connected (or connected
modulo J) in G if H has no H n J-detached subgraph in H other than H
itself and the subgraphs of H n J. We illustrate with the following.

G

4

o''-----<.LJ---o
1 2 3

cJ 0

2

H

4

L-o
2 3

H is not J-connected in G, because the subgraph

o 0

2 3

is H n J = J-detached in H. On the other hand, if H were the subgraph

o 0

2 3

then H would be J-connected in G.

5.23 H J-connected in G does not imply T(H) T(J )-connected in T(G).

G 0----0
T(G) ~

H 0----0
T(H) ~

J 0 0 T(cJ) 0 0
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Here H has no subgraphs other than itself and the subgraphs of
H n J = J. Hence, it is vacuously J-connected. On the other hand, the
subgraph of T(H) induced by the two vertices of J, which is neither T(H)
nor a subgraph of T(H) n T(J) = T(J), is T(J )-detached (Simoes
Pereira 1972b).

The implication is not valid in the other direction either, i.e.,

5.24 T(H) T(J )-connected in T(G) does not imply H J-connected in G.

G T{G')~

T(H)~

c/ v
o r(c/) o

We leave it to the reader to verify this example (Simoes-Pereira 1972b).
For the next two examples, recall that a graph is n-connected (n-line

connected) if its connectivity Ie (line connectivity A) is at least n.

5.25 THEOREM For n ~ 2, G n-connected implies that T(G) is 2n
connected (Simoes-Pereira 1972b; Hamada, Nonaka, and Yoshimura 1972).

The following example shows that indeed the connectivity can be exactly
doubled. Take G = K3• This has Ie = 2. T(K3 ) = Cl, which has Ie = 4.
(Recall that G n is obtained by making adjacent every pair of points in G
which are a distance n or less from each other.) See also example 2.32.

5.26 THEOREM For m ~ 1, G m-line-connected implies that T(G) is 2m
line-connected (Simoes-Pereira 1972b; Hamada et al. 1972).

The example in 5.25 shows that the line connectivity can be exactly
doubled. A goes from 2 to 4. See also example 2.33.

5.27 Not all graphs are total graphs.

In view of the theorem of example 5.25, no connected graph with a
cutpoint can be a total graph. Note also that Cp , p ~ 4, can not be a total
graph. Behzad (1970) has obtained a characterization of total graphs.

5.28 THEOREM For any graph G,

at(G) < f3o(T(G» < [~at(G)],

where at (G) and f3o( G) are the line covering number and point independence
number of G, respectively (Gupta 1969).
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The bounds are attainable. Consider, for the lower bound, G = K2• Then
T(G) = K3, and al(G) = 1 = /3o(T(G». For the upper bound take
G = P4 which has al = 2. Then T(G) is

which has /30 = 3.

4. ENTIRE GRAPHS

The entire graph of G, e(G), is an extension of the total graph. In this
case, we define the elements of G to be the points, the lines, and the faces.
To define a face we assume first of all that the graph is plane, i.e., embedded
in the plane. This means that the edges intersect only at their endpoints. A
face can then be of one of two types. It is interior if it is a set of points in
the plane enclosed by a cycle and not on any line. It is exterior if it consists
of all points in the plane which are neither in an interior face nor on a line.
(There is just one exterior face.) A point is on the boundary of a face if every
neighborhood of it contains points in the face and also points not in the
face.

Now, two elements are said to be associated if they are either incident or
adjacent. A point (line) is incident with a face if it belongs to (is a subset of)
its boundary. Two faces are adjacent if their boundaries contain at least one
line in common. The vertices of e(G), then, are the elements of G, and two
vertices are adjacent in e(G) if they are associated in G.

5.29 Two graphs and their entire graphs

2
6 e(6)

1 2

~57r
128 9 6

~7~
4 3

4 3
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H
6

0-4--0-5-0
1 2 3

e(H)
6

2 3

Figure 5.29.1

AoHoG

5.30 The entire graphs of two isomorphic graphs need not be isomorphic.

Consider

Then e(G) and e(H) are as shown below.

e(G')

e(H)

Figure 5.30.1
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It is clear that these are not isomorphic. For one thing ~(e(G» = 11,
while ~(e(H» = 10. It also happens to be the case that x(e(G» = 6 while
x(e(H» = 5 (Mitchem 1972).

5.31 THEOREM If G is connected, is plane, and has a bridge, then e(G) is
not eulerian (Mitchem 1972).

The converse is false. Take G = K4 - x. Then e(G) is the graph shown
below. This is not eulerian, since the vertex labeled v, for example, has
degree 7.

Figure 5.31.1

The next three examples all concern the following theorem. They show
that all three of the conditions given are required.

THEOREM If G is connected and plane, then e(G) is eulerian if and only if
(1) G is eulerian,
(2) the number of faces incident with each point of G is even, and
(3) each face of G has an even number of elements associated with it

(Mitchem 1972).

5.32 The graph below violates only condition (1). Its entire graph is not
eulerian, since a point in it representing either bridge would have degree 7.
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5.33 The graph below violates only condition (2). Its entire graph is not
eulerian, since, for example, the point in it representing v would have degree 11.

v

5.34 The graph below violates only condition (3). Its entire graph is not
eulerian, since the degree of the point representing the exterior face is 19.

5.35 THEOREM If e(G) is hamiltonian, then G is connected and no face has
a boundary which contains 5 bridges with a common point (Mitch~in 1972).

The converse is false.

G
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e{G)

Figure 5.35.1

The point drawn as an isolate is understood to be adjacent with all the
other points. We have omitted these lines. This graph is not hamiltonian.

5.36 THEOREM If G is hamiltonian, then so is e(G) (Mitchem 1972).

The converse is obviously false. Take e(K2 ) = K4•

5.37 THEOREM If G is connected and bridgeless, and each face is adjacent
to a vertex of degree 2 or 3, then e(G) is hamiltonian (Mitchem 1972).

The example in figure 5.35.1 shows that the condition that G is bridgeless
cannot be removed. The one in example 5.36 shows that the converse is
false. The following example shows that the condition that G is connected
cannot be removed. Take G = 2K3• Then e(G) is the graph shown below,
which is clearly not hamiltonian.

We conjecture that the remaining condition can be removed.
Before beginning the section on graph valued functions of more than one
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graph (sums and products) we give the following result concerning clique
graphs. The clique graph was defined just before example 5.13.

5.38 THEOREM G is a clique graph if and only if G has a collection, K, of
complete subgraphs such that (1) every line of G is in at least one element of K,
and (2) each pair of elements of any subset of K has a non-empty intersection
only if the entire subset has a non-empty intersection (Roberts and Spencer
1971).

That not all graphs are clique graphs is shown by the example drawn
below. Here, the only non-trivial complete subgraphs are K2's or K3's, and
the conditions of the theorem are not satisfied. If one used just K2's, then K
would have to be the set of all the lines to satisfy (1), and it is easy to see
that (2) would not hold. Take any K3, for example, as a subset of K. If one
used just K3's, then one would need all four of them, and this set violates
(2). If one used a mixture of K2's and K3's, then one could choose as subset
of K a K 3 with vertices 1, 2, 3, say, and two K2's, one with vertices 2, 4 and
the other with vertices 3, 4. Such a subset must exist. Condition (2) is
violated.

5. SUMS AND PRODUCTS OF GRAPHS

The first set of examples deals with the sum Uoin) of two graphs G and
H. This is denoted G + H and is the graph consisting of G U H and all
lines between every vertex of G and every vertex of H.

5.39 Two graphs and their sum:

o

G+H
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5.40 It is not true that the complement of a sum is the sum of the
complements.

Consider

K2 + P3 = K2 U /(3,

/(2 + ]i3 = 1<2 + (K2 U K1).

It can be seen, as a matter of fact, that it is never true that

G1 + G2 = G1 + G2 •

In order for this to hold, the number of lines must be the same on both sides
i.e., if Pi, qi are the numbers of points and lines respectively of Gi, i = 1, 2,
then

(PI ; P2 ) - (qt + q2 + P.P2) = (~) - q. + (~ ) - q2 + PtP2.

(See Table 5.1.) But this reduces to PIP2 = 0, which is impossible.

5.41 G and H regular does not imply that G + H is regular.

Consider

In fact, let do, Po, dH, PH be the degrees and orders of G and H
respectively. Then G + H is regular if and only if do + PH = dH + Po.

The proposition is true, however, for the cartesian product and the
conjunction of two graphs-concepts which will be defined subsequently.
See section 6, Table 5.1.

5.42 G and H bipartite does not imply G + H bipartite.

Consider
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In fact the only bipartite sum is Kn + Km = Kn,m'

We introduce next some examples involving the cartesian product of two
graphs G and H, denoted G X H. To define this we introduce the notation
v -." w to mean that v and ware adjacent points. Then V(G X H)
= V(G) X V(H) and (VJ,UI) -." (V2,U2) if either VI = V2 and UI -." U2 or
UI = U2 and VI -." V2.

5.43 Two graphs and their cartesian product:

G
1 2
0-----<>

2

HV
o

11 12 13

6xH 0 I
21 22 23

5.44 It is not true that the complement of the cartesian product is the
cartesian product of the complement.

To have GI X G2 = GI X G2 we must have the same number of lines on
both sides. Thus, using the same notation as in example 5.40,

(See Table 5.1.) But this implies that either PI or P2 is 1. Hence GI or G2 is
KI •

We give a few definitions before continuing with the next examples. The
line chromatic number of a graph G, XI (G), is the minimum number of
colors required to color the lines of G in such a way that no two lines with
a common point (adjacent lines) are of the same color. The total chromatic
number of G, X2 (G), is the minimum number of colors required to color the
lines and the points of G in such a way that adjacent lines, adjacent points,
and incident lines and points are of different colors. The maximum degree
of G is denoted ~(G). Note that ~(G X H) = ~(G) + ~(H).

5.45 THEOREM If XI (G) = ~(G) and XI (H) = ~(H), then

XI(G X H) = ~(G) + ~(H) = ~(G X H).

(Behzad and Mahmoodian 1969).
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Now it is well known that for any graph G, Xl (G) is either ~(G) or
~(G) + 1 (Vizing 1964). It is interesting to note that it is not true that
XI(G) = ~(G) + 1, XI(H) = ~(H) + 1 implies XI(G X H) = ~(G X H)
+ 1. Take G = H = Ks - x. XI(Ks - x) = 5 = ~(Ks - x) + 1. But Xl «Ks
- x) X (Ks - x» = 8 = ~«Ks - x) X (Ks - x». See figure below.

Figure 5.45.1

5.46 THEOREM If Xl (G) < X2 (H), then

~(G) + ~(H) + 1 < X2(G X H) < X2(H) + XI(G).

(Behzad and Mahmoodian 1969).

The bounds are attainable. For the upper, take G = H = K2• Then
Xl = 1, X2 = 3 and G X H = C4 with X2 = 4 as shown below.
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1 4,3,
4 2

1-1----1
2 :3

In fact, any two stars will do.
For the lower bound take G = P3, H = KI ,3. Then the ~'s are 2 and 3

respectively, and X2(G X H) = 6.

Figure 5.46.1

Any two stars KI,n, KI,m with n, m > 2 will do.
That both inequalities can be strict is shown by taking G = H = C4•

Then ~ + ~ + 1 = 5, X2 = 5, Xl = 2, and X2 (G X H) = 6. See figure
below.

4R3 5,
2

6 3
2

4, 3

6 S2 5
4

5 3 :3 1
4 3 4

5
2 4 5

3
2

1

:3 4 2 :3 1 55
6 2

Figure 5.46.2
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5.47 THEOREM If some point of G is adjacent with 3 points of degree one,
and H has a point of degree 1, then G X H is not hamiltonian (Behzad and
Mahmoodian 1969).

The converse is false. Take H = K2 and

G

But then,

GxH

5.48 THEOREM If both G and H have a point adjacent with two points of
degree one, then G X H is not hamiltonian (Behzad and Mahmoodian 1969).

The converse is false. This can be seen from the same example as in 5.47.
A graph G is said to be cartesian prime if G = H X J implies that either

H = Kt or J = Kt• Note that for any G, G = G X Kt•

5.49 THEOREM A non-trivial, connected graph G having a vertex which lies
on no 4-cycle is cartesian prime (Behzad and Chartrand 1971).

The converse is false. Take G as pictured below. It is clearly cartesian
prime, since it has a prime number of points. Another example is K4 - x.
Convince yourself.

5.50 THEOREM If G is m-connected and H is n-connected, then G X H is
(m + n)-connected.
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The connectivities can be exactly summed. Take G = H = K2• Then
G X H = C4• In fact, we have the following theorem: If the connectivity of
G is m and that of H is n, and there are vertices v in G and u in H such that
d(v) = m, d(u) = n, then the connectivity of G X H is m + n (Sabidussi
1957, 1960).

We introduce next the concept of the conjunction (tensor product) of two
graphs, denoted G /\ H (G ® H). This has V(G /\ H) = V(G) X V(H)
and (Vt,UI) -..; (V2,U2) if VI -..; V2 and UI -..; U2.

5.51 Two graphs and their conjunction.

G

H

123
c:>-----o----O

, 2
0------<>

GI\H

11 22 31
0---0------0

12 21 32
0----0----<>

5.52 For any G and H, G /\ H must have an even number of lines.

This is easy to see. It is not true for the cartesian product. In fact, we
show below a cartesian product with a prime number of lines.

5.53 THEOREM If G and H are connected, then G 1\ H is connected ifand
only if G or H has an odd cycle (Weichsel 1962).

An even cycle both in G and in H is not sufficient. Take G = H = C4•

Then the conjunction consists of the union of the graph shown below with
itself.
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5.54 THEOREM If G and H are connected, then G /\ H consists of exactly
two components if and only if G and H are both bipartite (Miller 1968).

The following examples show that this is not true if either G or H is not
connected.

"Only if" part:

"If" part:

K3 /\ 2K2 = 2C6 •

]i3 /\ K2 = 2K2 U 2K I •

A graph G is saId to be tensor prime if it cannot be expressed as the
conjunction of two graphs. Note that for any G, G /\ KI is a null graph. If
G is not tensor prime, it is called tensor composite. The next example deals
with a characterization of certain tensor composite graphs. We need the
following definition. Let eh e2 be lines of a graph. The distance between
them, d(eI, e2), is the length of a shortest path from a vertex of one to a
vertex of the other. If there are no such paths, the distance is infinite.

5.55 THEOREM Let G be such that !q is a prime number. Then G is tensor
composite if and only if

(I) p = PIP2 with PI, P2 > 1 such that d(v) < PI - 1 for all v in G,
(2) q = 2k, k a prime not exceeding (~), and the q lines can be listed in

k pairs such that for each pair e;, ej, d(e;, ej) > 1,
(3) G is bicolorable with g non-isolated points of one color and r non

isolated points of the other color such that g = r <Ph and
(4) there is a PI-coloring of G such that the two lines of each pair referred

to in (2) have endpoints of the same colors (Capobianco 1970b).
P3 UPs, shown below, is a tensor prime graph which satisfies all of the

conditions of this theorem except (4).

Here p=2X4, d(v) < 3, q=6, d(eI,e4)=2, d(e2,es)=d(e3,e6)
= 00. It is tensor prime because if it were G /\ H the only possibilities
would be K2 /\ (K3 U KI), K2 /\ P4, or K2 /\ KI,3 (see section 6). But these
are, respectively C6 U 2 Kh 2 P4, and 2 KI ,3.

We conclude this section with some examples involving the composition
(lexicographic product) of two graphs. This is denoted G[H] and has
V(G[H]) = V(G) X V(H) and (v}, UI) -.., (V2' U2) if either VI -.., V2 or VI

= V2 and Ul -." U2.
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5.56 G[H] =1= H[G].

H[G]

(Harary 1969).

5.57 It is not true that if G and H are bipartite, then so is G[H].

Consider K2[K2 ] = K4•

As a matter of fact, the only bipartite lexicographic products are K1[K1 ],

K2 [K1]( = K1[K2 ]), and Kn[K1]( = K1[Kn]).

6. SOME HANDY TABLES

Table 5.1 gives some useful information about various graph-valued
functions. It is assumed that for functions of a single argument G this graph
has P points and q lines. For functions of two arguments G and H, these
graphs have PG, PH, qG, qHpoints and lines respectively. The number of faces
is denoted 1, and L2 is the number of pairs of points with a path of length
2 between them. The degree of a point v in a graph G is denoted dG(v).
Table 5.2 gives some values of various functions of one argument for a
number of arguments. Table 5.3 does the same for functions of two
arguments. Table 5.4 gives some interesting complements.
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TABLE 5.1

NUMBER OF NUMBER OF
FUNCTION NOTATION POINTS LINES DEGREE OF POINTS

Complement G PG !PG(PG-I) - qG pG-l-dG(v)
Line graph L(G) qG L 2 = 1/2 ~ de dG(ve ) + dG(ue ) - 2,

- qG where Ve is the point
on one end of the

line e, and Ue that on
the other end.

Total graph T(G) PG + qG 3qG + L 2 2dG(v) for points
representing lines,
same as L(G) for

other points.
Entire graph e(G) PG + qG + fG For readera For readera

Clique graph K(G) Number of For readera For readera

cliques
Sum G+H PG + PH qG + qH For readera

+ PGPH
Cartesian GxH PGPH PGqH + PHqG dG(v) + dH(u)
product
Conjunction G/\H 2qGqH dG(v)dH(u)
Composition G[H] PGqH + PkqG dH(u) + dG(V)PH

• Some of these are difficult. Some are just too messy to be inserted here.

TABLE 5.2

G L(G) T(G) K(G)

KI KI KI
K 2 KI K 3 KI
K3 K 3 Cl KI
e. e.-I Pln- I e.-I
Cn,n> 3 Cn Cl" Cn

KI,n Kn Mn + Kr Kn
KI,3 + X K4 - X K2

K4 - X U's K2

1'3 KI KI U K3 K2

nK2 Kn nK3 Kn
Kn Kn Kn

e(G)

K2

K4

K2 + Cl
KI + Pl,,-I
K2 + Cl"

T(KI,n) + KI

• Mn is Kn with an additional pendant vertex adjacent to each of its n vertices. This may be
called the mace, or mine graph. We have chosen to call it a porcupine (graph), but retain the
symbol Mn •
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TABLE 5.3

G H GxH G/\H

G (arbitrary) K I G Kp

K 2 K 2 C4 2K2

K 2 ]i3 K 2 U C4 2K2 U 2KI
K 2 K 3 P(l)(K3 )Q C6

P3 P3 K I,4 U C4

P3 ]i3 3KI U 2P3

K 2 KI,n 2KI,n
K n K m

K 2 G P(l)(G)Q

G[H]

a p(a) ( G) is the permutation graph of G under the permutation Q. This is drawn by taking two
copies of G with labeled vertices and then drawing lines between them in such a way that
vertices which correspond to each other under Q are adjacent.

3 L>---~----<J 2

3~----u2

TABLE 5.4

G

88

C4

Cs
C6

P3

P4

Ps
Kn,m

KI,n + x
Kn - x

2K2

Cs
P(l)(K3 )

K I u K2

P4

Cs + x
Kn U Km

(K2 + K n- 2 ) U K)
K2 U Kn- 2



Chapter 6

Groups

1. THE AUTOMORPHISM GROUPS OF A GRAPH

In this section we discuss four automorphism groups associated with any
graph G and the similarities among them. We also give a table of the groups
of small graphs and some common graphs.

Let V(G) denote the set of points of G, and X(G) the set of lines of G.
The graph G is isomorphic to the graph H if there exists a 1-1 mapping fJ
from V(G) onto V(H) such that uv E X(G) if and only if fJ(u)fJ(v)
E X(H). In this case fJ is called an isomorphism. An automorphism of a
graph G is an isomorphism of G with itself. Thus, an automorphism is a
permutation of the points of G that preserves adjacency. The set of all
automorphisms of G forms a group r(G), known as the point group or
simply the group of G, which is thus a subgroup of the symmetric group Sp
of degree p and order pL The order of an arbitrary permutation group A is
IAI. If the elements of A act on the set X, then the degree of A is Ixi. Hence
the degree of r(G) is p, the number of points of G.

Our first set of examples is a list of the groups of the graphs of order 5
or less and some other common graphs (see p. 91). Before proceeding to the
list, however, some definitions are necessary.

Let Ai, i = 1, 2, be two permutation groups, where Ai is of order mi and
degree di acting on the set ~ = {Xil' ... ,Xid,}, with Xi and X2 disjoint. The
sum (or direct product) At + A2 is a permutation group of order mt m2
acting on Xi U X2 whose elements are all ordered pairs of permutations,
written at + a2, where ai E Ai' and defined by (at + (2)X = aiX if x E ~.

The composition (or wreath product) A t [A 2 ] is a permutation group of
order mt m~l acting on Xi X X2 whose elements are formed as follows: for
each a E At and any sequence ({3t,{32'." ,{3d1 ) of dt permutations in A 2,

there is a unique permutation in A t [A 2], written (a: {3t,{32"" ,{3d.), such
that
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for (Xli, X2j) in Xi X X2•

The following notation will be used in the list: Sp is the symmetric group
of degree p, Cp is the cyclic group of order p, l Dp is the dihedral group of
degree p, and Ep is the identity group of degree p. The points of a graph will
be referred to by number in most examples of the chapter. The line between
u and v will be denoted either by juxtaposition of the endpoints, uv, or by
enclosing the endpoints in brackets, {u, v}, indicating the unordered pair.
Parentheses, (u, v), will be used to denote the ordered pair. Finally, note
that (1) denotes the identity permutation.

It is easily proven that for any graph G, r(G) -..; r(G). Hence, those
graphs that do not appear in the table may be obtained by complementa
tion.

The reader is referred to Harary (1969, pp. 163-168) for an explanation
of how the results of this table are obtained.

In addition to considering mappings that preserve the adjacency of
points, we can also consider mappings that preserve the adjacency of lines.
The non-empty graph G is line-isomorphic to the non-empty graph H if
there exists a 1-1 mapping fJ from X(G) onto X(H) such that X and yare
adjacent lines of G if and only if fJ(x) and fJ(y) are adjacent lines of H. fJ is
then called a line isomorphism.

It is a simple matter to see that if G is isomorphic to H, then G is line
isomorphic to H. We have, however, the following example.

6.34 Line isomorphism does not imply isomorphism.

Consider the following graphs:

G

x
3

H

The correspondence Xi ~ Yi, i = 1, 2, 3, is a line isomorphism, but G and
H are obviously not isomorphic.

Some line isomorphisms are induced by isomorphisms. Let fJ be an
isomorphism from the non-empty graph G to the non-empty graph H. It is
easy to check that if uv E X(G), the mapping 9: X(G) ~ X(H) defined by

I Cp is also used for the p-cycle graph. The context will make clear which is meant.
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EXAMPLE GRAPH

The Automorphism Groups of a Graph

GROUP

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

6.25
6.26

6.27

KI

K2

P3

K3

K lt3
P.t
C4

K lt3 + X

K4 - X

K4

Ks
3KI U K2

2KI U P3

K I U 2K2

KI U P4

2KI U K3

K. U K lt3
K2 U P3

KI U C4

(Klt3 + x) U K I

K.,4
Ps

K 2 U K3

SI
S2
C2

S3
£1 + S3

C2

D4

£2 + S2
S2 + S2

S4
Ss

S3 + S2
S2 + £. + S2
S2[S2] + £1
S2[£2] + £1

S3 + £1 + £1
S3 + £1 + £1
S2 + £1 + S2

D4 + £1

C2

S4 + £1
C2

S2 + S3
C2

continued
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EXAMPLE GRAPH GROUP

6.28 Cs Ds
6.29 e. C2

6.30 Cp Dp
6.31 Kn,m n =1= m Sn + Sm
6.32 Kn,n S2[Sn]
6.33 Kp Sp

9(uv) = 9(u)9(v) is a line isomorphism from G to H; it is called the line
isomorphism induced by 9. That not every line isomorphism is induced is
shown by the next example.

6.35 N01 every line isomorphism is induced.

The two graphs and line isomorphism of example 6.34 provide the
necessary example.

We now define two more automorphism groups associated with a graph.
A line automorphism of a non-empty graph G is a line isomorphism of G
with itself. The set of all line automorphisms of G forms a group Ii (G)
called the line group of G. An induced line automorphism of G is an
induced line isomorphism of G with itself. The set of all induced line
automorphisms of G forms a group r* (G) called the induced line group of
G. Obviously r* (G) is a subgroup of II (G). Furthermore, we have the
following:

6.36 r* (G) may be a proper subgroup of II (G).

Consider the following graph G and the line automorphism (XI X3)(X2)
(X4).

'4 x
3

V3

Figure 6.36.1

That this automorphism is not an induced line automorphism can be seen
easily, since any automorphism must sent' VI to itself and V2 to itself. Thus,
any induced line automorphism must send VI V2 to itself (Behzad and
Chartrand 1971).

If G is a connected graph, then the three automorphism groups we have
defined are almost always isomorphic.
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6.37 THEOREM Let G be a connected graph with p ~ 3. Then f(G),
II (G), and f* (G) are all isomorphic if and only if G is not one of the three
graphs G}, G2 , G3 given below:

x
2 xl

x
4

x
2 Xl X

3
X

2

X3 X
4

x3

6
1

6
2

6
3

We show that in these cases the automorphism groups are not all
isomorphic. For a proof that these are the only cases, the reader is referred
to Behzad and Chartrand (1971, pp. 166-173).

That II (G I ) ~ f* (G I ) was shown in example 6.36. Similarly, since the
line automorphism (Xl X2X3X4)(XS) in G2 is not induced, and since the line
automorphism (Xl X3)(X4)(XS)(X6) in G3 is not induced, it follows that
II(G 2) ~ f*(G 2 ) and II(G 3) ~ f*(G 3). f(G;) -- f*(G;), since f -- f* for
all connected graphs unequal to K2 (Behzad and Chartrand 1971).

Note that there are similar results for arbitrary graphs. The interested
reader is referred to Behzad and Chartrand (1971, pp. 166-173).

We close this section by studying still another automorphism group
associated with a graph. By an element of a graph we mean either a point
or a line. Two elements are called associates if they are either adjacent or
incident. Let E(G) denote the set of all elements of G. A mapping fJ from
E(G) onto itself is called a total automorphism of G if el and e2 are associates
of G if and only if fJ(el) and fJ(e2) are associate elements of G, The set of all
total automorphisms of G forms a group I2 (G) called the total group of G.
Note that I2 (G) -- f(T(G», the group of the total graph of G.

6.38 THEOREM For any non-trivial connected graph G, I2(G) -- f(G) if
and only if G is neither a complete graph nor a cycle.

To see the exceptional cases, note the following:

if G = Cp, p > 3, then I2 (G) has order 4p while f(G) has order
2p;

if G = K3, then I2 (G) has order 48 while f(G) has order 6;

if G = Kp , p =1= I, or 3, then f2 ( G) has order (p + I)! while f(G)
has order p! (Behzad and Radjavi 1968).
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2. SYMMETRY IN GRAPHS

Two points u and v of G are similar if there is an automorphism
fJ E r(G) such that fJ(u) = v. Two lines x and y of G are similar if there is
an induced automorphism 9 E r*(G) such that 9(x) = y.

6.39 THEOREM If u and v are similar, then G - u ~ G - v.

The converse is false. Consider the following graph G:

W
2

~ u .~v
W;~----....oI\;~)o-.------e:O~----O

Note that G - u -..; G - v, but u and v are not similar, since the only
non-trivial automorphism of G is the one which interchanges WI and W2 and
leaves all the other points fixed (Harary and Palmer 1966c).

A graph G is point-symmetric (line-symmetric) if every pair of its points
(lines) are similar. Note that a point-symmetric graph must be regular.
Point and line symmetry are independent concepts, as the next example
shows.

6.40 Point symmetry does not imply line symmetry and conversely.

To show that point symmetry does not imply line symmetry, we construct
a graph G as follows: take two copies of Cp, p =1= 4, with the points of one
labeled 1 through p and those of the other labeled l' through p'; then join
i to i', 1 < i < p. We illustrate the case p = 5.

51

4' 3
1

Figure 6.40.1

G is point-symmetric, since the point labeled I can be mapped to any
other point by a suitable rotation, or the automorphism which maps i ~ i'
and i' ~ i for 1 < i < p, or a composition of the two. G is not line
symmetric, however, since the line I l' is in two quadralaterals while the line
l' 2' is in only one.

To show that line symmetry does not imply point-symmetry, consider
Kn,m, n =1= m. This graph is line-symmetric, but it is not point-symmetric,
because it is not regular.
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Most line-symmetric graphs which are not point symmetric fail to be so
because they are not regular. It is known (Harary 1969, p. 172) that if G is
line-symmetric and is regular of degree d, then G is point-symmetric if p is
odd or if d ~ p/2. J. Folkman (1967) constructed line-symmetric graphs
regular of degree d with p even and with d < p/2 which are not point
symmetric.

6.41 Not every regular line-symmetric graph is point-symmetric.

Folkman's main theorem (1967, Theorem 5) is long and involves many
cases. We give here the simplest case, whose proof depends on the following
theorem: Let A be an additive abelian group, and let T be a group
automorphism of A. Let r > 1 be an integer, and let a E A. Suppose that
T'(a) = ±a, Ti(a) =1= a for °< i < r, and Ti(a) =1= -a for 0 < i < r.
Then there exists a line-symmetric graph G on 2r IA Ipoints which is regular
of degree 2r and which is not point-symmetric.

The graph G is constructed as follows: V(G) = {O, I} X {O, 1, 2, ... , r
- I} X A, where X is the Cartesian product of sets. X(G) consists of all
unordered pairs of either of the forms {(O,i,x),(l,j,x)} or {(O,i,x),
(l,j,x + Ti(a»}. For a proof that G satisfies the conclusions of the
theorem, the reader is referred to Folkman's paper.

We now show the following: There is a regular line-symmetric graph of
degree 4 onp ~ 20 vertices if p = 4k, where k is prime and k = l(mod 4).
To do this, let A = Zk, the integers mod k under addition, with generator
g. Since k = l(mod 4), there is an x E Zk satisfying x 2 = -l(mod k). Let
T be the automorphism defined by T(g) = xg. Now apply the theorem of
the preceeding paragraph with a = g and r = 2, and the result follows.

The graph obtained in the case p = 20 is given below.

Figure 6.41.1
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In the figure those coordinates which are underlined are held constant
and the third coordinate varies from 0 to 4 as one moves to the center of
the figure, obtaining the coordinates of the other points.

Note that two other families of regular line-symmetric but not point
symmetric graphs may be found in Bouwer (1972).

We now turn to the study of graphs which have a higher degree of
symmetry than either point- or line-symmetric graphs. An n-route is a walk
of length n with a specified initial point in which no line succeeds itself. A
graph is n-transitive, n > 1, if it has an n-route and if there is always an
automorphism sending each n-route onto any other n-route, i.e., r(G) is
transitive on the n-routes of G.

6.42 If G is n-transitive, it is not necessarily m-transitive where m < n.

Consider the n + 1 path J:,+l:

0---------0--

2
• • • -----<)------<JO------IO

n-l n n+l

There are only two automorphisms in r(J:,+I), namely the identity and
() = (I,n + 1)(2,n)(3,n - 1)···. Now, J:,+l has only two n-routes: 1,2,
... , (n + 1) and (n + 1), n, ... , 2, 1, and (J takes each to the other. J:,+l is
not m-transitive for m < n, however, since there is no automorphism that
takes the m-route 1, 2, ... , m + I to the m-route 2, 3, ... , m + 2.

6.43 THEOREM If G is I-transitive, then G is line symmetric.

The converse is false. Kn,m, n =1= m, is line symmetric, but no I-route with
initial point in the part with n points can be mapped by an automorphism
to a I-route with initial point in the part with m points.

A graph is n-unitransitive if it is connected, cubic, and n-transitive and
for any two n-routes there is exactly one automorphism taking one to the
other. As proved by Tutte (1961), the (3, n) cages for n = 3,4, ... ,8 are
unitransitive.

6.44 THEOREM The (3, 3) cage is 2-unitransitive; the (3,4) and (3, 5) cages
are 3-unitransitive; the (3,6) and (3,7) cages are 4-unitransitive; the (3, 8)
cage is 5-unitransitive.

The (3, 3) cage is K4 and the (3, 4) cage is K3,3. The other cages of the
theorem are depicted in examples 4.70-4.73.
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We shall prove that the (3, 5) cage, the Petersen graph, is 3-unitransitive.
The proof of the other cases may be found in Tutte (1961), as may the
proofs of the theorems that follow.

Let W be the n-route 1, 2, ... , n + 1, and let k be any point other than
n adjacent to n + 1. Then the n-route 2, 3, ... , n + 1, k is called a
successor of W.

THEOREM 1 Let G be connected and let JfI be an n-route of G whose
endpoint is of degree greater that one. For each successor »-2 of JfIlet there be
an automorphism that takes JfI into »-2. Then G is n-transitive and has no
points of degree 1.

THEOREM 2 If G is n-transitive but not n-unitransitive; then G is (n + 1)
transitive.

THEOREM 3 Let G be a connected n-transitive graph with no point of
degree one, with girth g, and which is not a cycle; then n < 1 + g12.

It is a simple matter to check that every 3-route of the Petersen graph is
mapped into a successor by an appropriate automorphism. Hence, by
Theorem I, the graph is 3-transitive. If it were not 3-unitransitive, then by
Theorem 2, it would have to be 4-transitive. But this is impossible, since
Theorem 3 implies that the Petersen graph is at most 3-transitive.

Tutte also proved (1947) that there are no n-unitransitive graphs for
n ~ 6. There are, however, n-unitransitive graphs for n < 5 other than the
cages of the previous example.

6.45 There are n-unitransitive graphs other than the cages.

l-unitransitive: Let A be the permutation group of degree 9 generated by
the three permutations al = (12)(35)(48)(6)(7)(9), a2 = (13)(26)(59)(4)
· (7)(8), a3 = (14)(23)(67)(5)(8)(9). We associate with A a graph G
defined as follows: With every element /3 E A we associate a point
/3 E V(G). Thus the order of G is the order of A. Two points /31 and /32 of
G are adjacent if and only if as elements of A the product /32/311= ai for
some 1 < i < 3. It can be shown that the graph G is connected, of degree
3, l-unitransitive, of girth 12, and of order 432 (Frucht 1952).

2-unitransitive: Consider the 3-cube Q3:
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The dodechahedron

Figure 6.45.1

3-unitransitive: Consider the Pappus graph:

Figure 6.45.2
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The Desargues graph:

Figure 6.45.3

The last four graphs, as well as other examples based on tesselations of
the torus, may be found in Coxeter (1950).

We now turn our attention to asymmetric graphs. A graph G is
asymmetric if r(G) -..; Ep, the identity group of degree p. Non-trivial
asymmetric graphs must have at least 6 points.

6.46 The smallest asymmetric graph has six points. The smallest asymmetric
tree has seven points.

They are

G

and

T

From the list of graphs and their groups at the beginning of the chapter,
it follows that any non-trivial asymmetric graph has p ~ 6 points, and it is
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easy to check that G is asymmetric. One can do likewise for Tby consulting
a list of trees on < 6 points.

6.47 THEOREM For any p ~ 7 there exists an asymmetric tree on p points.

The following tree is such:

3I
P

1 2 4 p-2 p-l
o----oo----u----~•••~

The next example establishes bounds on the number of lines an asym
metric graph onp points can have. We first define a somewhat more general
concept which will be used again later in the chapter. Let e(r,p) denote the
smallest integer for which there exists a graph G having e(r,p) lines, p
points, and r(G) -..; r. Let E(r,p) denote the largest integer for which there
exists a graph H having E(r,p) lines, p points, and r(H) -..; r. Note that if
e(r,p) is realized by a graph G, then E(r,p) is realized by G.

6.48 THEOREM

if p = 1,

if p = 6,7,

if p ~ 8,

where an is the number of asymmetric trees having n points and Nand ware
defined by

N N+I

~ an n < p < ~ an n
n=1 n=1

and

N

P = ~ ann + w(N + 1) + r,
n=1

The numbers an were determined by Harary and Prins (1959).
The minimal graphs are constructed as follows:
If p = 1, let G = KI •

If p = 6, let G be the 6 point graph of example 6.46.
If p = 7, let G be the tree of example 6.46.
If p ~ 8, let G be the asymmetric forest constructed as follows: Put the

set of asymmetric trees into 1-1 correspondence with the positive integers
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such that if T, and 1; are asymmetric trees on rand s points respectively,
then r < s implies that 1; follows T, in the induced ordering. The ordering
within a set having the same number of points is arbitrary. We consider two
cases:

If w = 0, ~:=l ann - N + (N + r). The forest consists of all asymmetric
trees having no more than N - 1 points plus the first aN - 1 asymmetric
trees having N points plus an asymmetric tree having N + r points.

If w =1= O,p = ~:=l ann + (w - I)(N + I) + N + 1 + r. The forest con
sists of all asymmetric trees having no more than N points plus the first
w - I asymmetric trees having N + I points plus an asymmetric tree
having N + 1 + r points (Quintas 1967).

3. GRAPHS WITH GIVEN GROUP AND PROPERTIES

In this section we discuss the construction of graphs having a given group
as well as other graph theoretical properties. In 1938, R. Frucht showed that
given any finite group f there exists a graph G with f(G) -..; f.

6.49 THEOREM Given a finite group f, there exists a graph G with
f(G) -..; f.

Let f = {Yl' Y2, .•. ,Yp} be the given group with Yl the identity. The
Cayley color graph C(f) of f is a complete symmetric digraph defined as
follows: C(f) has point set f. The lines of C(f) are labeled with the non
identity elements of f as follows: (Yi' Yj) is labeled yi 1Yj. Thus, if the non
identity elements are thought of as colors, we are coloring the lines of C(f)
with these colors.

The automorphism group f(D) of a digraph D is defined in an obvious
manner. Let fJ E f(C(f». Then () is color preserving if for every line (Yi' Yj)
of C(f), (Yi' Yj) and (fJ(Yi), fJ(Yj» have the same label. It will be left as an
exercise for the reader to prove that the set of color preserving automor
phisms is a subgroup of f(C(f» and that this subgroup is isomorphic to f.

Constructing a graph G whose automorphism group is isomorphic to f
proceeds as follows: Replace line (Yi' Yj) of C(f) which is labeled yi1Yj
= Yk with the undirected path Yi, Uij, uij, Yj, by inserting points Uij, uij in
(Yi' Yj). At uij construct a path of length 2k - 2, and at uij construct a path
Pij of length 2k - I. The proof is now completed by noting that every color
preserving automorphism of C(f) induces an automorphism of G and
conversely.

To construct a specific example, let f = {e, r, h, v} be the Klein 4-group,
i.e., the symmetries of a rectangle, where e is the identity, r a rotation of
1800

, h a reflection in the horizontal axis, and v a reflection in the vertical
axis. The Cayley color graph of f and the graph G having f(G) -..; fare
given below.
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G(f)

r

,

Figure 6.49.1
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In 1949, Frucht showed that one could even require that G be cubic. To
simplify some of the constructions that follow we will, as he did, use the
notion of the quadratic form of a graph. Let G be a graph with point set
V(G) = {v}, V2, ••• ,vp } and let A(G) = [ay ] be the adjacency matrix of G.
Finally, let the variable X; correspond to the point v;. Then G is described
by its quadratic form

Note also that r(G) is the group of all permutations of the x;'s that leave
Q(G) unchanged.

The proofs of some of the following examples are long and will be
omitted.

First we consider the case where the given group is cyclic.

6.50 THEOREM Let Chbe the cyclic group of order h > 2. Then there is a
cubic graph G on 6h points with r(G) '""- Ch.

The following quadratic form in 6h variables a;, b;, C;, d;, e;, h, for
i = I, ... , h, defines such a graph:

h

Q(G) = ~ (a;b; + a;e; + a;h + b;c; + c;d; + c;h + e;h)
;=1

h-l
+ ~ (bjej+1 + ~~+I) + bhel + dl dh.

j=1

We illustrate the case h = 3 in Figure 6.50.1.
A reduction can be made in the number of points in a graph G having a

given cyclic group as its automorphism group, if the requirement that G be
cubic is dropped.

6.51 THEOREM If h > 3, there is a graph G on 3h points having
r(G) '""- Ch•

Let a;, b;, C;, for i = 1, ... , h be 3h variables, and define G by the
following quadratic form:

h h-I

Q(G) = ~ (a;b; + b;c;) + ~ (ajaj+1 + cjaj+l)
;=1 j=1

We illustrate the case h = 4 (Frucht 1949) in Figure 6.51.1.
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°3
Figure 6.51.1

d
2

C
2

Figure 6.50.1

°1
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The theorem of the preceeding example is also true for h = 3, as the next
example shows. In addition, it answers the question: What is the graph
having the smallest number of points whose group is isomorphic to Ch?

6.52 THEOREM The minimum number of points p(Ch ) in a graph having
group Ch is

p(Ch )

2

3h

2h

p(Ck,.(I)) + · · · + p(Ck,.(,»)
where k1 , ••• , k, are distinct primes.

if h = 2
if h = 3,4,5
if h = k e

~ 7, where k is prime

if h = k1e(1) • • • k,e(,)

The construction and proof are as follows: It is trivial that p(C2 ) = 2, so
we assume that h ~ 3 and consider three cases:

1. h = k e
~ 7. Define Gke as follows:

v(Gk e) = {I, ... h, 1', ... , h' },

X(Gke) = {{i,i + I},{i,i'},{i + I,i'},{i - 2,i'}11 < i < h},

with addition modulo h. Now, fJ: V(Gke) ~ V(Gke) defined by
fJ(i) = i + 1, fJ(i') = i' + 1 for i = I, ... , h is an automorphism
of Gke, and so r(Gke) contains a subgroup isomorphic to Ch•

The cycle C consisting of the points 1, ... , h is the only h-cycle of Gke
whose points are of degree 5. Thus, C is invariant under all automorphisms
of Gke. In particular if y E r(Gke) and y(io) = io for some io on C, then
either ylC = (1) or y(io + j) = io - j forj = I, ... , h. But all triangles of
Gke are of the form i, i + I, i' for i = I, ... , h. Thus if y(io + j) = io - j,
then y(io) = (io - 1)'. Consequently, y({io,io - 2}) = {(io - I)',io + 2}
E X(Gke), which is a contradiction, since h ~ 7. Thus, ylC = (1) and
therefore y = (1). It follows that r(Gke) -..; Ch, IV(Gke)1 = 2h, and so
p(Ch ) < 2h.

To show that equality actually holds in the last inequality, assume there
is a graph H with r(H) -..; Ch and IV(H)I < 2h. Since h = k e

, if fJ
E r(H) and v E V(H), then either v, fJ(v), ... , fJ h

-
1(v) are all distinct or

else fJ(v) = v. In either case r(H) -..; D2h, a contradiction. Hence, p(Ch )

= 2h.
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We illustrate the case h = 7.

Y""'C::::::::------------......J'\ 11

P--======----------..::::::::::...J"'t. 71

2. h = 3, 4, 5. Define Gh as follows:

V(G h ) = {I, ... ,h, 1', ... ,h', 1", ... ,h"}

X(G
h

) = {{i,i + I},{i,i'},{i + I,i'},{i',i"},{i",(i + I)"},

{i",i + I}II < i < h},

where addition is modulo h, h = 3,4, 5, accordingly. The proof of
this case is similar to that of case 1.

We illustrate the case h = 3.
2
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Figure 6.52.2
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3. h = k{(l) · · · kre(r). Consider the graph

G = G 1(1) U G 1(2) U ... U Gkrl(r).
k1 k2

Since Gh ~ Ghwhenever h =1= h', it follows that

f(G) -." f(Gk11(1» + ... + f(Gk:<r» -." Ck11(1) + ... + Ck:<r) -." Ch •

An argument similar to that of case 1 establishes the theorem
(Sabidussi 1959).

The graphs in the above example in the cases h = 3, 4, 5 have 6h points.
The next example exhibits similar graphs with the fewest possible lines
(Harary and Palmer 1968a).

6.53 THEOREM The smallest number of lines among all graphs with 3h
points and with group Ch, for h = 3, 4, 5, is 5h.

h=3

11=4

Figure 6.53.1
107



Groups

h=5

Figure 6.53.1 (continued)

6.54 THEOREM If f is any finite group of order h > 3 which may be
generated by n of its elements, then there exists a cubic graph G on 2h(n + 2)
points and with f(G) -..; f.

If n = 1, the group is cyclic and the theorem reduces to the theorem of
example 6.51.

If n > 1, enumerate the elements of f as follows: Yh is the identity
element of f; Yl, ••• , Yn are the n generators of f; Yn+l, YII+2, ••• , Yh-l are
the other elements of f. We define 2h(n + 2) variables Xi,Yk' where 1 < i
< 2(n + 2) and Yk E f. Define

h

Qij = ~ Xi,ylc Xj,ylc •
k=l

Then G is defined by the quadratic form

Q(G) = Q12 + Ql4 + QIS + Q23 + Q24 + Q3S + Q36 + Q4,2n+4

+ Q67 + Q78 + Q89 + . · · + Q2n+3,2n+4 + S,

where

h

S = ~ (XS'Yk X6,Yl Ylc + X7,ylc X8,Y2 Ylc + · · · + X2n+3,ylc X2n+4,y"ylc)·
k=l

We illustrate the case where f is the Klein 4-group, f = {r, h, v, e}, as
described in example 6.49 (Frucht 1949).
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x
4,r

x
4,v

x
1,r

x2,r

x2,v

x
1,v

x
5,r

x
8,v

x
3,v

x5,v

x
5,e

x
1,e

x2,e

Figure 6.54.1

It should be noted that the number of points in the graphs constructed
in the last example can in some cases be reduced. For example, K4 has the
symmetric group S4 as its automorphism group, and S4 has h = 24 and
n = 2. The Petersen graph has 10 points and has Ss as its automorphism
group, and Ss has h = 120 and n = 2.

If the condition that the graph is cubic is dropped, a reduction in the
number of points can be made. Given a group f of order h having n
generators, Frucht (1949) showed how to construct a graph on 2hn points
having f(G) '""- f. Later Sabidussi (1959) obtained a better result.

6.55 THEOREM Let f be a group of order h and having n generators. Then
there exists a graph G on p = O(h log n) points having f(G) '""- f.

Let the elements of f be enumerated as in the previous example. In
particular, let the generators of f be 'Yl, ••• , 'Yn. Let r = 2w

- 1, where w is
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the smallest positive integer for which r 2 ~ n. Then w = O(log n). Define
M = {I, ... , w}, and let M, ... , M, be the non-empty subsets of M. Form
all products Uk X Mik' 1 < ik < r, 1 <)k < r, k = I, ... , r2. The graph G
is defined as follows:

V(G) = {(y,i)ly E f,O < i < w} U {(y,i')IY E f,O < i < w + I}

X(G) = {{(y,i),(y,i')}IY E f,O < i < w}

U {{ (y, i-I), (y, i')}Iy E f, 1 < i < w + I}

U {{(y, 0), (y', I)}, {(y, 1), (y', I)}, {(y, (w + 1)'), (y', (w + I),)}ly

E f, y' = yYk, 1 < k < n}

U {{(y, x), (y',y)}lyE f, y' = yyk, (x, y) E Mk X Mik' 1 < k

< n}.

Note that IV(G)I = h(2w + 3) = O(h log n). We omit the proof that
f(G) -..; f, and leave it to the reader to construct the 28 point graph
corresponding to the Klein 4-group for comparison with the graph of
example 6.54.

So far we have considered the problem: given a permutation group f,
when is there a graph G having f(G) -..; f1 We have seen that it is always
possible to find such a graph even if it is also required that the graph be
cubic. There is, however, a relation among permutation groups that is
stronger than that of isomorphism. Let Ai, i = 1, 2, be permutation groups
of order m; and degree d; acting on the set ~ = {Xii, ... ,X;dJ. Al and A2are
identical permutation groups if Al -- A2, i.e., if there exists a 1-1 mapping
h: Al ~ A2 such that h(alialj) = h(ali)h(alj) for all ali, alj E A}, and if there
exists a 1-1 mappingf: Xi ~ X2 such thatf(ali(xlj» = h(ali)(f(xlj» for all
XI} E Xi and ali E AI. If Al and A2 are identical, we write Al = A2• We can
now ask: given a permutation group f, when is there a graph G having
f(G) = f1 The next example shows that the answer to this question is not
always affirmative.

6.56 THEOREM There is no graph G having f(G) = Cp, the cyclic group
of order p > 3.

The proof depends on the following lemma, which is not difficult to
prove: If the cycle (1,2, ... ,n - 1, n) E f(G), then Dn C f(G), where Dn

is the dihedral group of degree n.
N ow suppose that there is a graph G having f(G) = Cpo Then the cycle

(1,2, ... ,p) E f(G). But, by the lemma, it follows that Dp C Cp, which is
false (Kagno 1946).
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It should be noted that by a method similar to that used above, it can be
shown that for p ~ 3 there is no graph G having f(G) = Ap, the alternat
ing group of degree p.

In 1957 Sabidussi showed that one could prescribe graph theoretical
properties other than regularity of degree three and obtain theorems similar
to that of example 6.49. Before stating these results some definitions are in
order. For the definition of the Cartesian product of two graphs the reader
is refered to Chapter 5 or the Glossary. A non-trivial graph G is Cartesian
prime if G = GI X G2 implies that GI or G2 is trivial. Subidussi proved
(1960) that every non-trivial graph is the unique product of prime graphs.
A non-trivial graph which appears in the Cartesian prime factorization of
G is called a Cartesian prime factor of G. Two graphs are relatively Cartesian
prime if they have no common Cartesian prime factors. A graph G is fixed
point-free if there is no point v of G which is invariant under all automor
phisms of G. A line x of G is fixed if it is invariant under all induced line
automorphisms of G.

6.57 THEOREM Given a non-trival finite group f and an integer i,
1 ~ i ~ 4, there exist infinitely many non-homeomorphic connected fixed-
point-free graphs G such that (1) f(G) -." G, and (2) G has property P; where:

PI: IC(G) = n, n ~ 1.
P2: X(G) = n,n ~ 2.
P3 : G is regular of degree n, n ~ 3.
P4 : G is spanned by a graph fI homeomorphic to a given connected graph

H.
The constructions and proofs of the four parts of the theorem are long

and involve many lemmas. We therefore restrict ourselves to two construc
tions.

Let G be a graph without isolates. Define G by letting V(G) = {(v, x)
E V(G) X X(G)lv is incident with x}, with (v, x) adjacent to (v',x') if and
only if v = v', x =1= x' or v =1= v', x = x'. If GI is the graph constructed in
example 6.54, then the graphs defined inductively by G;+I = G;, i ~ 1, can
be shown to be non-homeomorphic cyclically connected fixed-point-free
Cartesian prime graphs containing no fixed line.

For property PI: The case n = 1 is contained in Frucht's results. For
n = 2, let G' be any of the graphs constructed in the preceeding paragraph.
Let G be the graph obtained from G' by subdividing each line by a point.
Then IC(G) = 2 and f(G) -." f.

For n ~ 3, define Hk , k ~ 1, by

V(Hk ) = {O,l, ... ,k + 5}

X(Hk ) = {{O, 1},{0,2},{2,3},{0,4},{4,5}, ... ,{k + 4,k + 5}}.
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Let H(m) = 1ft X H2 X·· · X Hm, and let G be as in the case for n = 2. Then
K(G X H(n-2» = nand f(G X H(n-2» -..; f.

For property P2: If n = 2, let G be as in the case n = 2 for property Pl.
Then X(G) = 2.

For n ~ 3, let Pi, I < i < n, denote the path on i points with V(Pi)
= {PI,P2' ... ,Pi} and X(Pi) = {{Pj,Pj+I},) = 1,2, ... ,i - I}. Let the
points of Knbe kl , ... , kn. Identify the point ki of Knwith the point Pi of Pi'
i = I, ... , n. The graph so obtained call F". Let G be as in the case n = 2
for property Pl. Then f(G X F,,) -..; f and X(G X F,,) = n.

It should be noted that by using constructions similar to those employed
by Sabidussi, H. Izbicki (1960) constructed infinite families of both finite
and infinite graphs regular of degree n ~ 3, with chromatic number X,
2 < X < n, and with automorphism group isomorphic to a given permuta
tion group. Izbicki also proved (1957) a more limited result under a more
restrictive hypothesis: Given a group r and natural numbers n, X, K such
that 3 < n < 5, 2 < X < n, 1 < K < n and not both X = 2 and K = I,
then there is an infinite number of non-isomorphic graphs G, regular of
degree n, with X(G) = X, K(G) = K, and f(G) -..; f.

To close this section we consider the least number of lines e(S,.,p) a graph
G on P points may have and have f(G) -..; Sn.

6.58 THEOREM Let n ~ 2. Then e(Sn,P) is undefined for P < n; e(S2'p)
= P - 2 ifP = 2, 3, ... , 8; if n ~ 3, then

o if P = n,

n if P = n + 1, n + 2,
e(Sn,P) = n + 2 if P = n + 3, n + 4,

n + 3 if P = n + 5,

6 if P = n + 6.

lfn ~ 2, then e(Sn,P) = e(Ep,p - n + I) ifp = n + 7, n + 8, ....

We give the minimal graphs in each case:

e(S2'p) = P - 2 if P = 2, 3, ... , 8.

For P = 2, let G = K2•

For P = 3, ... , 8, let G = lJ,-1 U KI •

e(Sn, n) = 0, let G = Kn.

e(S,.,p) = n if P = n + I, n + 2

For P = n + I, let G = KI.n

For P = n + 2, let G = KI,n U KI

e(Sn,P) = n + 2 if P = n + 3, n + 4.
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For P = n + 3, let G = T be the following graph

n points
,r-------/'....-""'------......,

Figure 6.58.1

For p = n + 4, let G = T U K1

e(Sn,P) = n + 3 if P = n + 5. Let G be the following graph:

n points
~-------""'-------....,

Figure 6.58.2

e(Sn,P) = 6 if P = n + 6. Let M be the graph

Then the minimal graph G is M U Kn•

e(Sn,P) = e(Ep,p - n + 1), n ~ 2, p = n + 7, n + 8, .... See ex
ample 6.48 for the minimal graphs (Quintas 1968).

Note that D. McCarthy and L. Quintas (1975) have determined e(r,p) for
~ny permutation group r, for p sufficiently large.
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Chapter 7

Topological Questions

1. INTRODUCTION

One of the central concepts in this chapter is that of a graph embedding.
We say that a graph G is embedded in a surface S when its vertices are
represented by points in S, and each edge by a curve joining corresponding
points in S, in such a way that no curve intersects itself, and two curves
intersect each other only at a common vertex. A graph which can be
embedded in the plane (or sphere) is called planar. Such graphs are dealt
with in the first section of this chapter. The reader should be aware of the
fact that Ks and K3,3 are two rather well-known non-planar graphs. The next
section is a short one on the more specialized subject of outerplanar graphs,
and the final section considers embeddings on surfaces other than the
plane. Here we get involved with such concepts as genus, betti number, and
maximum genus.

2. PLANAR GRAPHS

7.1 THEOREM If G is planar and p ~ 3, then q < 3p - 6 (Behzad and
Chartrand 1971).

The converse is false. K3,3 is a counterexample. In this case q = 9 and
3p - 6 = 12.

A planar graph is said to be maximal planar if the addition of any line
would cause it to become non-planar. It can be shown that in such a graph
every face is a 3-cycle. (See Chapter 5 for the definition of a face.)

7.2 THEOREM If G is maximal planar and p ~ 3, then q = 3p - 6
(Behzad and Chartrand 1971).

The converse is false in the sense that there exist graphs with q = 3p - 6
which are not planar. One is pictured below.
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Here 12 = q = 3(6) - 6. It is true, however, that if G is planar and
q = 3p - 6, then G is maximal planar. This follows from the theorem of
example 7.1.

7.3 THEOREM Every planar graph has a vertex of degree at most 5
(Behzad and Chartrand 1971).

The converse is not true. Ks is a counterexample. In fact, in this case
d(v) < 4 for every vertex v.

7.4 It is possible for a planar graph to be regular of degree 5.

The icosahedron provides an example.

Figure 7.4.1

This graph is also 5-connected and maximal planar.

7.5 THEOREM Every planar graph with at least 9 points has a non-planar
complement, and 9 is the smallest such number (Battle et al. 1962; Tutte
1963).

The graphs below illustrate the fact that 9 is the smallest such number.
(Harary 1969).
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6

G

8

7 4 6

5

Figure 7.5.1

For the next few examples we need the definition of homeomorphism of
graphs. This is given in terms of a preliminary concept. An elementary
subdivision of a graph G is a graph obtained by inserting a point on any line
of G. (This in effect removes the line uv, say, and creates the two lines uw
and wv, where w is the newly inserted vertex.) A subdivision of G is obtained
by a finite sequence of elementary subdivisions. G is said to be homeomor
phic from H if either G is isomorphic to H or G is a subdivision of H. G1 is
homeomorphic with G2 if there exists a G3 such that both G1 and G2 are
homeomorphic from G3.

7.6 Two graphs can be homeomorphic with each other while neither is
homeomorphic from the other.
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Here G1 and G2 are homeomorphic to each other, since they are both
homeomorphic from G3 ; but neither is homeomorphic from the other.

7.7 THEOREM A graph is planar if and only if it does not have a subgraph
homeomorphic with Ks or K3,3 (Kuratowski 1930).

Note that neither Ks nor K3,3 need be a subgraph of a non-planar graph.
Consider the Peterson graph:

Figure 7.7.1

This has a subgraph homeomorphic with K3,3. (Remove the lines marked
X and suppress the circled points.)

Kuratowski's theorem can also be stated in terms of contractions of a
graph. H is a contraction of G if it is obtainable from G by a finite sequence
of elementary contractions. The latter is simply the identification of two
adjacent points, i.e., two adjacent points u and v are replaced by a single
point which is adjacent to the same points to which u or v was adjacent.

7.8 THEOREM A graph is planar if and only if it does not have a subgraph
contactable to Ks or K3,3 (Halin 1964; Harary and Tutte 1965; Wagner 1937).

Once again, neither Ks nor K3,3 need be a subgraph. The Peterson graph
is contractable to K s: Just identify the vertices labeled with the same
numbers in the diagram below.
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Figure 7.8.1

2

Planar Graphs

For the next example we require the definition of the (combinatorial)
dual of a graph. To define this, we need the following concepts, some of
which will also be useful later. The belli number of a graph is defined as
q - p + k, where k is the number of components. This is also called the
cycle rank, and is denoted b(G). The cocycle rank is defined as p - k. If Y
is a set of lines of G, then G - Y denotes the subgraph of G obtained by
removing the lines in Y. Now, G* is said to be a dual of G if there is a 1-1
correspondence between their sets of lines such that for any pair Y, Y* of
corresponding subsets of lines, the betti number of G - Y equals the betti
number of G minus the cocycle rank of the subgraph of G* induced by Y*.
An example appears below with corresponding lines labeled with the same
integers. Note that G* is not a Michigan graph.

G

6

A theorem of Whitney (Kotzig 1955) states that a graph is planar if and
only if it has a dual.
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7.9 THEOREM If G has a dual, then every subgraph of G has a dual
(Parsons 1971).

The converse is false. Ks is a counterexample. It has no dual by Whitney's
theorem above. But since every proper subgraph is planar, they all have
duals, by the same result.

The next series of examples involves the concepts of the square of a graph
and the total graph of a graph. These were defined in Chapter 5.

The following three examples are based on this result:

THEOREM G2 is planar if and only if (a) d(v) < 3 for all points v ofG, (b)
every block of G with more than four points is an even cycle, and (c) G does not
have three mutually adjacent cutpoints. 1

7.10 Condition (a) alone cannot be violated.

Take G = K1,4; then G2 is Ks.

7.11 Condition (b) alone cannot be violated.

Take G = Cs, then G2 = Ks.

7.12 Condition (c) alone cannot be violated.

Take G to be the graph below (M3-see chapter 5):

Then G2 is

which has a subgraph homeomorphic with K3,3.

The next two examples show that both conditions of the following
theorem are required.

1 F. Harary, R. M. Karp, and W. T. Tutte (private communication).
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THEOREM The total graph of G, T(G), is planar if and only if (1)
d(v) < 3 for all points v of G, and (2) d(v) = 3 implies v is a cutpoint (Behzad
1967).

7.13 Kt,4 violates only (1), and T(Kt,4) is

Figure 7.13.1

which is contractable to Ks.

7.14 K4 - x violates only (2), and T(K4 - x) is

Figure 7.14.1

which has a subgraph homeomorphic with Ks.
The next series of examples deals with planar Ramsey numbers. The

planar Ramsey number P(Kn , Km ) is defined as the smallest integer p such
that a planar graph of order p must have either Kn or Km as a subgraph.
Now it is easy to see that P(K2 , Km ) = m, and that P(Kn , Km ) = P(Ks, Km )

for n ~ 5. It can also be shown that P(K3 , Km ) = 3(m - 1) for m ~ 2.
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7.15 THEOREM For m ~ 3, P(K4 , Km ) ~ 4m - 3 (Walker 1969).

The graph below shows that 4m - 4 is too small. Take m = 3.

We remark, in fact, that the inequality in the above theorem can be
removed now that the four color conjecture has been resolved in the
affirmative (Appel and Haken 1976). The argument is as follows. Since we
can color the vertices of any planar graph with four colors in such a way
that adjacent vertices have different colors, then if the graph is to have no
subgraph Km each of the colors can be used at most m - 1 times. Hence,
the number of points is at most 4(m - I) so that P(Kn , Km ) < 4m - 3 for
n ~ 4. From the theorem of 7.15 we then have P(Kn , Km ) = 4m - 3 for
n ~ 4, m ~ 3.

The final example of this section has to do with a theorem of Kotzig
(1955) on polyhedral graphs. A polyhedral graph is one which consists of
the vertices and edges of a convex polyhedron. (See, for example, the
platonic graphs in chapter 9.) It can be proved that necessary and sufficient
conditions for a graph to be polyhedral are that it is planar and 3
connected.

7.16 THEOREM Every polyhedral graph has a line u-v such that d(u)
+ d(v) < 13 (Griinbaum 1975; Kotzig 1955).

That equality can be attained is shown as follows. We define a maximum
matching M of a graph G to be a set of disjoint lines of G having the
property that any line in G has a point in common with some line in M.
Clearly then, equality in the theorem above can be shown by displaying a
polyhedral graph with 12 edge-disjoint matchings. The figure below is such
a graph. 1 The matchings are labeled on their lines as 0, 1, 2, ... , A, B.

3. OUTERPLANAR GRAPHS

A graph is called outerplanar if it can be embedded in the plane in such
a way that all of its vertices are in the same face (usually the exterior face).

1 This graph is reproduced from Studies in Graph Theory, MAA, Providence, 1976, with the
kind permission of the publisher.
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Figure 7.16.1

7.17 An outerplanar graph and one of its outerplanar embeddings:

7.18 THEOREM G is outerplanar if and only if it has no subgraph
homeomorphic with K4 or K2,3, with one exception.

The exceptional graph is K4 - x. It is homeomorphic with K2,3 and yet is
outerplanar (Chvatal and Harary 1972a).
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7.19 THEOREM If G is outerplanar, then q < 2p - 3 (Behzad and
Chartrand 1971; Harary 1969).

The converse is false. K2,n is a counterexample; q = 2n, 2p - 3 = 2n
+1.

7.20 THEOREM A maximal outerplanar graph (one with a maximum
number of lines) has exactly 2p - 3 lines, at least n points of degree at most n
for n = 2, 3, and connectivity 2 (Harary 1969).

The converse is false. The graph below satisfies all three conditions and
is not even outerplanar!

7.21 THEOREM Every outerplanar graph with at least 7 points has a non
outerplanar complement, and 7 is the smallest such number (Harary 1969).

The following diagrams show that 7 is the smallest such number.

G 6

2

5 4

3 G

1 3 5

IT:
462

4. NON-PLANAR GRAPHS

In this section we shall be interested in, among other things, embeddings
of graphs on surfaces (compact orientable 2-manifolds) other than the
plane. It is useful to introduce the notion of the genus, y(G), of a graph G.
This is defined as the minimum genus of a surface in which G can be
embedded. The next example shows that K4,4 is of genus 1.

7.23 An embedding of K4,4 on the torus. Here the torus is represented in the
usual way by a rectangle with opposite sides identified.
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Figure 7.23.1

7.24 THEOREM If a connected graph G is embedded on a surface of genus
y(G), then every region (face) of G is simply connected.

The graph 2K2 embedded in the plane shows that the condition of being
connected cannot be removed.

It is clear that any planar graph with more than one component will do.
The theorem is sharp in the sense that if G is embedded on a surface of

genus > y(G), then every region need not be simply connected. Figure
7.24.1 illustrates this (Behzad and Chartrand 1971).
7.25 THEOREM If a connected graph G embedded on a surface with genus
y(G) has r faces, then

p - q + r = 2(1 - y(G».

Once again, 2K2 embedded in the plane shows that the condition of being
connected cannot be removed. Here p - q + r = 3, but 2(1 - y(G» = 2.

Some additional definitions are needed for subsequent examples. If every
face of an embedding of a graph is homeomorphic to the open disk, the
embedding is said to be a 2-cell embedding. An embedding of G on a surface
S is said to be minimal if y(G) is equal to the genus of S.

7.26 THEOREM A minimal embedding of a connected graph G is a 2-cell
embedding.

The converse is false. The diagram below shows a 2-cell embedding of K4

on the torus. y(K4 ) = 0 (White 1973; Youngs 1963).
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Figure 7.24.1

In view of the existence of 2-cell embeddings which are not minimal, it
is not vacuous to consider the maximum genus of a surface for which a
connected graph G has a 2-cell embedding. This is called the maximum
genus of G and denoted YM(G).

7.27 THEOREM YM(G) = 0 if and only if G has no subgraph homeomor
phic with K4 - x or 2K2 + K. (White 1973; Nordhaus et al. 1972).
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Note that this implies that y(G) = YM(G )iff YM(G) = °iff G is a cactus
with point-disjoint cycles. (A cactus is a graph all of whose blocks are either
lines or cycles.)

The betti number of a graph G, b(G), is given by

b(G) = q - p + k,

where k is the number of components.

7.28 THEOREM For every connected graph G, YM(G) < [ib(G)] (White
1973; Nordhaus 1972).

Equality is attained by taking G to be any tree. In this case, b(G) = 0,
YM(G) = 0, the second equality following from 7.27. Another example, in
which b(G) =1= 0, YM(G) =1= 0 is K4• Here b(G) = 3, and the 2-cell embed
ding of K4 on the torus shown in example 7.26 establishes the fact that
YM(G) = 1.

It can be shown that in fact equality holds iff the embedding has one or
two faces depending on whether b(G) is even or odd respectively. Graphs
for which equality holds are called upper embeddable.

7.29 Duke (Nordhaus 1972; Duke 1971) has conjectured that for any
connected graph G,

b(G) ~ 4y(G).

This is known to be true for graphs of genus 0, I, 2. The case for genus
3 is unresolved, but for genus 4 or higher the conjecture is false. This can
be seen from the following inequality, which is easily derived from Euler's
formula (Nordhaus 1972). For any cubic graph of girth g,

y(G) > 1 _ ~
b(G) 2 g.

Hence for g ~ 12 we have b(G) < 4y(G). A specific counterexample
would be the (3, 12)-cage. See chapter 5 for the definition and Benson
(1966) for its construction. Note that since the betti number of such a graph
is at least 13, the genus is at least 4.

In the next example the concept of lower embeddability is used. To
define this we write

N.(G) = ~q - !(p - 2),

N2(G) = iq - i(p - 2).

A connected graph G is said to be lower embeddable if either (1) G has a 3
cycle and y(G) = {N}(G)} if N.(G) > 0 or y(G) = 0 if Nt(G) < 0, or (2)
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G has no 3-cycles and y(G) = {N2(G)} if N2(G) > 0 or y(G) = 0 if
N2( G) < O. (Here {x} is the smallest integer not less than x.) It can be
shown that any connected Qlanar graph is lower embeddable (Ringeisen
1972).

7.30 THEOREM Any connected lower embeddable graph G satisfies Duke's
conjecture (Ringeisen 1972).

If G is a tree, then b = y = 0, so that equality is attained. It is interesting
to note that trees are the only graphs for which equality is attained, because
for equality we have q - p + 1 = 4(1 - !(p - q + r», or 2r - 3 = q - p.
But for r > 1 (at least two faces), there is at least one cycle. This has as
many points as lines. Therefore equality does not hold for a cycle. Now
adding a line adds either another face or another point, so that equality is
never attained. Hence for equality, r = 1 and q - p = -1, Le., we have a
tree.

As mentioned earlier, Duke's conjecture is unresolved for the case y = 3.
The next example gives a graph of genus 3 which satisfies the conjecture.

7.31 For Ks,s, y = 3 and Duke's conjecture holds.

The formula for the genus of a complete bipartite graph is

(K )={(m-2)(n-2)}
y m,n 4 m, n > 2

(Ringel 1965). Hence, y(Ks,s) = {~} = 3. On the other hand, b(Ks,s) = 25
- 10 + 1 = 16.

Alternatively, Ks,s has no 3-cycles and N2(Ks,s) = ~, so that it is lower
embeddable.

7.32 THEOREM If G is connected, and all of its blocks are upper
embeddable with even betti numbers, then G is upper embeddable (Ringeisen
1972).

The condition of even betti numbers can not be removed. Take G to be
the graph below.

Then b(K3 ) = 1, b(K2 ) = 0, b(G) = 2, YM(G) = O.

7.33 There are graphs which are both upper embeddable and lower embedda
ble (Ringeisen 1972).
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As seen in example 7.31, b(Ks,s) = 16. Now it is known that

(K ) = [(m - 1)(n - I)J
YM m,n 2

(White 1973), so that YM(Ks,s) = 8.
In fact, any complete bipartite graph will do, as will any complete graph

or any wheel.

7.34 There are graphs which are upper embeddable but not lower embeddable
(Ringeisen 1972).

The Petersen graph can be shown to be upper embeddable. It is not lower
embeddable, since its genus is 1 and N2 < 0. (It has no 3-cycles.)

7.35 There are graphs which are lower embeddable but not upper embeddable
(Ringeisen 1972).

As an example, take the graph below.

Here YM = 0, Nt < 0, Y = 0, but b = 3.

7.36 There are graphs which are neither upper nor lower embeddable
(Ringeisen 1972).

Consider the graph below.

Since

YM(K
n

) = [(n - l)t -2)J
(White 1973), we have YM = 3. But b = 8. Also, Y = 1, but Nt < 0.

In fact, each of the categories in examples 7.33-7.36 contains infinitely
many graphs (Ringeisen 1972).

7.37 THEOREM If G is embedded on S, then q < 3p - 6(1 - y(S»,
where y(S) is the genus of S (Ringel 1972).

Equality can be attained. Take G to be K3, and S the sphere. In fact, any
triangular embedding will do.
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The crossing number, v(G), of a graph G is the least number of crossings
of lines when G is drawn in the plane. The following examples, 7.38-7.42,
show upper bounds on v for the complete graphs of orders 5 to 9. It can be
shown that these upper bounds are indeed equal to v for these graphs.
Example 7.43 shows that v(K7,7) < 81. To our knowledge, it is not known
if equality holds here. Finally, example 7.44 shows that V(Q4) < 8, and it is
known that equality holds in this case (Guy 1972). A precise mathematical
definition of "crossing" can be found in the reference cited.

7.38 v=l

7.39 v = 3

Figure 7.38.1

7.40 v = 9

7.41 v = 18

Figure 7.40.1
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Figure 7.41.1



7.42 IJ = 35

Non-Planar Graphs

Figure 7.42.1
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7.43 J' < 81

7.44 J' = 8

Figure 7.43.1

Figure 7.44.1
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Non-Planar Graphs

The last two examples of this chapter deal with the coarseness of a graph.
This is denoted c(G) and is defined as the maximum number of line-disjoint
non-planar subgraphs in G.

7.45 THEOREM If m = 3k + 2 and n = 3r + 1, then

c(Km~) < kr + min([k; rl [~l [8k + ~:r + 2])
(Beineke and Guy 1969).

Equality can be attained. Take k = r = O. Then c(K2,1) = O. For a non
planar example, take k = r = 1. Then C(KS,4) = 1.

7.46 THEOREM If m = 3k + 2, n = 3r + 2, then

(K ) ./ k . ([ k + 2r] [2k + r] [16k + 16r + 4] )
c m,n ~ r + mIn 3 ' 3' 39

(Beineke and Guy 1969).

Equality can be attained. Take r = k = 0, c(K2,2) = O. For a non-planar
case, take k = r = 1, c(Ks,s) = 1.

IJJ





Chapter 8

Graph Reconstruction

1. INTRODUCTION

It may seem strange to devote an entire chapter of this work to essentially
one problem. However, we feel that there is considerable justification for
this. The reconstruction problem has been a source of fascination for many
researchers since the early 1960s. In fact, reminiscent of the four color
problem, it seems to be taking on something of the nature of a "disease".
Many results of various kinds have been obtained, while the original
conjecture remains quite elusive.

It seems to have been first introduced by Kelly (1957), and then by Ulam
(1960) in a more general form. Some of the first results were obtained by
Harary (1964), who has offered $100.00 for a solution (1969). A good deal
of work has been done by Manvel, Bondy, and Greenwell and Hemminger.
We state the problem as follows. The graph G - {v;} = G; obtained from
G by removing the point v; and all lines incident with it is called a point
deleted subgraph of G. The reconstruction problem asks: given all p G;'s of
a graph G, is it possible to reconstruct G uniquely (up to isomorphism)?

Now, a number of approaches to this problem are possible. For one
thing, one may restrict the class of graphs. Thus, Kelly (1957) proved that
trees can be reconstructed. A lot of work has been done along these lines,
and we list below all the types of reconstructable graphs, as of our present
knowledge.

A second approach is to consider labeled and partially labeled graphs
(Harary and Manvel 1970). Another area of investigation is to determine
which parameters of a graph can be obtained, or which properties recog
nized from the G;'s. A list of these will also be given below. In addition, a
considerable amount of work has been done on variations of the problem,
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such as the reconstruction of G from just the non-isomorphic G;'s (Manvel
1970b), from G;'s for which each Vi is a pendant vertex (Harary and Palmer
1966b), from n-point deleted subgraphs (n ~ 2) (Manvel 1974), or from
other types of transformations of G, e.g., line-deleted subgraphs (Greenwell
and Hemminger 1969), homomorphic images (Kundu, Sampathkumar, and
Bhave 1976), or even a numerical valued function of G (Bondy 1969b). In
what could be regarded as a grand generalization of the reconstruction
problem, Capobianco (1970a), Frank (1971), and Proctor (1966) intro
duced, independently, the notion of statistical inference in graphs.

Tables 8.1-8.8 summarize most of the known results as of this writing.
Note that for problems involving point-deleted subgraphs we assume that
p > 2, while for those involving line-deleted subgraphs we assume p > 3.

TABLE 8.1 Graphs Reconstructable from Their Collections of Point-Deleted
Subgraphs

Graphs with 3 ~ p ~ 7 (Kelly 1957; Manvel 1970a; Harary and Palmer 1966b)
Trees (Kelly 1957)
Disconnected graphs or graphs with disconnected complements (Chartrand et at.

1973; Greenwell and Hemminger 1969)
Regular graphs (Greenwell and Hemminger 1969)
Graphs with cut-points but no pendant vertices (Bondy 1969c)
Line graphs of trees (Greenwell and Hemminger 1969)
Cacti (Geller and Manvel 1969)
Unicyclic Graphs (Manvel 1969)

TABLE 8.2 Graphs Reconstructable from Their Sets of Non-Isomorphic Point
Deleted Subgraphs

Complete graphs (Manvel 1970a)
Totally disconnected graphs (Manvel 1970a)
Graphs with only one line (Manvel 1970a)
Cycles (Manvel 1970a)
Paths (Manvel 1970a)
Graphs with the property that for any point v, u is adjacent to v only if d(v) - 1 is

not in the degree sequence of the graph (Manvel 1970a)
Disconnected graphs or graphs with disconnected complements (Manvel 1970a;

Greenwell and Hemminger 1969)
Trees [with two exceptions; see example 8.12] (Manvel 1970b)
Maximal outerplanar graphs (Manvel 1972; Giles 1974)
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TABLE 8.3 Graphs Reconstructable from Subgraphs Obtained by Removing a
Pendant Vertex

Trees (Harary and Palmer 1966b; Greenwell and Hemminger 1969)
Cacti with pendant vertices [with certain exceptions; see Greenwell and

Hemminger (1969) and example 8.18]
A large class of other graphs [see examples 8.17-8.21 and Greenwell and

Hemminger (1969)]

TABLE 8.4 Graphs Reconstructable from Their Collections of Line-Deleted Sub
graphs, G - {x} = G X

Disconnected graphs with at least two non-trivial components (Greenwell and
Hemminger 1969)

Regular graphs (Greenwell and Hemminger 1969)
Complete graphsa (Manvel 1970a)
Cyclesa (Manvel 1970a)

a These last two can in fact be reconstructed from the non-isomorphic line-deleted sub~aphs.

TABLE 8.5 Parameters or Properties Which can be Obtained or Recognized from
the Point-Deleted Subgraphs

The number of lines, q
The degree of sequence
The connectivity Ie (Greenwell and Hemminger 1969; Harary 1964)
The blocks of G if p > 3 and G has cutpoints (Bondy 1969c)
Whether G is a tree (Greenwell and Hemminger 1969)
Whether G is centered or bicentered (in the case that G is a tree) (Greenwell and

Hemminger 1969)

TABLE 8.6 Parameters or Properties Which can be Obtained or Recognized from
the Non-isomorphic Point-Deleted Subgraphs·

The number of lines
The minimum degree 8
The set of the degrees of G
The degree sequence, provided that no point of minimum degree is on a 3-cycle,

or the minimum degree is not more than 3, or the maximum degree is not less
than p-4

The connectivity
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TABLE 8.6 continued

The number of cutpoints
The arboricity
The point and line covering and independence numbers
Whether G has a one-factor
Whether G is bipartite
Whether G is a line graph

a (Manvel 1970a).

TABLE 8.7 Parameters or Properties Which can be Obtained or Recognized from
the Line-Deleted Subgraphsa

The number of points, p
The degree sequence
The connectivity

a (Greenwell and Hemminger 1969).

TABLE 8.8 Parameters or Properties Which can be Obtained or Recognized from
the Non-isomorphic Line-Deleted Subgraphsa

The degree sequence
The arboricity
The line connectivity A
The line covering and independence numbers
Whether G is hamiltonian
Whether G is bipartite
Whether G has a one-factor
Whether G is planar

a (Manvel 1970a).

Table 8.9 is interesting. It gives the number of non-isomorphic graphs of
order p, Np, 3 ~ p ~ 7, together with the number of these which require all
p point-deleted subgraphs for reconstruction, Rp• The results indicate that
the reconstruction problem may not be sharp.

Table 8.9-

a (Harary and Manvel 1970).
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The Original Reconstruction Problem

The remainder of this chapter is divided into seven sections, namely,
reconstruction from allp point-deleted subgraphs, reconstruction from non
isomorphic point-deleted subgraphs, reconstruction from pendant vertex
deleted subgraphs, reconstruction from line-deleted subgraphs, reconstruc
tion from n-point deleted subgraphs (n ~ 2), reconstruction of partially
labeled graphs, and miscellaneous questions.

2. THE ORIGINAL RECONSTRUCTION PROBLEM

We here consider reconstruction from the collection of p point-deleted
subgraphs.

8.1 Graphs of order 2 are not reconstructable.

K2 and /(2 have the same collection of point-deleted subgraphs, namely,
two Kt's. There are no other known counterexamples to the conjecture for
finite graphs.

For the next example we need the following definition. Two points of a
graph G are said to be similar if there is an automorphism of G which maps
one into the other.

8.2 THEOREM ffu and v are similar points of G, then G - {v} is isomorphic
to G - {u} (Harary and Palmer 1966c). (See also example 6.39.)

The converse is false, as can be seen by the graph pictured below, in
which u and v are not similar, but for which G - {v} and G - {u} are both
isomorphic to the graph in the second diagram.

u v

0---0

It should be noted that if the converse of this theorem were true, then a
proof of the reconstruction conjecture would be known (Harary 1964).
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8.3 Infinite graphs are not reconstructable.

A counterexample is formed as follows: The vertices of the graph G are
the points in the plane with integral coordinates (n, m), n > 1, m >°
together with an additional point S above the plane. The point (n, m) is
adjacent with (n + 1, m) unless n = km for some integer k, and (n, m) is
adjacent with S if n is odd. (See diagram below.) The graph G' is formed by
removing the point (1,0) from G. We denote the vertices of G' by (n,m)'.

z

Figure 8.3.1

We claim that G and G' are not isomorphic, but have the same collection
of point-deleted subgraphs. The first assertion follows from the fact that
any isomorphism would have to map S into S', and the maximal infinite
path of G - {S} onto G' - {S'}. But this would require that (1,0) be
mapped into (2, 0)', which is a contradiction, since the two points have
different degrees.

The second assertion can be seen by noting first of all that G - {S} and
G' - {S'} are isomorphic, and furthermore that there are countably many
point-deleted subgraphs of both G and G' isomorphic to G and isomorphic
to G'. The former are obtained whenever any point with a non-zero second
coordinate or a point (2r,0) is removed, while the latter occur when a point
(2r + 1,0) is removed (Fisher 1969).

The previous result can be strengthened as follows.

8.4 Infinite forests are not reconstructable.

Take G to be an infinite tree having every point of countable degree, and
take G' = 2G. Then clearly, G and G' are not isomorphic, but every G - {v}
is the union of countably many G's and so is every G' - {v'} (Nesetril 1972;
Fisher et al. 1972).
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8.5 The complete graph of order 4 is the only graph for which each G; is a
cycle. In fact, it is the only graph for which each G; is connected and unicyclic.

To see this, realize that in order for the condition on the G;'s to be
satisfied each one must have a number of lines, q;, equal to p - 1. But the
well-known formula for the number of lines of G,

p

~ q;
;=1

q = p - 2'

yields

p(p - I)
q= p-2 '

which is integral only for p = 1, 3, or 4. But the first two possibilities yield
o and 6 lines respectively, both of which are impossible. Hence the only
possibility is p = 4, q = 6, i.e., K4 (Harary 1964).

8.6 THEOREM If G or its complement is disconnected, then G is reconstruc
table.

The converse is false. Any tree, other than P3, of the form below will do.

8.7 THEOREM If G has cutpoints but no pendant vertices, then G is
reconstructable (Bondy 1969c).

The converse is false. Any cycle or tree will do.

8.8 THEOREM The collection of G;'s determines the degree sequence of G
and the number of lines of G.

The converse is false. Take G and G' as below.

G
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8.9 THEOREM G is connected if and only if at least two of its G;'s are
connected (Harary 1964).

Only one connected G; is not enough. Take G = 1'3 or any graph
consisting of two components one of which is an isolate. Exactly two
connected G;'s could be enough. Take G = P3 or any path at all.

8.10 THEOREM If G and G' have the same collection of p point-deleted
subgraphs, and T is any graph of order less than p, then G and G' have the same
number of subgraphs isomorphic to T (Kelly 1957).

The converse is false. Take T, G, and G' as below.

c;' ~

8.11 THEOREM G is a tree if and only if each G; is a forest and G is not a
cycle (Harary and Palmer I966b).

K3 shows that cycles can have each G; a forest. In fact, each G; is a path
for any cycle.

3. RECONSTRUCTION FROM THE SET
OF NON·ISOMORPHIC G;'s

8.12 Graphs of order less than 4 are not reconstructable from their set of non
isomorphic point-deleted subgraphs (Manvel 1970a).

1'3 and P3 both have {2K1, K2 } as their set of non-isomorphic G;'s. See also
example 8.1. There are no other known counterexamples.

8.13 THEOREM With two exceptions, every tree can be reconstructed from
its set of non-isomorphic subtrees (Manvel 1970b).

The two exceptional pairs of trees are P4 , Klt3 and the pair shown below.
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P4 and KI ,3 both have just one proper subtree (up to isomorphism),
namely, P3• The set of non-isomorphic subtrees for the pair drawn above
consists of Ps and the tree below.

8.14 l~HEOREM A maximal outerplanar graph which is not the triangula
tion of a 6-cycle is reconstructable from its set of non-isomorphic point-deleted
subgraphs for which the degree of the deleted point is 2 (Giles 1974).

The two triangulations of C6 shown below both have only one (up to
isomorphism) point-deleted subgraph for which the degree of the deleted
point is 2. This subgraph is also shown below.

Figure 8.14.1
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4. RECONSTRUCTION FROM THE COLLECTION G - {Vi} WHERE
Vi IS A PENDANT VERTEX

For the first two examples of this section we need to recall the definition
of the center of a graph. This is the set of all points V such that

max d(v, u) = min max d(u, w),
u w u

where d(s, t) is the distance between sand t. It is well known that the center
of any tree consists either of a single point or of two adjacent points. In the
first case the tree is said to be centered, and in the second case it is said to
be bicentered. Throughout this section Gi = G - {Vi}' where Vi is pendant.

8.15 THEOREM If a graph G is a centered tree, then at most two G;'s are
bicentered (Harary and Palmer 1966b).

The converse is false.

8.16 THEOREM If G is a bicentered tree, then at most two G;'s are centered
(Harary and Palmer 1966b).

The converse is false.

G

Greenwell and Hemminger (1969) give four theorems describing a large
class of graphs which are reconstructable from the G;'s (Vi a pendant vertex).
The following are counterexamples based on these theorems. They each
present two non-isomorphic graphs with same collections of G;'s.
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8.17

8.18

The Collection G - {Vi}

Figure 8.19.1

8.20

Figure 8.20.1
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Bondy (1969c) provides the following counterexample, which is not
based on any of the Greenwell-Hemminger theorems. He attributes this
example to Peter M. Neumann, who also claims to have found one with
four pendant vertices.

8.21

G

5

4

13

3

2

12

Figure 8.21.1

4'

6' 13'

8'

3' 12'

It is clear that Gll = Gil' and that GI2 = GI2,. The isomorphism between
G13 and G lJ, is indicated by the vertex labels with v mapping into v'. How
nice that this additional example is based on the ubiquitous Petersen graph!

5. THE LINE RECONSTRUcnON PROBLEM

We here consider reconstruction from the collection of all q line-deleted
subgraphs, G - {x}. We denote G - {x}, where x is a line of G, by GX

•

8.22 Graphs with less than 4 lines are not reconstructable from their
collections of line-deleted subgraphs (Greenwell and Hemminger 1969).

Take G = 2K2 , G' = KI U P3. Then both G and G' have collections of
line-deleted subgraphs consisting of two K2 U 2KI's.

Take G = KI U K 3 , G' = K I,3. Then the common collection of line
deleted subgraphs consists of three P3 U KI's.

There are no other known counterexamples.
For the next example see chapter 5 or the Glossary for the definition of

line graph.

8.23 THEOREM If G is a line graph, then G is reconstructable from its
collection of line-deleted subgraphs if and only if it is reconstructable from its
collection ofpoint-deleted subgraphs (Hemminger 1969).
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The second part of example 8.22 shows that this equivalence does not
hold for non-line graphs, since Kt ,3 is such a graph and is reconstructable
from its G;'s but not from its GX's.

8.24 THEOREM The collection of GX's determines the degree sequence and
the number ofpoints of G.

That the converse is false is shown in example 8.8.

8.25 THEOREM If G and G' have the same GX's and T is any graph with
less than q lines, then G and G' have the same number of subgraphs isomorphic
to T.J

That the converse is false can be seen from example 8.10.

6. RECONSTRUCTION FROM n-POINT-DELETED
SUBGRAPHS, n ~ 2

8.26 THEOREM If the maximum degree of G is not greater than p - n - 2,
or the minimum degree of G is not less than n + 1, then the degree sequence of
G can be determined from the collection of n-point-deleted subgraphs (Manvel
1974).

The following example shows that the condition on the maximum degree
can not be relaxed. Take G = Kt U P3, G' = 2K2 , and n = 2. Then ~(G),

the maximum degree of G is 2, ~(G') = 1, andp - n - 2 = O. G and G'
have the same collection of 2-point-deleted subgraphs, namely, 2 K2's and
4 [(2'S.

For another example, take G = Kt,3 U 3K2 , G' = Kt U 3P3, and n
= 7. Manvel (1974) gives a whole class of these examples, namely,

BmJ(m)
G = U 2" Ktm- 2i ,

;=0 I '

lHm-t)]( m )
G' = ;l}o 2i + 1 Kt,m-21-t,

where m = p - n. G and G' each have p = (p - n + 2)2p-n-2. Note that if
n = 1 this becomes

p = (p + 1)2p-3,

which is not valid for any p. Too bad!

8.27 THEOREM The following types of graphs can be recognized as such
from their 2-point-deleted subgraphs: (a) trees with p ~ 6, (b) unicyclic graphs
with p ~ 5, (c) regular graphs with p ~ 5, (d) bipartite graphs with p ~ 5
(Manvel 1974).

1 R. L. Hemminger, Consequences of Kelly's lemma in reconstructing graphs (private
communication).

147



Graph Reconstruction

The examples below show that these bounds on p are sharp.
(a) Let G = C4 U KI, and let G' be the graph below.

Both have the same collection of 2-point-deleted subgraphs namely, 4 1'3'S,
2 [(3'S, and 4 P3'S.

(b) G = K t ,3, G' = K3• The collection of 2-point-deleted subgraphs is
3 K2's and 3 1(2'S.

(c) G = 2K2 , G' = Kt U P3• The 2-point-deleted subgraphs are 2 K2's
and 4 [(2'S.

(d) Same as (b).

8.28 THEOREM A disconnected graph G with p ~ 5 and no component of
order p - 1 is reconstructable from its collection of 2-point-deleted subgraphs
(Manvel 1974).

Example 8.27(c) shows that the bound is sharp. Note that if the condition
of no component of order p - 1 were not present, then the truth of the
reconstruction conjecture would follow.

8.29 THEOREM If G has order at least 6, then the collection of 2-point
deleted subgraphs determines whether or not G is connected (Manvel 1974).

Example 8.27(a) shows that the bound is sharp.

7. RECONSTRUCTION OF PARTIALLY LABELED GRAPHS

In this section we consider the problem of reconstructing a graph G
which has some of its vertices labeled. We are interested in particular in the
number r(p, n), which is defined as the minimum number of point-deleted
subgraphs G; required to distinguish graphs of order p with n points
unlabeled. This is, of course, one more than the maximum number of point
deleted subgraphs that two non-isomorphic such graphs have in common.
It is easy to see that r(p,O) = 3, and that the reconstruction conjecture
states that r(p,p) < p. The examples which follow are based on a paper of
Harary and Manvel (1970).

8.30 THEOREM r(p,p) ~ [!p] + 2.

This bound is not sharp. Take G and G' to be the graphs below.
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G

These have 5 G; in common (below), so that r(6,6) ~ 6.

o

In addition, G has the point-deleted subgraph

while G' has Kt U P4.

8.31 THEOREM r(p, n) ~ [!(n + I)] + 2, p > n > o.
This bound is not sharp. Take G and G' to be the graphs of example 8.30,

each unioned with a labeled isolate. Then these will have the same 5 G;'s in
common, so that r(7, 6) ~ 6.

8.32 A smaller example in connection with the theorem of example 8.30 is
given by

G

These have two K4 - x's and two Kt,3 + x's as point-deleted subgraphs in
common, and hence r(5, 5) ~ 5. The remaining point-deleted subgraphs
are P4 for G and K4 for G'.

8.33 We give one more example in connection with example 8.30. This
establishes the fact that r(7, 7) ~ 6.
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G

The five point-deleted subgraphs in common are:

Figure 8.33.1

The additional point-deleted subgraphs are P6 and K2 U (K4 - x) for G,
and the two shown below for G'.

Exact values of r(p, n) which are known as of this writing are given in
table 8.10.

TABLE 8.10

p".n 0 2 3 4

3 3 3 3 3
4 3 3 3 4 4
5 3 3 3 4 4
6 3 3 3 4 4
7 3 3 3 4 4

8. MISCELLANEOUS QUESTIONS

5

5
5
5

6

6
6

7

6

A problem related to the reconstruction conjecture, and apparently just
as difficult, is that of determining when a collection of p graphs each with
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p - 1 vertices is the collection of point-deleted subgraphs for some graph.
The following example shows that there are collections of such graphs with
no reconstruction.

8.34 A collection offive graphs of order 4 with no reconstruction is P4, K I ,3,

KI ,3 + X, 2K2 , [(40

In fact, it is easy to see that there is not even a graph G such that 2K2

and [(4 belong to the collection of point-deleted subgraphs of G (O'Neil
1970).

Bondy (1969b) considered the reconstruction of a graph from its closure
function. This is defined as follows: Let X be a set of points of a graph G,
and let Cn(X) be the set of all points on paths of length at most n from
points in X. Then the closure function of G, NG, is a function defined on the
subsets of the vertices of G such that

[

the smallest k such that Ck(X) is the entire

NG(X) = set of points of G,
00 if there is no such k or if X is empty

We also need the following definition. Two graphs are label-isomorphic if
with their vertices labeled 1, 2, 3, ... , p, there exists an isomorphism ep such
that <t>(n) = n, 1 < n < p.

8.35 THEOREM Any graph without cycles of length 3 or 4 is determined up
to label isomorphism by its closure function (Bondy 1969b).

In general, however, graphs are not determined up to isomorphism by
their closure functions. The two graphs shown in figure 8.35.1 are certainly
not isomorphic (one is planar, the other isn't), but have the same closure
function.

2

5

2

6

Figure 8.35.1

5 6
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Here the common closure function has the value 2 for any singleton or any
2 element set other than {3, 4}, and the value 1 for {3, 4} or any 3, 4, or 5
element set.

Infinitely many pairs of non-isomorphic graphs with the same closure
function can be obtained from the two above by adding points adjacent
with the vertices labeled 1 and 2 to both graphs.

We conclude this section, and the chapter, with a consideration of some
recent results (Kundu, Sampathkumar, and Bhave 1976) on the reconstruc
tion of graphs from homomorphic images, elementary contractions, and
elementary partitions. These are defined as follows: A graph obtained from
a graph G by the identification of two non-adjacent vertices we call a
homomorphic image of G. A graph obtained from G by the identification of
two adjacent vertices we call an elementary contraction of G. An elementary
partition of G is either a homomorphic image or an elementary contraction.

8.36 THEOREM A tree with p ~ 7 can be reconstructed from its non
isomorphic elementary contractions.

The following graphs G and G' show that p = 6 is too small.

G

Both have as non-isomorphic elementary contractions.

8.37 THEOREM A tree can be reconstructed from its non-isomorphic
elementary partitions.

This is not true for graphs in general. Take G = K3 , G' = P3. They both
have the same set of elementary partitions namely, {K2 }. Or take G = C4,

G' = P4. Then the common set of elementary partitions is {K3 , P3 }.

8.38 THEOREM A tree can be reconstructed from its non-isomorphic
homomorphic images.

This is not true for graphs in general. Take G = K4 - X, G' = Kt ,3 + x.
These both have the same homomorphic image, namely, K3•
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Chapter 9

uaversability

1. INTRODUCTION

In this chapter we study traversability in graphs, i.e., various ways of
"traveling through" graphs. Historically, these were among the first con
cepts studied in graph theory and have been extensively researched. We
begin with a short section on eulerian graphs, and then proceed to study
hamiltonian graphs and related concepts. The third section deals with
traversability of line and total graphs, and the final section deals with
detours in graphs.

Throughout this chapter, we assume that all graphs are connected and
have p ~ 3 points.

2. EULERIAN GRAPHS

A trail in a graph is a walk in which no edge is repeated. A circuit is a
closed trail. A circuit (trail) in a graph G is eulerian if it contains every edge
of G. A graph is eulerian if it contains an eulerian circuit. Eulerian graphs
and graphs having eulerian trails were characterized by Euler (1956):

THEOREM
(1) G is eulerian if and only if every point of G has even degree.
(2) G has an eulerian trail if and only if G has exactly two points of odd

degree.
A graph G is randomly eulerian from the point v if every trail beginning

at v can be extended to an eulerian circuit. The following theorem of O. Ore
characterizes such points:

THEOREM An eulerian graph G is randomly eulerian from the point v if
and only if every cycle of G contains v (Ore 1951).
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It is obvious that a graph that is randomly eulerian from a point is
eulerian. The converse is, however, not true, as is shown in the first part of
the following example.

9.1 THEOREM If G is eulerian, then G is randomly eulerian from exactly
0, 1, 2, or p of its points.

We give examples of such eulerian graphs.
Randomly eulerian from 0 points: Note that all eulerian graphs on p < 5

points are randomly eulerian from at least one of their points. If p ~ 6 is
even, take Cp/ 2 and use the remainingpj2 points to form triangles each with
a base on a different line of the cycle. If p ~ 7 is odd, form the graph
discribed above for p - 1 and then subdivide anyone of its lines with an
additional point. We illustrate the cases p = 10 and p = 11 in figure 9.1.1.

Figure 9.1.1

Randomly eulerian from 1 point: Any such graph must have p ~ 5.
Identify C3 and Cp-2 at a point.

Randomly eulerian from 2 points: Any such graph must have p ~ 5. If p
is even, K2,p-2 is randomly eulerian from the two points u and v of degree
p - 2. If p is odd, take K2,p-2 as above and add the line u-v. The resulting
graph is randomly eulerian from u and v only.

Randomly eulerian from p points: Any cycle Cp will do, and these are the
only such graphs (Ore 1951).

9.2 THEOREM If a graph is randomly eulerian from v, then d(v) = ~(G).

The converse is false, as can be seen by considering the graphs in figure
9.1.1.

9.3 THEOREM If G is randomly eulerian from v, then v belongs to every
block of G.

The converse is false. Consider the eulerian graph with p ~ 7 in figure
9.3.1.
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Figure 9.3.1

The point v belongs to both blocks, but by Ore's theorem, the graph is not
randomly eulerian from v (Harary 1957).

3. HAMILTONIAN GRAPHS

A graph G is hamiltonian if it has a spanning, or hamiltonian, cycle.
Although first studied by T. P. Kirkman in 1856, spanning cycles became
known as hamiltonian from a game introduced in 1857 by Sir William
Hamilton. The game, consisting of a solid regular dodecahedron, was to
find a route along the edges of the solid which passes through each vertex
exactly once and which ends at the vertex at which it began. If one
considers an embedding of the vertices and edges of the dodecahedron in
the plane, the game is equivalent to finding a hamiltonian cycle in the
resulting plane graph.

9.4 THEOREM The graphs of the five regular polyhedra are hamiltonian.

We exhibit for each of these a hamiltonian cycle. The points are to be
traced in numerical order, beginning with 1 and returning to 1. The
tetrahedron

3

~
4 2

Figure 9.4.1
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The cube

2

The octahedron

4

Figure 9.4.2

3

3~-===~----------~--o2

Figure 9.4.3

The dodecahedron

5 6 2

7 11
17 15

16

8 9 10
4 3

Figure 9.4.4
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The icosahedron

30----------------------:::::::....,2

Figure 9.4.5

9.5 The concepts of eulerian and hamiltonian graphs are independent.

Each of the following graphs has the smallest number of points possible
for graphs in that category.

hamittonian

non-hamiltonian

eulerian non-eulerian
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Unlike the case of eulerian graphs, there is no known non-trivial
characterization of hamiltonian graphs. The next series of examples discuss
es some necessary and some sufficient conditions for a graph to be
hamiltonian.

9.6 THEOREM Every hamiltonian graph is 2-connected.

The converse is false. Any K2,n with n ~ 3 will do.
Recall that a graph G is t-tough if for every set S of points of G,

k(G - S) > I implies lsi ~ t . k(G - S), where k(G - S) denotes the
number of components of G - S.

9.7 THEOREM If G is hamiltonian, then G is I-tough.

The converse is false. Let G be the Petersen graph. Since G is 3
connected, if S is any set of points with lSI = I or 2, then k(G - S) = 1.
If lsi = 3, then the maximum value of k(G - S) is 2. If lsi = 4, then the
maximum value of k(G - S) is 3. The Petersen graph, however, is non
hamiltonian (Chvatal 1973).

It has been conjectured by Chvatal (1973) that every t-tough graph with
t > i is hamiltonian. This conjecture cannot be improved to include t = ~.

To see this, we define the inflation of a graph G as the graph whose points
are the set of all ordered pairs (x, v) where x is a line of G and v is an
endpoint of x. Two points of the inflation are adjacent if they differ in
exactly one coordinate. It may be shown (Chvatal 1973) that the inflation
of the Petersen graph is i-tough and non-hamiltonian.

A theta graph is a block with exactly two points of degree 3 and all other
points of degree 2.

9.8 THEOREM Every non-hamiltonian 2-connected graph has a theta
subgraph.

The converse is false. Consider the following graph G:

v,
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The subgraph induced by VI, V2, V3, V4, V6 is a theta subgraph.
All conditions sufficient for a graph to be hamiltonian say, in effect, that

if G has "enough" lines, then G must be hamiltonian. We now consider
such theorems.

9.9 THEOREM For a graph G if

(
p - 1)q > 2 + 1,

then G is hamiltonian.

The converse is false. Let G = Cp with p ~ 4.
The inequality is also sharp in the sense that there exist non-hamiltonian

graphs with p points and (P;l) + 1 lines. In fact, the only such graphs are
the following: Kp_ 1 with an additional point adjacent to one of its points,
and the following graph:

(Ore 1961).

9.10 THEOREM If G is a graph with

p~ 68 and q> (p ; 8) + 82 ,

then G is hamiltonian.

The converse is false, as is easily seen by considering Cp for p ~ 12
(Bondy and Murty 1976).

9.11 THEOREM If there exists an n such that G is n-connected and
f3o(G) < n, then G is hamiltonian.

The converse is false. Let G = C2n , n ~ 3. Then G is hamiltonian, but
IC(G) = 2 and f3o(G) = n.

The theorem is also sharp, since Kn,n+ I is n-connected, f30 (Kn,n+ I) = n + 1,
and is non-hamiltonian (Chvcital and Erdos 1972).

We now consider a sequence of successively stronger theorems giving
conditions sufficient for a graph to be hamiltonian. The degree sequence of
a graph is the non-decreasing sequence of the degrees of its points,
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d1 < d2 < ... < dp • A non-decreasing sequence d1 < d2 < ... < dp is
graphical if there is a graph G having points u; with d(u;) = d;, 1 < i < p.
The closure of G, cl(G), is the graph obtained from G by recursively joining
pairs of non-adjacent points whose degree sum is at least p until no such
pair remains.

Consider the following six conditions:

Cl: 8(G) ~ p/2 (Dirac 1952).

C2: For every pair of non-adjacent points u and v, d(v) + d(u) ~ p
(Ore 1960).

C3: For every n, 1 < n < (p - 1)/2, the number of points of degree
not exceeding n is less than n, and for odd p the number of points
of degree at most (p - 1)/2 does not exceed (p - 1)/2 (P6sa
1962).

C4: d; < i and ~ < j imply d; + ~ ~ p (Bondy 1969a).

C5: d; < i < p/2 implies dp_; ~ p - i (Chvatal 1972).

C6: cl(G) is complete (Bondy and Chvatal 1977).

We investigate the following theorems: for 1 < I < 6,

THEOREM I If G satisfies CI, then G is hamiltonian.

The next five examples show that theorem I is stronger than theorem
I - 1 for 2 < I < 6.

9.12 Theorem 2 is stronger than theorem 1.

Consider the following graph G21 :

8(G 21 ) = 2 < p/2; hence theorem 1 does not apply. But d(u) + d(v) = 5
= p for all pairs of non-adjacent points.

9.13 Theorem 3 is stronger than theorem 2.

Consider the following graph G32 :
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u

v

d(u) + d(v) = 5 < p, so theorem 2 does not apply. It is easy to check that
theorem 3 does apply.

9.14 Theorem 4 is stronger than theorem 3.

Consider the following graph G43 :

The degree sequence of G43 is 2, 2, 4, 5, 5, 5, 5. Condition C3 is not satisfied,
since the number of points of degree less than or equal to 2 is not less than
2. It is easy to check that theorem 4 does apply.

9.15 Theorem 5 is stronger than theorem 4.

Consider the following graph G54 :

v,

V
4
~---------u v5

v
3

v2

The degree sequence of G54 is 2, 2, 2, 4, 4, 4. Condition C4 is not satisfied,
since d2 < 2 and d3 < 3, but d2 + d3 = 4 < p. It is easily checked that
theorem 5 applies.
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9.16 Theorem 6 is stronger than theorem 5.

Consider the following graph G6S :

The degree sequence of G6S is 2, 2, 2, 3, 3, 4. Condition C5 is not satisfied,
since d2 < 2 but d4 < 4. On the other hand, cl(G6S ) = K6•

If d1 < d2 < ... < dp and d1< d2 < ... < d; are graphical sequences
and di < d~ for 1 < i < p, then we say that {d~} majorizes {di }. Note that
this induces a partial order on the set of all graphical sequences of length
p. A graphical sequence is said to be forcibly hamiltonian if every graph with
this degree sequence is hamiltonian. Thus, theorems I, 3, 4, and 5 may be
restated as follows: If the graphical sequence d1 < d2 < ... < dp satisfies
CI, I = 1, 3, 4, 5, then it is forcibly hamiltonian. Each of the conditions
CI, I = 1, 3, 4, 5, has the property that any graphical sequence which
majorizes a sequence satisfying it must also satisfy the condition. Theorem
5 is the best possible theorem of this kind in the sense that for a given p it
characterizes the largest upper order ideal in the set of all forcibly
hamiltonian sequences of length p. An upper order ideal in a partially
ordered set S is a subset I of S such that if x E I, then y > x implies that
y E I.

9.17 Theorem 5 characterizes the largest upper order ideal in the set of all
forcibly hamiltonian sequences of length p.

To show this, we prove that if a graphical sequence does not satisfy C5,
it is majorized by a non-forcibly hamiltonian sequence. Now if d1 < d2

< ... < dp does not satisfy C5, it is majorized by the degree sequence of
the graph G = Kk + (Kk U Kp-2k), where k is the first subscript for which
C5 fails to hold. Since the removal of the k-point subgraph Kk from G
results in a graph with k + 1 components, by the theorem of example 9.7,
G is non-hamiltonian (Chvcital 1972).

9.18 Condition CI, 1 < I < 6, is not necessary for a graph to be hamilton
ian.
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Let G = Cs• G is trivially hamiltonian, but does not satisfy any of the
conditions CI, 1 < I < 6. More generally, Nash-Williams, as reported by
Chvatal (1972), proved that any regular graph of degree d with 2d + 1
points is hamiltonian. No such graph satisfies any of the conditions CI,
1 ~ I < 6.

It was conjectured by Nash-Williams (1971) that a sufficient condition
for a graph to be hamiltonian was that it be 4-connected and regular of
degree 4. The following example of G. H. J. Meredith shows this to be false.

9.19 A 4-connected, 4-regular graph may be non-hamiltonian.

Consider the following graph G:

Figure 9.19.1

That G is non-hamiltonian follows from the observation that the multi
graph obtained by contracting anyone of the K3,4 subgraphs to a point is
hamiltonian if and only if G is hamiltonian. Now, contracting each K3,4

subgraph results in the multigraph
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Figure 9.19.2

which is hamiltonian if and only if the Petersen graph is hamiltonian. The
result follows, since the Petersen graph is non-hamiltonian (Meredith 1973).

We now turn our attention to planar hamiltonian graphs. This type of
graph has received much attention in the past because of Tait's attempted
proof in 1880 of the four color conjecture. His "proof" rested on the
assumption that every planar cubic 3-connected graph is hamiltonian. This
was shown false by Tutte in 1946 (see example 9.21). More recently
polyhedral graphs (i.e., planar, 3-connected graphs) have become important
in the study of the efficiency of linear programming and other computation
al algorithms.

Note that Tutte proved the following theorem:

THEOREM Every planar 4-connected graph is hamiltonian (Tutte 1956).

We have, however, the following:

9.20 There exist non-hamiltonian graphs of arbitrarily high connectivity.

The graphs Kn,m with n > m are non-hamiltonian and IC(Kn.m) = m.
We now state a theorem which may be used to prove certain planar

graphs are non-hamiltonian. Suppose that G is a plane hamiltonian graph
with hamiltonian cycle C. The lines of C divide the plane into an interior
bounded region and an exterior unbounded region. The lines of G not in C
divide these two regions into faces (see Chapter 5 or the Glossary for the
definition of face). Let j; denote the number of interior faces which are
bounded by i lines, and let f~ denote the number of exterior faces which are
bounded by i lines. Then we have the following theorem of Grinberg
(1968):
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THEOREM

p

}:: (i - 2)(1; - f~) = O.
;;>3

With the aid of this theorem we now show that the Tutte graph is non
hamiltonian.

9.21 Not every cubic 3-connected planar graph is hamiltonian.

Consider the Tutte graph T:

Figure 9.21.1

Suppose that T posseses a hamiltonian cycle f. It is not difficult to prove
by contradiction that at least two of the IO-cycles, say A and B, must lie in
the interior of f. Then the line z cannot belong to f, and so f must enter
and leave the section pqr through lines x and y. It follows that there must
be a path joining p and q which passes through each point of the section
pqr exactly once.

Now consider the section pqr by itself without the connecting lines
x, y, z. The path refered to in the previous paragraph may be extended to
a hamiltonian cycle f' by adding the line pq, resulting in the graph H:
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p u------o<>-----o q

H

r

Figure 9.21.2

Applying Grinberg's theorem to H, we obtain

(/3 - /3) + 2(/4 - /:.) + 3(/5 - /s) + 6(/8 - /s) = o.
Since pq belongs to f', this reduces to

2(/4 - /:.) + 3(/5 - /s) = 5.

The 4-cycle containing r must be in the interior of f', and thus /4 - /:. = 2
or 0 according as the other 4-cycle lies inside or outside f'. In the first case
we get 3(/5 - /s) = 1, and in the second 3(/5 - /s) = 5, neither of which
is possible (Honsberger 1973).

Since Tutte's example, there have been several attempts to construct
cubic 3-connected planar graphs with fewer points than the Tutte graph,
which has 46. It has been shown (Lederberg 1967) that every cubic 3
connected planar graph with up to 18 points is hamiltonian. The next
example exhibits some cubic 3-connected planar graphs on 46 or fewer
points. The last graph of the example, having 38 points, is the smallest
known example. Each graph may be proven non-hamiltonian by using
Grinberg's theorem.
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9.22 Other cubic 3-connected planar non-hamiltonian graphs.

Figure 9.22.1 46 points (Grinberg 1968).

Figure 9.22.2 42 points (Honsberger 1973, p. 90).
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Figure 9.22.3 44 points (Honsberger 1973, p. 90).

Figure 9.22.4 38 points (Lederberg 1967).
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A maximal planar graph is a planar graph to which no lines can be added
without making the resulting graph non-planar.

9.23 Not every maximal planar graph is hamiltonian.

The following is the smallest non-hamiltonian maximal planar graph:

4~~===:::::=---- -===:::::::::::J-05

Figure 9.23.1

Removal of the five numbered points results in a graph with six
components. Hence, by the theorem of example 9.7, the graph is non
hamiltonian (Goldener and Harary 1975).

Tutte conjectured that every cubic 3-connected bipartite graph is hamil
tonian. This is shown false by the next example, due to J. D. Horton.
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9.24 Not every cubic 3-connected bipartite graph is hamiltonian.

Let G be the following graph:

Figure 9.24.1

The proof will be omitted. An outline of the proof may be found in
Bondy and Murty (1976, p. 61).

In the search for conditions under which a planar graph must be
hamiltonian, the property of cycle connectivity has been considered. Recall
that a cyclic cutset L of a 3-connected graph G is a set of lines of G such
that G - L has two components each of which contains a cycle. The cyclic
connectivity CA(G) of G is the minimum cardinality of all cyclic cutsets of
G. The Tutte graph T is cubic, planar, has cA(T) = 3, and is non
hamiltonian. It can be shown that if G is cubic and planar, then CA(G) < 5.
The next two examples show that there exist non-hamiltonian cubic planar
graphs with CA(G) = 4 or 5. These examples are of interest because it may
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be shown that the four color conjecture is true if all 3-connected planar
graphs having CA(G) = 4 [or having CA(G) = 5] are hamiltonian. See
Griinbaum (1967) for a further discussion of this topic.

9.25 There exist planar cubic graphs G with CA(G) = 4 which are non
hamiltonian.

Let G be the following graph, due to Hunter, which can be shown to be
non-hamiltonian by Grinberg's theorem (Griinbaum 1967).

Figure 9.25.1
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9.26 There exist non-hamiltonian planar cubic graphs G with CA(G) = 5.

Let G be the following graph constructed by H. Walther (1965):

Figure 9.26.1

The proof that G has all the stated properties will be omitted.
Even if we allow an increase in the degree of a regular graph, one still

cannot force the graphs to be hamiltonian. We now consider 3-connected
graphs which are regular of degree 4 or 5 (a planar graph cannot be regular
of higher degree). It can be shown (Sachs 1967) that the maximum cycle
connectivity of any such graph is 6.

9.27 There exist non-hamiltonian planar graphs G, regular of degree 4, with
CA(G) = 6.

To construct such a graph G, we proceed from the Tutte graph T as
follows: For an arbitrary point v of T, replace each line incident with v by
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a new point v}, V2, V3. Introduce three additional points u}, U2, U3 with the
following lines: UI U2, UI U3, U2 U3, VI UI, VI U3, V2 UI, V2 U2, V3 U2, V3 U3. This is done
at each point of T in the manner shown below, resulting in the required
graph G.

\
\

I
I

I

Figure 9.27.1

See Sachs (1967) for a proof that the resulting 207 point graph has the
stated properties.

Before proceeding to the next example, we define the subdivision graph
S(G) of a graph G as the graph obtained from G by replacing each line uv
of G by a new point wand the two new lines uw and wv.

9.28 There exist non-hamiltonian 3-connected planar graphs G, regular of
degree 5, which have CA(G) = 6.

Again let T be the Tutte graph. Label the lines of S(T) with one of the
integers 2 and 3 in such a way that the two lines incident with a point of
degree 2 have different labels (such a labeling is not unique). If V is a point
of S(T) of degree 3 which is incident with lines labeled i, j, k we shall call
it an (i,j, k) point. We define the four figures D(i,j, k) below:
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0(3,3,3)

0(2,3,3)

174

Figure 9.28.1



0(2,2,3)

0(2,2,2)

Figure 9.28.1 (contd)

Hamiltonian Graphs
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Now if the point v of S(T) is an (i,j, k) point, replace v by a figure of type
D(i,j, k) in the following way:

i

Figure 9.28.2

Do this for every point v of degree 3 in S(T). The resulting graph G is
the required graph. See Sachs (1967) for a proof that G has the stated
properties.

We now consider several conditions weaker than that of graph being
hamiltonian. First, we ask whether, if a graph G is non-hamiltonian, any
power Gil of G is hamiltonian for n ~ 2. In terms of G, this would mean
that the points of G may be ordered VI, V2, ••• , vp , VI in such a way that the
distance between any two consecutive points is at most n. M. Sekanina
(1960), and independently Karaganis (1969), proved that if G is connected,
then G3 is hamiltonian. That not every connected graph has a hamiltonian
square is shown by the following two examples.

9.29 There are trees having non-hamiltonian squares.

Consider the tree T below and its square:
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v,

T

Figure 9.29.1

The points v}, vs, and V7 in T 2 are all of degree two. Hence the lines VI V3,

Vs V3, and V7 V3 must all lie in any hamiltonian cycle of T 2
• But this woul~

require this cycle to pass through V3 twice, which is impossible. (Behzad and
Chartrand 1971).

9.30 There are bridgeless graphs having non-hamiltonian squares.

The graph in figure 9.30.1 is an example.

Figure 9.30.1

The proof is left as an exercise (Fleischner and Krank 1972).
Note that H. Fleischner (1974) proved that the square of every block is

hamiltonian. See also Fleischner and Hobbs (1975) for a necessary condi
tion for the square of a graph to be hamiltonian.
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If a graph is non-hamiltonian, it may posses a hamiltonian path, i.e., a
path containing all the points of G. In such a case G is called traceable.

9.31 Not every block which is traceable is hamiltonian.

Take Cp- t , p ~ 7. Form G by making a new point u adjacent to two
points v and w of Cp- t which are at a distance of 2 along the cycle. G is
obviously traceable. That it is non-hamiltonian follows by noting that any
cycle containing u would have to contain both the lines uv and uw and
would, therefore, have to pass through either v or w twice.

The next two examples deal with conditions which are sufficient for a
graph to be traceable.

9.32 THEOREM If8(G) ~ (p - 1)/2, Then G is traceable.

The converse is false, as is seen by considering any path on p ~ 4 points
(Dirac 1952).

9.33 THEOREM If G is n-connected and f3o( G) < n + 2, then G is
traceable.

The converse is false. Let G = Cg• Then IC(G) = 2 and f3o(G) = 4.
The theorem is also sharp, since Kn,n+2 has IC(G) = n, f3o(G) = n + 2, but

G is not traceable (Chvatal and Erdos 1972).
As for planar graphs, one can ask if every planar cubic 3-connected

graph is traceable. The following example of T. A. Brown answers the
question in the negative.

9.34 Not every planar cubic 3-connected graph is traceable.

Consider graph B of figure 9.34.1.
Each of the regions 'Ii has twelve points in addition to those shown. There

is an isomorphism of 'Ii onto the graph H - pq, where H is defined as in
example 9.21, takingpi' qi, lj onto p, q, r respectively. Let G (respectively K)
denote the graph obtained from B by shrinking the points Pi, qi, lj,

4 < i < 6 (1 < i < 3) and all lines joining them to a single point u(v).
Then neither G nor K is hamiltonian. Now, any hamiltonian path for B
must use all three of the lines rt q4, r2 qs, and r3 q6, for otherwise it would
lead to a hamiltonian path for G starting at u, and no such path exists. Now
suppose that B has a hamiltonian path P. We can assume P starts in either
11, 12, or 13 and first enters 14, 15, or 16 by means of the line rt q4. Suppose it
leaves 14 at P4. Then P must later return and end in 14, because 14 has no
hamiltonian path from q4 to P4. If P leaves 15 at Ps, it does not use r2 qs. If
it leaves 15 at qs, it enters 1(, at q6 and leaves 1(, at P6, thus omitting at least
one point of 1(" since 1(, has no hamiltonian path from q6 to P6. In a similar
way, one can analyze the case where P leaves 14 at r4 (Griinbaum 1967, pp.
360-362).
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Figure 9.34.1

A non-hamiltonian (non-traceable) graph G is hypo-hamiltonian (hypotra
ceable) if G - v is hamiltonian (traceable) for every point v of G.

9.35 THEOREM There exist no hypo-hamiltonian graphs on p points for
p < 10, p = II, or p = 12. For p ~ 13, except possibly p = 14, 17, 19,
there exists a hypo-hamiltonian graph of order p.

The only hypo-hamiltonian graph on p < 10 points is the Petersen
graph, which we denote by Hto. See Busaker and Saaty (1965) for a proof.
That there are no hypo-hamiltonian graphs for p = 11 or 12 is established
in (Herz, Duby, and Vigue 1967) as well as the existence of the hypo
hamiltonian graph of order 13:
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7

Figure 9.35.1

The following construction yields hypo-hamiltonian graphs on P = 6k
+ 4 points for k ~ 1 and is due to W. F. Lindgren (1967). Consider the
cycle C6k +3 with the points numbered consecutively in counterclockwise
order. Form H6k +4 by adding a point v = 6k + 4 in the center of C6k +3, and
adding all lines of the form (v, 1 + 3i), i = 0, 1, ... , 2k; all lines of the
form (2 + 3i,6 + 3i), i = 0,1, ... , 2k - 1; and the line (6k + 2,3).

We now construct hypo-hamiltonian graphs for P ~ 13 except possibly
for P = 14, 17, and 19. The construction is due to C. Thomassen (1974).
Let GI and G2 be disjoint hypo-hamiltonian graphs. Assume that GI and G2

contain points Vo and Uo of degree 3, and let VI, V2, V3 and UI, U2, U3 be the
points adjacent to Vo and Uo respectively. It can be shown that the Vi and the
Ui are independent sets of points in GI and G2 respectively. Let Ht
= GI - Vo and H2 = G2 - uo. Form G by identifying the points Vi and Ui

into the point Wi, 1 ~ i ~ 3. Then G is hypo-hamiltonian.
Now if each of GI and G2 has a point of degree 3 distinct from Vo and Uo

and which is not adjacent to Vo and uo, then G has two non-adjacent points
of degree 3. It follows that if there are hypo-hamiltonian graphs with PI and
P2 points respectively, each of which has two non-adjacent points of degree
3, then there is a hypo-hamiltonian graph on PI + P2 - 5 points which has
two non-adjacent points of degree 3. Now, each of the hypo-hamiltonian
graphs HIO , Ht3' Ht6' and H22 constructed above has two non-adjacent points
of degree 3. Any set S of integers which contains 10, 13, 16, and 22 and
which contains nl + n2 - 5 whenever it contains nl and n2 contains all
integers greater or equal to 13 except possibly 14, 17, and 19. The
construction is thus complete.

180



Hamiltonian Graphs

9.36 THEOREM There exist hypotraceable graphs with p points for p = 34,
37, 39, 40 and all p ~ 42.

Let G;, 1 < i < 4, be disjoint hypo-hamiltonian graphs. Let G; have a
point V; of degree 3. Let u}, ul, Uf be the points adjacent to V;, 1 < i < 4.
Let H; = G; - V;. Using the H;, identify Uf and uj into the point WI and uj
and u~ into the point W2. Then add the lines ul ul, u1 u~, u~ u!, and u~ u~. It
can be shown that the resulting graph is hypotraceable.

Thus if there are hypo-hamiltonian graphs of orders Pi, 1 < i < 4, such
that each has a point of degree 3, there is a hypotraceable graph of order
PI + P2 + P3 + P4 - 6. The theorem now follows by the theorem and
constructions of example 9.35.

We exhibit the smallest known hypotraceable graph (Thomassen 1974).

Figure 9.36.1

We conclude this section on hamiltonian graphs by considering several
conditions stronger than that of a graph being hamiltonian. A graph is
hamiltonian-connected if every pair of its points are joined by a hamiltonian
path. A graph is strongly hamiltonian if each of its lines belongs to a
hamiltonian cycle. A graph G is n-hamiltonian if for every subset S of V(G)
with lsi < n, G - S is hamiltonian. A graph G is randomly hamiltonian if
for every point V of G any path beginning at V can be extended to a
hamiltonian cycle.
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It is easy to see that any graph which is hamiltonian-connected is both
strongly hamiltonian and hamiltonian, and any strongly hamiltonian graph
is hamiltonian. None of the converses, however, is true.

9.37 Not every hamiltonian graph is hamiltonian-connected.

Let G = Cp , p ~ 4. G is trivially hamiltonian, and no pair of non
adjacent points are joined by a hamiltonian path.

9.38 Not every strongly hamiltonian graph is hamiltonian-connected.

Let G = Cp , p ~ 4.

9.39 Not every hamiltonian graph is strongly hamiltonian.

Let G consist of a p-cycle together with any of its chords. The chord
cannot be on any hamiltonian cycle.

There are several sufficient conditions for a graph to be hamiltonian
connected which parallel the sufficient conditions for hamiltonicity dis
cussed earlier (see examples 9.12-9.17).

9.40 THEOREM If G has p ~ 4 points and

(
p - 1)

q ~ 2 + 3

lines, then G is hamiltonian-connected.

The converse is false. We construct G as follows: Take K""" n ~ 3, with
points in one part labeled 1 through n and those of the other part l' through
n'. Now add the lines (1, 2) and (1', 2'). Then G is hamiltonian-connected
and has

(
2n - 1)

q = n2 + 2 < 2 + 3.

9.41 THEOREM If 8(G) ~ (p + 1)/2, then G is hamiltonian-connected.

The converse is false. Let G be the graph constructed in example 9.40.
Then 8(G) = n, while (p + 1)/2 = n + i (Ore 1963).

9.42 THEOREM Iffor every pair ofnon-adjacent points u and v d(u) + d(v)
~ p + 1, then G is hamiltonian-connected.

The converse is false. Let G be as in example 9.40 with n ~ 4. Then
d(n) + d(n - 1) = 2n < p + 1 = 2n + 1.

The theorem of this example is stronger than the theorem of example
9.41. Take Kn,n, n ~ 3, with points labeled as in example 9.40. Form H by
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adding the lines «2k - I), (2k) and «2k - 1)', (2k)'), I ~ k < n12. Then
8(H) = nand d(u) + d(v) ~ 2n + I for any pair of non-adjacent points u
and v (Ore 1963).

9.43 THEOREM If for every i with 2 ~ i ~ pl2 the number of points of
degree not exceeding i is less than i-I, then G is hamiltonian-connected.

The converse is false. Let G be as in example 9.40 with n ~ 4. Consider
in the theorem the case i = n = p12. There are 2n - 4 points of degree n.

The theorem of this example is stronger than the theorem of example
9.42. Consider the following graph H:

Figure 9.43.1

H has no points of degree 2 and one point, v., of degree 3, and so is
hamiltonian-connected. But d(Vl) + d(v2) = 7 < p + 1 = 8, and so the
theorem of example 9.42 does not apply.

9.44 THEOREM If G is n-connected and Po(G) < n, then G is hamilton
ian-connected.

That the converse is false is seen by setting G = ~, p ~ 7. G then has
Po = 3 but is 3-connected.

That the theorem is sharp is shown by taking G = K",,, (Chvatal and
Erdos 1972).

As mentioned earlier, every hamiltonian-connected graph is strongly
hamiltonian. Hence, in the theorems of examples 9.40 through 9.44 the
conclusions may be changed to f,'G is strongly hamiltonian". None of the
converses of the resulting theorems are true, however, since Cp , p ~ 4, is
strongly hamiltonian but does not satisfy the hypotheses of any of the
theorems.

There are also several conditions necessary for a graph to be hamilton
ian-connected.
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9.45 THEOREM If G is hamiltonian-connected and p ~ 4, then G is 3
connected.

The converse is false. Let G = Kn,3, n ~ 4. G is then 3-connected, but is
not hamiltonian-connected (Harary 1969).

9.46 THEOREM If G is hamiltonian-connected, q ~ [(3p + 1)/2].

The converse is false. Take G = K,.,n+h n ~ 3.
The theorem is sharp in the sense that there exist hamiltonian-connected

graphs IIp of order p having [(3p + 1)/2] lines:
for p even,

. . .

and for p odd,

. . .

It is not difficult to check that in either case Hp is hamiltonian-connected.
These examples are due to J. W. Moon and appear in Bondy and Murty
(1976).

Unlike hamiltonian graphs, randomly hamiltonian graphs have been
characterized.

9.47 THEOREM G is randomly hamiltonian if and only if G is Cp, Kp, or
Kp/ 2,p/2, the last being possible only if p is even.

For a proof see Chartrand and Kronk (1968).
Most of the earlier theorems giving sufficient conditions for a graph to be

hamiltonian generalize to yield conditions for a graph to be n-hamiltonian.
We give two such results, the reader being directed to the references for
other sufficient conditions.
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9.48 THEOREM Let 0 < n < p - 3. If for every pair of non-adjacent
points u and v of G, d(u) + d(v) ~ p + n, then G is n-hamiltonian.

The converse is false. For n = 0, take G = Cp, p ~ 5 (Chartrand,
Kapoor, and Lick 1970).

9.49 THEOREM Let the degree sequence of G be d1 < d2 < ... < dp, and
let 0 < n < p - 3. If dk < k + m < (p + m)/2 implies dp-m- k ~ p - kfor
all 0 < m < n, then G is n-hamiltonian.

The converse is false. The wheel ~,p ~ 6, is I-hamiltonian but does not
satisfy the hypothesis of the theorem (Chvatal 1972).

We now consider a result of Chartrand et al. (1974) on n-hamiltonian
squares.

9.50 THEOREM If G has connectivity I( ~ 2 and p ~ I( + 2, then G2 is
(I( - 1)-hamiltonian.

The theorem is best possible. The following graph G due to J. Zaks (1972)
has I(G) = 2, but G2 is not 2-hamiltonian. Let G = S(K2,n), where n ~ 3
is odd. If u and v are the two points of G of degree n, then it can be shown
that G2 - u - v is non-hamiltonian and so G2 is not 2-hamiltonian.

Still another condition stronger than that of hamiltonicity is that of a
graph being pancyclic. G is pancyclic if it contains cycles of all lengths n,
3 ~ n <p. As with hamiltonian graphs, if a graph has "enough" lines, it
must be pancyclic.

9.51 THEOREM If G is hamiltonian and q ~ p2/4, then either G is
pancyclic or G = Kp/2,p/2'

The converse is false. The following graph is pancyclic but q < p2/4.
Number the points of the p-cycle Cp, p ~ 5, from 1 to p in the clockwise
direction. Then add the lines (1,3), (1,4), ... , (1, [p/2] + 1). The resulting
graph has the desired properties (Bondy 1971).

9.52 THEOREM If for every pair of non-adjacent points u and v, d(u)
+ d(v) ~ p, then either G is pancyclic or G = Kp/2,p/2.

The converse is false. Any of the graphs of example 9.51 provides a
counterexample, since they each contain at least two non-adjacent points of
degree two (Bondy 1971).

It was conjectured by Bondy that every 4-connected planar graph (which
must be hamiltonian) is pancyclic. The following example due to J.
Malkevitch (1971) shows this to be false.
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9.53 Not every 4-connected planar graph is pancyclic.

Figure 9.53.1

This graph contains no cycles of length 4.

4. TRAVERSABILITY OF LINE AND TOTAL GRAPHS

In this section we discuss the traversability of the line and total graphs of
a given graph.

Necessary and sufficient conditions for the existence of an n ~ 0 such
that L"(G), the nth iterated line graph of G, is eulerian were obtained by G.
Chartrand (1968). The degree of the line uv is defined as d(u) + d(v) - 2.

9.54 THEOREM Let G be connected and not a simple path. Then exactly
one of the following must occur:

(1) G is eulerian (every point of G has even degree).
(2) L(G) is eulerian but G is not (every point of G is of odd degree).
(3) L2

( G) is eulerian but L(G) is not (every line of G is of odd degree).
(4) There is no n ~ 0 such that Ln

( G) is eulerian (otherwise).
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Note that paths are excluded, since L(e.) = e.-I. We illustrate the last
case of the theorem: take G = K4 - x.

9.55 THEOREM If G is eulerian, L"(G) is hamiltonian and eulerian for
n ~ 1.

The converse is false. Let G = K2n• Then L(G) is regular of degree
4(n - 1) and so is eulerian. It is easy to see that L(G) is hamiltonian. K2n,

however, is not eulerian.
See also examples 5.17 and 5.18.

9.56 THEOREM If G is hamiltonian, then L"(G) is hamiltonian for n ~ 1.

The converse is false. Let G = K2,m n ~ 3. Then L(G) is hamiltonian but
G is not.

If only small examples were considered, one might be led to believe that
the line graph of every block is hamiltonian. The next example shows that
this is not the case. It is due to J. W. Moon, as noted by Harary (1969).

9.57 Not every block has a hamiltonian line graph.

Consider the following graph G and its line graph:

G

L(6)

Figure 9.57.1

It is easy to see that L(G) is not hamiltonian. It may also be shown that
G is the smallest such block.

There are no necessary and sufficient conditions for the existence of an
n ~ 0 such that L"(G) is hamiltonian. Following Chartrand and Wall
(1973), we define the hamiltonian index of a graph G, h(G), as the smallest
non-negative integer n such that L"(G) is hamiltonian. [Note that LO(G) is
defined to be G.]
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9.58 THEOREM If G is connected and has a cycle of length n, then
h(G) < p - n.

The bound is best possible. Let nand p be such that 3 < n <p. Identify
one point of the n-cycle en with an endpoint of the path !J,-n+}, obtaining
the graph G. We illustrate the case p = 10, n = 5:

G has order p and a cycle of length n, and h(G) = p - n. Since Lk(G),
o < k < p - n, has a point of degree 1, it is not hamiltonian. It is a simple
exercise to show that l!-n(G) is hamiltonian.

The converse is false. Consider the tree T on p points:

~ ...~
It is again a simple exercise to show that h(G) = p - 3 (Chartrand and
Wall 1973).

9.59 THEOREM If G is connected and not a simple path, then h(G)
< p - 3.

The first graph of example 9.58 with n = 3, or the tree T of the same
example, shows that the theorem is sharp (Chartrand and Wall 1973).

9.60 THEOREM If G is connected and 8(G) ~ 3, then h(G) < 2.

The theorem is sharp. Let G be the following:

(Chartrand and Wall 1973).
We now consider the traversability of total graphs. These examples are

based on Behzad and Chartrand (1966).
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9.61 THEOREM If G is eulerian, then T(G) is both eulerian and hamilton
ian.

The converse is false. It is easy to verify that the graph G below is not
eulerian, yet T(G) is both eulerian and hamiltonian.

9.62 THEOREM If G is hamiltonian, then Tn(G), the nth iterated total
graph, is hamiltonian for n ~ 1.

The converse is false. Let G be any path 1:,. Then T(G) is hamiltonian.
Label the points of G Vh V2, ••• , vp consecutively on the path, and label the
lines of G Xh ••• , Xp-I in a like manner:

~ ~ v3
o 0 0--

xl X2

v v
p-l P

--0 0
Xp _

l

Then VI V2 • • • VpXp_1 X p-2 • • • XI VI is a hamiltonian cycle in T(G) (Behzad
and Chartrand 1966).

9.63 THEOREM If G is a non-trivial connected graph, then Tn(G) is
hamiltonian for all n ~ 2.

The theorem is best possible, since there are graphs G with T(G) non
hamiltonian. It is an easy matter to show that KI ,3 is such a graph (Behzad
and Chartrand 1966).

Recall that the subdivision graph of G, S(G), is obtained by inserting a
new point of degree 2 in every line of G. We now define Sn(G), n ~ 1, as
the graph obtained from G by inserting n new points of degree 2 in every
line of G. We then define Ln(G) = L(Sn-I(G».

9.64 THEOREM If G is hamiltonian, L2(G) is hamiltonian.

The converse is false. Let G be two cycles identified at a common point
v. We illustrate the case where each cycle is C3 •
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6 $1(6)

Figure 9.64.1

Then L 2 is hamiltonian. (Harary and Nash-Williams 1965).

Figure 9.64.2

9.65 THEOREM If~ (G) is hamiltonian, then L(G) is hamiltonian.

The converse is false. Let G = K2,3. L(G) and L2 (G) are shown below:

L(G)

Figure 9.65.1

It is easy to show that L2(G) is not hamiltonian (Harary and Nash
Williams 1965).

9.66 THEOREM G is eulerian if and only if L 3 (G) is hamiltonian.

The theorem is best possible in the sense that no weaker form of it holds.
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G

Figure 9.66.1

L1(G) and ~(G) are hamiltonian, but G is not eulerian (Harary and
Nash-Williams 1965).

5. DETOURS

A detour path between points u and v in a graph G is a u-v path of maximal
length. The length of such a path is denoted by a(u, v). The detour number
ofa point v of G is a(v) = max a(u, v), where the maximum is taken over all
points u of G. A detour path in G is a path of maximal length. The length of
such a path is denoted a(G), the detour number of G.

Ore showed (1962) that any two detour paths intersect. We have,
however,

9.67 Not all detour paths need have a point in common.

Any of the hypotraceable graphs constructed in example 9.36 is such that
not all of its detour paths have a point in common.

The following graph of H. Walther (1969), is not hypotraceable, and not
all of its detour paths have a point in common. The proof will be omitted.

Figure 9.67.1
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9.68 THEOREM

a(v) ~

a(G)
-2-

a(G) + 1
2

if a(G) is even,

if a(G) is odd

The bounds may be attained. Let G = Kt,n, and let v be the point of G of
degree n. Then a(G) = 2 and a(v) = 1.

Let G = P2n and let v be either point in its center. Then a(G) = 2n - 1
and a(v) = n (Ore 1962).

9.69 THEOREM IfG is connected, then a(G) ~ min(p - 1,28(G»

Either bound is attainable. Let G = K1,n. Then a(G) = 2 = 28(G). Next
let G = Kn,n. Then a(G) = 2n - 1 = p - 1 (Ore 1962).

The detour center of a graph G is the set of points of G with minimum
detour number. It may be shown that the detour center of a tree coincides
with its center. Recall that the eccentricity of a point v in G is e(v) = max
d(u, v), where the maximum is taken over all points u of G, and that the
center of G is the set of all points of G with minimum eccentricity.

9.70 The detour center of a graph need not have any points in common with
its center.

Consider the following graph:

The detour center is {VI, V2}, each point in it having a = 3, and all others
having a = 4. The center of Gis {U.,U2,U3}, each point in it having e = 2,
and all others having e = 3 or 4 (Kapoor and Kronk 1968).

A graph is detour-connected if for every two distinct points u and v of G,
there is a detour path in G having u and v as its endpoints. It is not difficult
to see that a graph is detour-connected if and only if it is hamiltonian
connected. Thus,
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9.71 THEOREM If G is detour-connected, then G is hamiltonian.

The converse is false. Let G = Cp, p ~ 4. G is not detour-connected,
since a(G) = p - 1 and no pair of non-adjacent points is connected by a
detour path.
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Chapter 10

Miscellany

1. INTRODUCTION

In this chapter we collect several topics which for one reason or another
were not included in any of the earlier chapters. The sections, which are
independent of each other, are: sequences associated with a graph; girth,
circumference, diameter, radius; isometric graphs; trees and cycles; matri
ces; intersection graphs; the geometric dual.

2. SEQUENCES

In this section we consider three sequences that can be associated with a
graph.

The degree sequence of a graph and graphical sequences were defined in
chapter 9 (See also the Glossary). Graphical sequences were characterized
independently by Havel (1955), Hakimi (1962), and Erdos and Gallai
(1960). An obvious necessary condition for a sequence to be graphical is
that it sums to an even integer. Our first example shows that this condition
is not sufficient.

10.1 Not every sequence that sums to an even integer is graphical.

Consider the sequence of p numbers (1,1,2, ... ,2,p - l,p - 1). If there
are two points of degree p - 1 in a graph of order p, then the minimum
degree of the points of G must be at least 2. Hence, the given sequence is
not graphical.

A graphical sequence does not determine the graphs which realize it.
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10.2 Two graphs having the same degree sequence need not be isomorphic.

The following graphs of order p are not isomorphic, but they have the
same degree sequence (1, 1, 2, ... , 2, 3, 3).

~ ••• -<} D----(]l- • • .--0

It is also not true that two regular graphs of the same degree rare
isomorphic.

10.3 Two regular p-point graphs of degree r need not be isomorphic.

For a given r ~ 3 we construct two non-isomorphic graphs G1 and G2

which have the same order and are regular of degree r. Let G1 = K,,r- To
construct G2, take a copy of K", with the points of one of its parts labeled
1 through r and the points of its other part labeled l' through r'. Then
remove the lines II' and rr', and add the lines Ir and I'r'. Clearly G1 and
G2 are not isomorphic.

The path length distribution of a (p, q) graph G is the vector (Xo,Xi,
X2 , ••• '~-l)' where Xo is the number of unordered pairs of points of G
having no path connecting them, and Xi, 1 < i < p - 1, is the number of
unordered pairs of points of G connected by a path of length i.

10.4 There exist non-isomorphic graphs with the same path length distribu
tion.

Consider the following pair of trees:

Figure 10.4.1

It is easy to verify that both trees have the path length distribution
(0,8,13,12,3,0,0,0,0) (Faudree, Rousseau, and Schelp 1973).

The distance distribution of a (p, q) graph G is the vector (l'O, }}, ... , ~-l)'
where 1O is the number of unordered pairs of points of G having no path
connecting them, and l';, 1 < i < p - 1, is the number of unordered pairs
of points of G having distance i between them.
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10.5 There exist non-isomorphic graphs with the same distance distribution.

Consider the following pair of graphs:

It is easy to check that both graphs have the distance distribution (0,5,4,1,0).

3. GIRTH, CIRCUMFERENCE, DIAMETER, RADIUS

The girth of a graph G, g(G), is the length of a shortest cycle in G. The
circumference of G, cr(G), is the length of a longest cycle in G. If G is a
forest, then g(G) and cr(G) are undefined. The eccentricity of a point v of
G, e(v), is the maximum of d(v, u) taken over all points u of G. The diameter
of G, d(G), is the maximum eccentricity of the points of G. The radius of
G, r(G), is the minimum eccentricity of the points of G.

10.6 There is a graph with girth, circumference, and diameter all equal.

Let n ~ 3 be given. Let the graph G be formed by adjoining a path of
length {nI2} to anyone of the points of en. Then G has girth, circumference,
and diameter all equal to n.

10.7 THEOREM If G is connected and not a tree, then g(G) < 2d(G) + 1.

The graphs of example 10.6 give strict inequality. For equality, let
G = Kp, p ~ 3, or let G be any odd cycle.

Note that R. R. Singleton (1968) has shown that every connected graph
with diameter d and girth 2d + I must be regular.

10.8 THEOREM If G is connected with diameter d, then

2d _ 3 _ d 2 - d - 4 ~ p2 - 2q .
p ~ p

For equality, let G = 1;, p ~ 1. For strict inequality, any cycle will do. 1

Note the following corollary to this theorem: For any connected graph
d < 1 + (p2 - 2q)Ip. The next example is yet another corollary of the
same theorem.

10.9 THEOREM IfG and Gare connected, then d(G) + d(G) < p + 1.

The bound is always attainable. Simply let G = 1;. Then d(G) = p - 1
and d(G) = 2. 1

I J. A. Bondy, A note on the diameter of a graph (private communication).
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The basic inequality connecting the radius and diameter of a graph G is
r(G) < d(G) < 2r(G). The following example shows that this inequality
is the best possibie result of this kind.

10.10 THEOREM For all positive integers rand d satisfying r < d < 2r,
there exists a graph having radius r and diameter d.

If d = 2r or 2r - 1, a path of length d suffices.
If d < 2r - 2, we construct the graphs as follows: each graph consists of

a path of length d (vo, VI, ••• ,Vd) and a path of length r (vs ' UI, ••• ,Ur-I, vs+r )

with only the points Vs and Vs+r in common.

~
U, . •. ur _1

••• -0--0r··· ~ ~+r vd. . .
Vs + 1 "$ + r - 1

It can be shown that these graphs are the non-isomorphic graphs of
minimum order r + d having radius r and diameter d (Ostrand 1973).

10.11 THEOREM If G has a spanning star, then d(G) = 2.

The converse is false. For any p ~ 4, let G = 2KI + (p - 2)KI • This
graph has diameter 2 but does not have a spanning star.

A well-known theorem of graph theory is the friendship theorem: If there
is exactly one path of length 2 between every pair of points of a graph G,
then there is exactly one point in G which is adjacent to all the others.

10.12 If every two points of a graph G have a path of length 2 between them,
then there need not be a point in G which is adjacent to all the others.

The graph G = C2~/2} is an example.

4. ISOMETRIC GRAPHS

All the results in this section are taken from Chartrand and Stewart
(1973).

A connected graph G2 is isometric from a connected graph GI if for each
point v of GI there is a bijection 9v : V(G I ) ~ V(G 2 ) such that d(u,v)
= d(9v(v), 9v(u)) for all u in V(G I ).

10.13 If G2 is isometric from G}, then G I need not be isometric from G2•

Consider the following graphs:

198



Isometric Graphs

The following bijections show that G2 is isometric from GI :

VI ~ U3 V2 ~ U2 V4 ~ U2

(JVl:
V2 ~ U2

(JV2 :
V4 ~ U4

OV3 = OV2' (JV4 :
V2 ~ U4

V3 ~ UI VI ~ UI VI ~ UI

V4 ~ U4 V3 ~ U3 V3 ~ U3

That GI is not isometric from G2 follows from the observation that for
each mapping (Jv in the definition we must have d(v) = d(Ov(v» and there
can be no mapping (JU4 with this property.

10.14 There exist graphs GI for which there are no graphs G2, different from
GJ, such that G2 is isometric from GI•

It is an easy exercise to show that KI,m n ~ 3, is such a graph.
If GI and G2 are isometric from each other, then they are said to be

isometric graphs. It is obvious that isomorphic graphs are isometric. The
next example shows that the converse is not true.

10.15 Isometric graphs may be non-isomorphic.

Let GI and G2 be the non-isomorphic graphs constructed in example 10.3.
Denote the points of GI by VI, ••• , Vr and VI', ••• , Vr', and those of G2 by
U}, ••• , Ur and UI', ••• , Ur" That GI is isometric from G2 follows from the
bijections: for 2 < i < r - 1 define

1 <J < r,

I<J<r-l;

2 <J' < r,

2 <J < r;

I<J'<r-l.

That G2 is isometric from GI follows by taking inverses.
For a point V of G, a spanning tree Tv of G such that dG(v, u) = d7;(V, u)

for all U E V(G) is called an isometric tree at v. If there is only one such
tree, up to isomorphism, for a given point v, then V is said to have a unique
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isometric tree. If G has the same unique isometric tree at each of its points,
then G has a unique isometric tree. For example, every cycle has a unique
isometric tree and the Petersen graph has a unique isometric tree.

10.16 A graph may have a unique isometric tree at each point and yet have
no unique isometric tree.

Let G be the following graph:

The unique isometric trees are 4. = 4
3

= KI ,3 and 42 = 44 = P4.

10.17 A graph need not have a unique isometric tree at any of its points.

Each of the points of Kn,m n ~ 3, has at least two isometric trees. We
illustrate the case n = 3 below.

v v

10.18 THEOREM Let G have a unique isometric tree, and let d(G)
= 2r(G). Then the endpoints of any diametrical path of G have degree 1.

The converse is false. P2n has one diametrical path, namely itself, and its
end points have degree 1. P2n, being a tree, has a unique isometric tree, but
d(P2n ) =1= 2r(P2n ).

10.19 THEOREM If G is a non-tree having a unique isometric tree, then G
has at least two points of degree ~(G).

The converse is false. Kn,m n ~ 3, has all points of degree ~(G) and is a
non-tree. As noted in example 10.17, however, it does not have a unique
isometric tree.

5. TREES AND CYCLES

An acyclic graph is called a forest. A connected acyclic graph is called a
tree. It is well known that any connected graph having q = p - 1 must be
a tree. Our first example shows that connectivity is necessary.
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10.20 A graph with q = p - 1 need not be a tree or a jorest.

Consider the graph G = Cp- 2 U K2• G has q = p - 1, but is neither a
tree nor a forest.

A point v of a graph G is a central point of G if e(v) = r(G). The center
of a graph G is the set of all its central points. A branch at a point v of a
tree T is a maximal subtree containing v as an endpoint. The weight of a
point v of T is the maximum number of lines in any branch at v. The point
v of T is a centroid point of T if it has minimum weight. The centroid of a
tree is the set of all its centroid points. The following theorems are well
known: The center (centroid) of a tree consists of either one point or two
adjacent points.

10.21 The smallest trees with one and two central and centroid points.

In the two non-trivial cases the center points are labeled r and the
centroid points are labeled d (Harary 1969).

centroid
2

center

2

0 ~
r d
d

~ 0--0

r r
d

Figure 10.21.1

The center and centroid of a tree need not have a point in common, as
the next example shows.

10.22 The center and centroid oj a tree may be disjoint.

Let G be a tree formed as follows: label the points of P2n, n ~ 5,
consecutively from 1 through 2n. Then affix 2n - 6 pendant vertices to the
point 2n - 1. The center of G then consists of the points nand n + 1, while
the centroid consists of the points 2n - 3 and 2n - 2. We exhibit the case
n = 5. The center points are labeled r, and the centroid points are labeled
d.
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r r d d

10.23 A graph with p = q need not be unicyclic.

nCp, n > 2, is such a graph for any p ~ 3.

10.24 THEOREM A graph with p ~ 4 points and 2p - 3 lines must contain
a cycle with a diagonal.

This theorem is best possible in the following sense: for every p ~ 4,
there exists a graph with 2p - 4 lines which does not have a cycle with a
diagonal. Such a graph is K2,p-2 (Honsberger 1973).

10.25 THEOREM Every graph with p ~ 5 points and p + 4 lines contains
two cycles with no lines in common.

This theorem is best possible in the sense that for any p ~ 6 there exists
a graph having p points and p + 3 lines such that every pair of cycles have
a line in common. To obtain such a graph, construct a p-cycle with the
points labeled consecutively 1, 2, ... , p in a clockwise fashion. Then add
the lines (i, [p/2] + i) for i = 1,2,3 (Honsberger 1973).

10.26 THEOREM Every graph with p ~ 6 points and 3p - 5 lines must
contain two cycles with no points in common.

This theorem is best possible in the sense that for any p ~ 6 there exists
a graph on p points and 3p - 6 lines in which every pair of cycles has a
point in common. To construct such a graph, take a 3-cycle with points u,
v, and w. Add p - 3 additional points, each adjacent to u, v, and wand to
no others. This graph is isomorphic to K3 + (p - 3)K1 and has 3p - 6
lines. Each cycle in this graph must contain at least two of the points u, v,
and w. Hence, any two cycles have a point in common (Honsberger 1973).

A graph is geodetic if every pair of points u and v are joined by a unique
path of length d(u, v). Trees, odd cycles, and the Petersen graph are
examples of geodetic graphs.

10.27 THEOREM If G is geodetic, every cycle of G ofsmallest length is odd.

The converse is false, as Kp - x, p ~ 4, demonstrates (Behzad and
Chartrand 1971).

10.28 THEOREM If every cycle of G is odd, then G is geodetic.

The converse is false, as Kp, p ~ 4, demonstrates (Behzad and Chartrand
1971).
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6. MATRICES

Label the points of a graph G Vt, V2, ••• , Vp, and the lines Xt, X2, ••• , X q•

The adjacency matrix A(G) = [ay] of G is the p xp matrix with entries
ay = 1 if Vi is adjacent to Vj, ay = 0 otherwise. The incidence matrix
B(G) = [by] of G is the p X q matrix with entries by = 1 if Vi is incident
with Xj, by = 0 otherwise. Both the adjacency matrix and the incidence
matrix determine G up to an isomorphism.

10.29 A graph may have its adjacency and incidence matrices equal.

It is an easy exercise to show that the only such graphs are nC3, n ~ 1.
For example, we exhibit C3 appropriately labeled.

1

2 1 3

The spectrum of a graph is the set of eigenvalues of its adjacency matrix.
Two graphs are isospectral if they have the same spectrum. It is a simple
exercise to prove that isomorphic graphs are isospectral. The converse,
however, is not true.

10.30 There exist non-isomorphic isospectral graphs.

The smallest such pair is Kt,4 and C4 U K1• We exhibit three other pairs
(Marshall 1971).

and

and
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and

Figure 10.30.1

A. Schwenk has recently shown (1977) that there are exactly thirteen
connected cubic graphs which have integral spectra.

10.31 The thirteen connected cubic graphs with integral spectra.

We give each graph and its spectrum. The notation nk means that the
number n is an eigenvalue of multiplicity k. G1 = K3•3, {3,04, -3}. G2 = Q3,

{3, P, -13, -3}. G3 = K2 X C6, {3, 22, 1,04, -1, -22, -3}. G4 = K4, {3, -13}.
Gs = the Petersen graph, {3,IS,-24}. G6 = K2 XK3, {3,1,02,-22}. G7

= L(S(K4», {3,23,02,-13,-23}. Gs = Desargues's graph (see example
6.45), {3, 24, IS, -Is, -24, -3}. G9 = (3,8 )-cage, {3, 29 ,010 , -29 , -3}.

{3 24 IS -Is -24 -3}, " , ,

Figure 10.31.1

Let A be a (0, 1)-matrix, i.e., all its entries are either °or I. The graph of
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A is the graph G(A) having point set in 1-1 correspondence with the set of
I's in A, with two points adjacent in G(A) if and only if the corresponding
I's lie in the same row or column. A graph H is a (0, I)-graph if there exists
a (0, I)-matrix A such that H = G(A). It can be shown that every (0, 1)
graph is the line graph of some bipartite graph.

10.32 Not every graph is a (0, l)-graph.

Any graph which is not a line graph will do.
The following theorem characterizes (0, I)-graphs in terms of forbidden

subgraphs (Hedetniemi 1971).

10.33 THEOREM A graph G is a (0, I)-graph if and only if it contains no
induced subgraph isomorphic to either

(1) Kt,3,

(2) K4 - x, or
(3) C2n+}, n ~ 2.

7. INTERSECTION GRAPHS

Given a collection of sets ~ = {S}, ... ,Sp}, the intersection graph of ~,

n(~), is the graph which has for its points the elements of ~ with two points
adjacent if and only if the corresponding sets have a non-empty intersec
tion. n(~) is then said to be an intersection graph on S = uf=t Si. It is easy
to prove that every graph is an intersection graph, Le., is isomorphic to the
intersection graph of some collection of sets (Marczewski 1945). The
following definition thus has meaning: The intersection number t(G) of a
graph G is the minimum number of elements in S such that G is the
intersection graph on S. The following two theorems give upper bounds on
t(G).

10.34 THEOREM Let G be connected with p ~ 4 points. Then t(G) ~ q,
with equality holding if and only if G has no triangles.

We illustrate the strict inequality in the theorem by considering G
= K4 - x. Then G is isomorphic to n(~), where ~ = {{a},{a,c},{a,b},{b,c}}
(Harary 1969).

10.35 THEOREM For any G with p ~ 4, t(G) < [p2/4].

For strict inequality, take G = K4 - x. Example 10.34 shows that
t(G) = 3.

The theorem is also best possible in the sense that for all even p there
exists a graph that attains the bound. Such a graph is Kp/ 2,p/2. Since the
graph is bipartite, it has no triangles, and thus t = q = p2/4 (Erdos,
Goodman, and Posa 1966).
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We now consider special types of intersection graphs. A clique of a graph
G is a maximal complete subgraph of G. The clique graph of G, K(G), is the
intersection graph of the set of cliques of G. A graph is a clique graph if it
is isomorphic to some clique graph. Clique graphs have been characterized:
G is a clique graph if and only if G has a collection ~ of complete subgraphs
with the following properties: (1) Every line of G is contained in at least one
element of ~. (2) (The intersection property.) Whenever the intersection of
each pair of elements of a subset '5 of ~ is non-empty, then the intersection
of all elements of '5 is non-empty (Roberts and Spencer 1971).

10.36 Not every graph is a clique graph.

Consider the following graph:

G

It can be shown easily that any collection of complete subgraphs of G
(they all have order 2 or 3) which satisfies (1) of the characterization
theorem does not satisfy (2). (See also example 5.38.)

In the characterization theorem, if one takes for ~ the entire set of cliques
of G, then the intersection property alone is a sufficient condition for a
graph to be a clique graph. It is not, however, a necessary condition.

10.37 If H is a clique graph and ~ is the set of cliques of H, then ~ need not
have the intersection property.

Consider the graph H below which is the clique graph of the graph G of
example 10.36.

Figure 10.37.1

Let St = {V6,V7,VS,V9}, S2 = {Vt,V2,V3,V6} and S3 = {V3,V4,VS,VS}. It is
easy to check that the intersection of any pair of these is non-empty while
the intersection of all three is empty (Roberts and Spencer 1971).
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10.38 THEOREM Let f(p) denote the maximum number of cliques possible
in a graph on p ~ 2 points. Then

( 3P/ 3 ifP :; 0 mod 3,
j(p) = ) 4 X 3[p/3)-1 ifP :; 1 mod 3,

( 2 X 3[p/3) ifP :; 2 mod 3.

The graphs that achieve the maximum are the following:
If p = 3k, G = K nl , ... ,nk' where n; = 3, 1 ~ i < k.
If p = 3k + I, G = Knit ... ,nk' where n; = 3, 1 < i < k - 1, nk = 4.
If p = 3k + 2, G = Knit ... ,nk+I' where n; = 3, 1 ~ i < k, nk+l = 2

(Moon and Moser 1965).
An interval graph is the intersection graph of a set of intervals on the line.

Not every graph is an interval graph. For example, no cycle Cp, p ~ 4, is
an interval graph. There are several characterizations of interval graphs. We
present one due to C. B. Lekkerkerker and J. Ch. Boland (1962).

10.39 THEOREM G is an interval graph if and only if it does not contain an
induced subgraph isomorphic to one of the following:

(1) Cp, p ~ 4.
(2)

(3)

(4)

(n ~ 2 points)

207



Miscellany

(5)

(n ~ 1 points)

A circular arc graph is the intersection graph of a set of arcs on the circle.
To state the partial characterization of circular arc graphs, we need the
following definitions: The augmented adjacency matrix A* (G) of a graph G
is the adjacency matrix of G with l's on the main diagonal. A (0, 1)-matrix
has the circular l's property for columns if its rows can be permuted so that
the l's in each column appear in circularly consecutive order.

10.40 THEOREM G is a circular arc graph if A* (G) has the circular l's
property for columns.

The converse is false. Consider the following graph G:

It can be checked easily that the augmented adjacency matrix of G does not
have the circular l's property. To show that G is a circular arc graph, we
give a set of intervals on the circle. Identify the endpoints of the interval
[0, 16]. G is then the intersection graph of the following set of intervals:
[0,5], [2,3], [2, 7], [4, 11], [6, 13], [12, 15], and [10, 1] (Tucker 1970).
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Intersection graphs of families of sets other than intervals have been
studied. Let Gn denote the class of graphs which are isomorphic with the
intersection graph of some family of convex subsets of euclidean n-space.
G. Wegner (1967) has shown that all graphs are in G3• We have, however,
the following.

10.41 Not all graphs are in G2•

It can be shown that neither of the subdivision graphs of Ks or of K 3,3 is
in G2• See Wegner (1967) for a proof.

8. THE GEOMETRIC DUAL

Figure 10.42.1G

We now consider the geometric dual G* of a plane graph G. To construct
G*, place a point in each face of G. These points constitute the point set of
G*. Two distinct points of G* are joined by a line for each line which
belongs to the boundary of the corresponding faces of G. A loop is added
at a point of G* for each bridge of G belonging to the boundary of that
face. G* is thus a pseudograph. A graph is self-dual if G -..; G*. Note that
every wheel Jf; is self-dual.

10.42 There are non-wheels which are self-dual.

Consider the graph G and its geometric dual G*. It is easy to see that
G -..; G*. 1

10.43 Two isomorphic graphs can have non-isomorphic geometric duals.

Consider the following embeddings of the same graph:

G H
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Their geometric duals, which are obviously not isomorphic, are
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Appendix

The Frucht Notation

The reader has undoubtedly noticed how convenient it has been through
out this work to have available notation such as Ks, K1,3, c4, etc. for small
or simple graphs. In this appendix we discuss a notation due to Frucht
(1970) which can be very convenient for describing larger, more complicat
ed graphs. It is a notation intermediate between a detailed, time-consuming
drawing and an unsatisfying incidence or adjacency matrix.

We will present the notation by means of examples. Consider the graph
drawn below.

Figure A.I

We denote this by the diagram

1_-:
211



Appendix

Here, the 4 in the circle on the right stands for K4• (Label the vertices
vo, VI, V2, V3.) In general the symbol

o
denotes Kn• In the circle on the left we have 1<4 with vertices Uo, UI, U2, U3

such that U; and U;+l are adjacent (addition is modulo 4). This is the
meaning of the 1 in parentheses. In general,

(3
denotes Kn with vertices xo, Xl, ••• , Xn-l such that X; and X;+k are adjacent
(addition mod n).

The undirected line connecting the two circles indicates that U; and v; are
adjacent. This illustrates the general use of an undirected line in this
notation. The directed line labeled with a 2 means that U; and V;+2 are
adjacent (addition mod 4), while the directed line labeled 1 means that Ui+l

and V; are adjacent (addition mod 4).
This Frucht notation is in general not unique. For example, the above

graph could be symbolized by

:3

2

There are still other possibilities. We leave these to the reader. To indicate
more adjacencies in Kn we use

8
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or

8
etc. These mean, respectively, that Ui and Ui+j are adjacent, and that U; and
U;+j, and Ui and Ui+k are adjacent. Thus K4 , Ks, K6 would be denoted

8 (3 8
As a further illustration, consider the Petersen graph

Very neat! And its generalization is very easy to symbolize:

8---8
This notation is very good for cages in general.

8
The (3,4)-cage (Thomson Graph, K3,3)

Figure A.2

3

1
The (3,6)-cage {Heawood Graph)
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In order to use lines between circles representing graphs with different
numbers of vertices, we adopt the following convention. The diagram

means that U; and Vj are adjacent if and only if i == j (mod m) (m < n).
An important special case is

which is the star K1,n. Also,

is the wheel »-:;+1.
As a further generalization we have

.....----k---.........

for adjacencies U; and Vj if and only if i == j + k (mod m).
Some additional examples: The Grotzsch graph (Mycielski's graph G4;

see also chapter 1) is shown below together with two possible Frucht
diagrams.
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or

and the monster below

Figure A.3
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is

Figure A.4

Another nice feature of this notation, which is illustrated especially by
this last example, is that it reveals the structure of a graph in terms of
subgraphs which are more symmetric than the whole.
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Achromatic number The achromatic number of a graph G, \f;(G), is the
maximum order of all complete homomorphisms of G.

Adjacency Two points of a graph are adjacent if and only if there is a
line between them.
Two lines of a graph are adjacent if and only if they contain a
common point.
If G is a plane graph, two faces are adjacent if and only if their
boundaries have a point in common.

Adjacency matrix The adjacency matrix of the graph G having point set
V(G) = {v}'v2, ... ,vp }isthepxpmatrixA(G) = [aij]whereaij = 1
if Vi is adjacent to Vj, aij = 0 otherwise.

a.-critical graph Gis cxo-critical if every point of G is an cxo-critical point.

a.-critical point A point V of G is cxo-critical if cxo(G - v) < cxo(G).
a.-minimal graph G is cxo-minimal if every line of G is an cxo-minimal

line.

a.-minimal line A line x of G is cxo-minimal if cxo(G - x) < cxo(G).
Associates Two elements of a graph are associates if they are either

adjacent or incident.

Asymmetric graph A graph G is asymmetric if r(G) -..; Ep , the identity
group of degree p.

Augmented adjacency matrix The augmented adjacency matrix A* (G)
of a graph is the adjacency matrix of G with l's on the main diagonal.

Automorphism An automorphism of the graph G is an isomorphism of
G onto itself.

Po-minimal graph A graph G is po-minimal if for every line x of G we
have Po(G - x) > Po(G).

Betti number The betti number of a graph G, b(G), is q - p + k, where
k is the number of connected components of G.

Bicentered tree A tree Tis bicentered if its center consists of two points.
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Bipartite graph See "n-partite" and put n = 2.

Block A block of a graph is a maximal non-separable subgraph.

Boundary of a face Let G be a plane graph. A point is on the boundary
of a face of G if every neighborhood of it contains points in the face
and also points not in the face.

Branch A branch at a point v of a tree T is a maximal subtree
containing v as an endpoint.

Bridge A line x of G is a bridge if its removal from G increases the
number of components.

Cactus A cactus is a graph all of whose blocks are either lines or cycles.

Cage A (d,g)-cage is a regular graph of degree d and girth g having the
least number of points among such graphs. A (3,g)-cage is sometimes
called a g-cage.

Cartesian product The cartesian product G X H of two graphs G and H
is the graph with point set V(G X H) = V(G) X V(H), where the
second X is the set Cartesian product, and lines defined as follows:
(v}, UI) is adjacent to (V2' U2) if either VI = V2 and UI is adjacent to U2,

or VI is adjacent to V2 and UI = U2.

Cayley color graph Let f = {yI, Y2, •.• ,Yp} be a group with identity YI •
The Cayley color graph of f, C(f), is a complete symmetric digraph
having point set f, and lines labeled as follows: line (Yi' Yj) is labeled
-I

Yi Yj ·
Centered tree A tree T is centered if its center consists of a single point.

Center of a graph The center of G is the set of all points of G with
minimum eccentricity.

Centroid The centroid of a tree T is the set of all its points of minimum
weight.

X-critical A graph G is x-critical if for any point v of G we have
X(G - v) < X(G).

x-minimal A graph G is x-minimal if for any line x we have X(G - x)
< X(G).

Chord A chord in a cycle is a line joining two non-adjacent points of
the cycle.

Chromatic number The chromatic number of a graph G, X(G), is the
minimum number of colors that can be assigned to the points of G so
that no two adjacent points have the same color.

Chromatic polynomial The chromatic polynomial of a graph G, XG(A), is
the number of different colorings of the labeled graph G from A
colors, with XG(A) = 0 if A < X(G).
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Chromial See "Chromatic polynomial".

Circuit A circuit is a closed trail.

Circular arc graph A circular arc graph is any graph isomorphic to the
intersection graph of a set of arcs on the circle.

Circular l's property for columns A (O,I)-matrix has the circular I's
property for columns if its rows can be permuted so that the I's in
each column appear in circularly consecutive order when the bottom
row is followed by the top, etc.

Circumference The circumference of G, cr (G), is the length of a longest
cycle in G.

Clique A clique of a graph is a maximal complete subgraph.

Clique graph The clique graph of G, K(G), is the intersection graph of
the set of cliques of G.

Closure function Let X be a set of points of the graph G, and let Cn(X)
be the set of all points on paths of length at most n from the points in
X. Then the closure function of G, No, is a function defined on the
subsets of points of G such that

N. ( ) = {the smallest k such that Ck(X) = V(G),
o X 00 if there is no such k or if X = 0.

Closure of a graph The closure of G, cl (G), is the graph obtained from
G by recursively joining pairs of non-adjacent points whose degree
sum is at least p until no such pair remains.

Coarseness The coarseness of a graph G, c(G), is the maximum number
of line-disjoint non-planar subgraphs in G.

Cocycle rank The cocycle rank of a (p,q)-graph having k components is
p-k.

Color class In any coloring of a graph G, the set of all points with any
one color is called a color class.

Coloring A point (line) coloring of G is an assignment of colors to the
points (lines) of G so that no two adjacent points (lines) have the same
color.

Combinatorial dual G* is the combinatorial dual of G if there is I-I
correspondence between their sets of lines such that for any pair Y,
Y* of corresponding subsets of lines, the betti number of G- Y equals
the betti number of G minus the cocycle rank of the subgraph of G*
induced by Y*.
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Compatible mapping A compatible mapping of graph G is one from its
set of points, V, onto V such that any two adjacent points in G map
into two adjacent points.

Complement of a graph The complement of G, G, has the same set of
points as G, but u and v are adjacent in G if and only if they are non
adjacent in G.

Complete graph The complete graph on p points, Kp , has every pair of
its p points adjacent.

Complete homomorphism A homomorphism (J is complete of order n if
fJ(G) = Kn •

Complete n-partite graph The complete n-partite graph is the graph
whose point set can be partitioned into n subsets SI, S2, ... , Sn in
such a way that each point in S; is adjacent to every point in Sj, j =1= i,
and no two points of S; are adjacent, 1 ~ i ~ n.

Component A component of a graph is a maximal connected subgraph.

Composition of permutation groups Let A;, i = 1,2, be two permutation
groups where A; is of order m; and degree d; acting on Xi = {Xii,
Xi2, . .. ,X;dJ. The composition A I[A 2] is a permutation group of order
ml mt· acting on Xi X X2 whose elements are formed as follows: For
each a E Al and any sequence (!3I,!32, ... ,!3d.) of dl permut3.tions in
A2 there is a unique permutation in Al [A 2] written (a: /31, !32' · · ., !3d.)
such that (a: !31,!32' ... ,!3d.)(Xli,X2j) = (a(xli),!3;(X2j» for (Xli,X2j) in
Xi X X2 •

Composition of two graphs The composition G[H] of two graphs G and
H is the graph having as its points V(G) X V(H) with lines defined
as follows: (VI,UI) adjacent to (V2,U2) if and only if either VI is
adjacent to V2 or VI = V2 and UI is adjacent to U2.

Conjunction of two graphs The conjunction G /\ H of two graphs G
and H is the graph with point set V(G) X V(H) and lines defined as
follows: (V., UI) adjacent to (V2' U2) if and only if VI is adjacent to V2
and U. is adjacent to U2.

Connected graph A graph is connected if every pair of its points are
joined by a path.

Contraction H is a contraction of G if H is obtainable from G by a
sequence of elementary contractions.

Cover A point and a line cover each other if and only if they are
incident. Two points (lines) cover each other if and only if they are
adjacent.
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Critical See "ao-critical" or "ao-minimal" if referring to coverings.
See "po-minimal" if referring to independence.
See "x-critical", "x-minimal", "n-x-critical", or "n-x-minimal" if
referring to coloring.
See "K-critical" or "K-minimal" if referring to blocks.
See "critically n-connected" if referring to n-connectedness.

Critically n-connected G is critically n-connected if it is n-connected and
for every point v, G - v is m-connected with m < n.

Crossing number The crossing number, v(G), of G is the least number
of crossings of lines when G is drawn in the plane.

Cubic graph A graph is cubic if it is regular of degree 3.

Cutpoint A cutpoint of a graph is a point whose removal results in an
increase in the number of components of the graph.

Cutset A set S of points of a connected graph G is a cutset of G if
G - S is disconnected.

Cycle A cycle on p points, Cp , is a graph whose points can be labeled
1, 2, ... ,p such that the only lines of Cp are of the form (i, i + 1),
1 ~ i ~ P - I, and the line (I,p).

Cycle multiplicity The cycle multiplicity of a graph G, eM (G), is the
maximum number of line-disjoint cycles in G.

Cycle rank See "Betti number".

Cyclic Connectivity The cyclic connectivity of G, CA(G), is the mini-
mum cardinality taken over all cyclic cutsets of G. If no such cutsets
exist in G, then CA(G) = 00.

Cyclic cutset A set L of lines in a 3-connected graph G is a cyclic cutset
of G if G - L has two components each of which contains a cycle.

Degree of a point The degree of the point v of G is the number of lines
incident with v.

Degree sequence The degree sequence of a graph G is the non-
decreasing sequence of the degrees of its points, d1 ~ d2 ~ • •• ~ dp •

Density of a graph The density of G, w(G), is the number of points in a
maximum clique of G.

Detour center The detour center of G is the set of points of G with
minimum detour number.

Detour-connected G is detour-connected if there is a detour path joining
every pair of distinct points of G.

Detour number of a point The detour number a(v) of a point v of G is
max a(u, v), where the maximum is taken over all points u of G.
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Detour number of G The detour number of G, a(G), is the length of a
path in G of maximum length.

Detour path between u and v A detour path between points u and v of
G is a u - v path of maximum length a(u, v).

Diameter of a graph The diameter of a graph is the maximum eccentri-
city of its points.

Directed graph (digraph) A directed graph is a finite non-empty set Vof
points together with a set E of ordered pairs of distinct elements of V.

Disconnected graph A graph is disconnected if it is not connected.

Distance between lines The distance d(XI' X2) between the lines Xl and
X2 of the graph G is the length of a shortest path from an endpoint of
one to an endpoint of the other. If there is no such path, the distance
is defined to be 00.

Distance between points The distance d(u, v) between the points u and
v of the graph G is the length of a shortest path joining u and v. If no
such path exists, the distance is defined to be 00.

Distance distribution The distance distribution of G is the vector
(10, ll, · · ., :>;;-1), where 10 is the number of unordered pairs of points
of G having no path connecting them, and lj, 1 ~ i ~ p - 1, is the
number of unordered pairs of points of G having distance i between
them.

Domination number See "External stability number".

(D, t, d,p)-graph A graph G is a (D,t,d,p)-graph if (1) the diameter of
G is D; (2) the girth of G is 2D; (3) if d(u, v) = s, then there exist t
distinct paths of length s between u and v; (4) the order of G is p. The
above conditions imply that G is regular, so let its degree be d.

Eccentricity of a point The eccentricity of the point v in the connected
graph G is max d(u, v), where the maximum is taken over all points u
in G.

Edge See "Line".

Elementary contraction H is an elementary contraction of G if H is
obtainable from G by replacing two adjacent points u and v with a
single point w which is adjacent to the same points to which u or v was
adjacent.

Elementary homomorphism An elementary homomorphism of G is an
identification of two non-adjacent points of G.

Elementary partition An elementary partition of G is either a homomor-
phic image or an elementary contraction of G.
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Elementary subdivision An elementary subdivision of G is a graph
obtained from G by removing the line uv of G and replacing it by a
new point wand the new lines uw and wv.

Element of a graph An element of a graph G is either a point or a line
of G or, if G is a plane graph, a face of G.

Embedding The graph G is embedded in the surface S when its vertices
are represented by points in S and each of its edges by a curve in S
joining corresponding points of S in such a way that no curve
intersects itself, and two curves intersect each other only at a common
vertex.

Entire graph The entire graph e(G) of a plane graph G has for its points
the set of elements of G (i.e., points, lines, and faces), with two points
adjacent in e(G) if and only if they are associates in G.

Eulerian A circuit (trail) is eulerian if it contains every line of G. A
graph G is eulerian if it contains an eulerian circuit.

Exterior face An exterior face of a plane graph G consists of all points
in the plane which are neither in an interior face nor on a line of G.

External stability number The external stability number cxoo(G) of G is
the minimum number of points needed to cover the point set of G.

Face See "Interior face" or "Exterior face".

First theorem of graph theory For any (p, q )-graph G with points
P

Vi, 1 ~ i ~ p, ~ d(Vi) = 2q.
i=l

Fixed line A line x of G is fixed if 9(x) = x for all 9 E r* (G).

Fixed-point-free graph G is fixed-point-free if there is no point V of G
which is invariant under all automorphisms of G.

Forcibly hamIltonIan sequence A graphical sequence is forcibly hamil-
tonian if every graph having the sequence as its degree sequence is
hamiltonian.

Forest A forest is an acyclic graph.

Generalized Ramsey number The Ramsey number r(Fi, Pi, ... ,Fie) of
the graphs F;, l~i~k, is the smallest integer n such that if the edges of Kn

are colored using k colors, then for some color i, Kn contains a
monochromatic F;.

Genus The genus y(G) of G is the minimum genus of a surface in which
G can be embedded.

Geodetic graph A graph is geodetic if every pair of points u and V are
joined by a unique path of length d(u, v).

223



Glossary

Geometric dual The geometric dual of the plane graph G is the
pseudograph G* obtained from G as follows: V(G*) is the set of faces
of G. There is a line in G* between two of its points for each line of
G the corresponding faces have in common. A loop is added at a point
of G* for each bridge of G belonging to the boundary of the
corresponding face.

Girth The girth of G, g(G), is the length of a shortest cycle in G, if any.
It is undefined if G is a forest.

Graph A (p, q)-graph consists of a finite non-empty set V(G) of p
points together with a set X(G) of q unordered pairs of distinct points
of V, called lines.

Graphical sequence A non-decreasing sequence d1 ~ d2 • • • ~ dp is
graphical if there is a graph G having p points U;, 1 ~ i ~ p, with
d(v;) = d; for I ~ i ~ p.

Graph of a (O,l)-matrix The graph G(A) of the (0, I)-matrix A has its
point set in 1-1 correspondence with the set of I's in A, with two
points of G(A) adjacent if and only if the corresponding I's lie in the
same row or column.

Graph-valued function A graph-valued function F is a mapping F:
X;f] §; ~ §, where X is the set theoretic Cartesian product and §; and
§ are collections of graphs; if I is a singleton set the product is
understood to be one set.

Group of a graph The group of G, r(G), is the group of all automor-
phisms of G under the operation of composition.

Hamiltonian G is hamiltonian if it has a spanning cycle.

Hamiltonian-connected G is hamiltonian-connected if every pair of its
points are joined by a hamiltonian path.

Hamiltonian index The hamiltonian index of G, h(G), is the smallest
non-negative integer n such that L"(G) is hamiltonian.

Hamiltonian path A spanning path in G is called a hamiltonian path.

Homeomorphism G is homeomorphic from H if either G is isomorphic
to H or G is a subdivision of H. G1 is homeomorphic with G2 if there
exists a G3 such that both G1 and G2 are homeomorphic from G3 •

Homomorphic image A homomorphic image of G is a graph obtainable
from G by a sequence of elementary homomorphisms.

Homomorphism A homomorphism of G is a finite sequence of elemen-
tary homomorphisms.

Hypo-Hamiltonian A non-hamiltonian graph G is hypo-hamiltonian if
G - v is hamiltonian for every point v of G.

224



Glossary

Hypotraceable A non-traceable graph is hypotraceable if G - v is
traceable for every point v of G.

Incidence A point and a line of G are incident if and only if the line
contains the point. If G is a plane graph, a point (line) is incident with
a face if it belongs to (is a subset of) its boundary.

Incidence matrix The incidence matrix of the graph G having V(G)
= {VI,V2 ••• ,vp} and X(G) = {XJ,X2" •• ,xq} is the p X q matrix
B(G) = [by] where by = 1 if v; is incident with Xj, by = 0 otherwise.

Identical permutation groups Let A;, i = 1, 2, be permutation groups of
order m; and degree d; acting on the sets X; = {Xii, Xi2, ••• ,XuI;},

respectively. Al and A 2 are identical if they are isomorphic [i.e., there
is a 1-1 mapping h: Al ~ A 2 such that h(aIiQtj) = h(ali)h(atj)], and if
there exists a 1-1 mapping f: Xi ~ X2 such that f(a1i(xlj» = h(ali)
· (f(xtj» for all Xlj E Xi and all ali E AI'

Independent set of lines A set of lines of G is independent if no two of
them are adjacent.

Independent set of points A set of points of G is independent if no two
of them are adjacent.

Induced line automorphism An induced line automorphism of the graph
G is an induced line isomorphism of G with itself.

Induced line group The induced line group r* (G) of G is the group of
all induced line automorphisms of G.

Induced line isomorphism Let fJ be an isomorphism from the non-empty
graph G to the non-empty Braph H. The line isomorphism 1J induced
by fJ is defined as follows: fJ(uv) = fJ(u)fJ(v) for every uv E X(G).

Induced subgraph For any set of points S of G, the subgraph induced
by S, < S >, is the maximal subgraph of G with point set S.

Inflation of a graph The inflation of a graph G is the graph whose point
set is the set of all ordered pairs (x, v), where x is a line of G and v is
an endpoint of x. Two points of the inflation are adjacent if they differ
in exactly one coordinate.

Interior face An interior face of the plane graph G is a set of points in
the plane enclosed by a cycle of G and not on any line of G.

Intersection graph The intersection graph w(~) of a collection ~

= {SI, S2, ... ,Sp} of sets has as its point set the elements of ~, with
two points adjacent if and only if the corresponding sets have a non
empty intersection. w(~) is said to be an intersection graph on

p

S = US"
i-I '
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Intersection number of a graph The intersection number of a graph
G, t(G), is the minimum number of elements in a set S such that G is
the intersection graph on S.

Intersection of subgraphs Let Hand J be subgraphs of G. Then H n J
is the subgraph of G whose points are V(H) n V(J) and whose lines
are X(H) n X(J).

Interval graph G is an interval graph if it is isomorphic to the intersec-
tion graph of a set of intervals on the line.

Isometric graphs A connected graph G2 is isometric from a connected
graph G1 if for each point v of G1 there is a bijection fJv : V(G1)

~ V(G2 ) such that d(u, v) = d(Ov(u), fJv(v» for all u in V(G1). If G1

and G2 are isometric from each other, then they are said to be
isometric graphs.

Isometric tree For a point v of G, a spanning tree Tv of G such that
dG(v, u) = d7;,(v, u) for all u in V(G) is called an isometric tree at v.

Isomorphism G is isomorphic to H if there exists a 1-1 surjective
mapping 0: V(G) ~ V(H) such that uv E X(G) if and only if
O(u)fJ(v) E X(H). The mapping fJ is then called an isomorphism.

Isospectral graphs Two graphs are isospectral if their adjacency matri-
ces have the same spectrum.

Iterated line graphs The nth iterated line graph of G, Ln
( G), is defined

recursively by Ll(G) = L(G),Ln(G) = L(Ln-l(G».
J-connected Let Hand J be subgraphs of G. H is J-connected in G if H

has no H n J-detached subgraph in H other than H itself and the
subgraphs of H n J.

J-detached Let Hand J be subgraphs of G. His J-detached in G if every
vertex of attachment of H is a vertex of attachment of J.

K-critical block G is a Ie-critical block if G is a block and for every point
v, G - v is not a block.

K-minimal block G is a Ie-minimal block if G is a block and for every line
x, G - x is not a block.

Label-isomorphic Two graphs G and H are label-isomorphic if with
their points labeled I, 2, ... ,p, there exists an isomorphism fJ such
that fJ(k) = k for 1 ~ k ~ p.

Length The length of a path, walk, trail, or cycle is the number of lines
in it.

Line See "Graph".

Line automorphism A line automorphism of G is a line isomorphism of
G with itself.
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Line chromatic number The line chromatic number of G, Xl (G), is the
minimum number of colors that can be assigned to the lines of G so
that no two adjacent lines have the same color.

Line connectivity The line connectivity of G, A(G), is the minimum
number of lines whose removal results in a disconnected or trivial
graph.

Line core The line core of G is the subgraph of G inducecd by the union
of all independent sets Y of lines, if any, such that IYI = ao(G).

Line cover A set of lines of G which covers all the points of G is a line
cover of G.

Line covering number The smallest number of lines, al (G), in a line
cover of G is the line covering number of G.

Line-deleted subgraph The subgraph G - x obtained by removing the
line x from the graph G is called a line-deleted subgraph of G.

Line graph The line graph of G, L(G), is that graph which has for its
points the lines of G with two points adjacent in L(G) if and only if
the corresponding lines of G are adjacent.

Line group of a graph The line group Ii (G) is the group of all line
automorphisms of G.

Line independence number The line independence number of G, PI (G ),
is the maximum number of lines in an independent set of lines of G.

Line isomorphism A non-empty graph G is line-isomorphic to the non-
empty graph H if there exists a 1-1 mapping 9 from X(G) onto X(H)
such that the lines x and y of G are adjacent if and only if fJ(x) and
9(y) are adjacent lines of H. The mapping 9 is then called a line
isomorphism.

Line-symmetric G is line-symmetric if every pair of its lines are similar.

Locally connected A graph is locally connected if everyone of its points
has a connected neighborhood.

Lower embeddable Let G be connected, and define N1(G) = q /6
- (p - 2)/2 and N2(G) = q/4 - (p - 2)/2. G is lower embeddable
if either (1) G has a 3-cycle and y(G) = {NI(G)} if N.(G) > 0 or
y(G) = OifN.(G) ~ O,or(2) Ghasn03-cyclesandy(G) = {N2(G)}
if N2(G) > 0 or y(G) = 0 if N2(G) ~ O.

Majorizing sequence If dl ~ d2 ~ • •• ~ dp and dl ' ~ d2 ' ~ ••• ~ dp '

are graphical sequences and d; ~ d;' for 1 ~ i ~ p, then {d;'} majo
rizes {d;}.
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A matching M of a graph G is an independent set of lines of

Glossary

Matching
G.

Maximal independent set An independent set of points (lines) of G is
maximal if no proper superset of it is independent.

Maximal matching A matching M of a graph G is maximal if there is no
matching M' of G containing Mwith IM'I > IMI.

Maximal planar graph A planar graph G is maximal planar if the
addition of any line to G results in a non-planar graph.

Maximum genus The maximum genus of a connected graph, G, YM(G),
is the maximum genus of a surface for which G has a 2-cell
embedding.

Maximum independent set An independent set of points (lines) of G is
maximum it it contains Po points (PI lines).

Maximum matching A matching M of a graph G is maximum if it
contains PI (G) lines.

Minimal embedding An embedding of G on the surface S is minimal if
y(G) is equal to the genus of S.

Minimal line cover A line cover of G is minimal if no proper subset of
it is a line cover of G.

Minimally n-connected A graph G is minimally n-connected if it is n-
connected and for every line x of G, G - x is m-connected, m < n.

Minimal point cover A point cover of G is minimal if no proper subset
of it is a point cover of G.

Minimum line cover A line cover is minimum if it contains al (G) lines.

Minimum point cover A point cover is minimum if it contains ao(G)
points.

Multigraph A multigraph is a finite non-empty set of points together
with a collection of not necessarily distinct unordered pairs of distinct
points called lines.

n-x-critical G is n-x-critical if it is x-critical and x(G) = n.

n-x-minimal G is n-x-minimal if it is x-minimal and x(G) = n.

n-chromatic G is n-chromatic if x(G) = n.

n-colorable G is n-colorable if x(G) ~ n.

n-coloring An n-coloring of G is a coloring of G that uses n colors.

n-connected G is n-connected if IC(G) ~ n.

n-cube The n-cube is defined recursively as follows: Ql = K2 and
Qn = K2 X Qn-I .
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Neighborhood of a point The neighborhood of a point v in a graph G is
the subgraph of G induced by the set of points adjacent to v.

n-factor An n-factor of G is a spanning subgraph which is regular of
degree n.

n-factorable G is n-factorable if it is the line-disjoint union of n-factors.

n-Hamiltonian G is n-hamiltonian if for every subset S of V(G) with
lsI ~ n, G - S is hamiltonian.

n-Iine-chromatic G is n-line-chromatic if Xl (G) = n.

n-Iine-connected G is n-line-connected if A(G) ~ n.

Non-empty graph G is non-empty if X(G) =1= 0.

Non-separable G is non-separable if it is connected, is non-trivial, and
has no cutpoints.

n-partite graph G is n-partite if its points can be partitioned into n
subsets PI, P2 , ••• , e, such that every line of G joins a point of Pi to
a point of ~,i =1= j.

n-point-deleted subgraph An n-point-deleted subgraph of G is a sub-
graph obtained from G by removing a set of n points from G.

n-route An n-route is a walk of length n with specified initial point in
which no line succeeds itself.

n-transitive G is n-transitive, n ~ 1, if it has an n-route and if there is
always an automorphism sending each n-route onto any other n-route.

n-unitransitive G is n-unitransitive if it is connected, cubic and n-
transitive and for any two n-routes there is exactly one automorphism
taking one to the other.

Order of a graph The order of G is the number of points of G.

Outerplanar G is outerplanar if it can be embedded in the plane in such
a way that all of its points are in the same face.

Pancyclic G is pancyclic if it contains cycles of length n, for all
n,3 ~ n ~ p.

Path A path in G is a walk in which all points are distinct.

Path length distribution The path length distribution of G is the vector
(Xo, Xi, ... ,Xp-l), where Xo is the number of unordered pairs of points
of G having no path connecting them, and Xi, 1 ~ i ~ P - 1, is the
number of unordered pairs of points of G connected by a path of
length i.

Pendant vertex A point v of G is pendant if d(v) = 1.
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Permutation graph Let G be a labeled graph with points VI, V2, ••• , Vp,

and let a be any permutation in the symmetric group of order p. The
a-permutation graph of G, e(G), is the union of two disjoint copies of
G, GI and G2 , together with all lines {ViVa(i)}.

Planar graph G is planar if it can be embedded in the plane.

Planar Ramsey number The planar Ramsey number P(K", Km ) is the
smallest integer p such that any planar graph of order p must have
either K" or Km as a subgraph.

Plane graph A plane graph is a planar graph that is embedded in the
plane.

Point See "Graph".

Point arboricity The point arboricity p(G) of G is the minimum number
of subsets into which the point set of G may be partitioned so that
each subset induces an acyclic subgraph.

Point connectivity The point connectivity of G, IC(G), is the minimum
number of points whose removal results in a disconnected graph or a
trivial graph.

Point cover A point cover of G is a set of points of G which covers all
the lines of G.

Point covering number The point covering number of G, ao(G), is the
smallest number of points in a point cover of G.

Point-deleted subgraph The subgraph G - V obtained by removing the
point V and all incident lines from G is called a point-deleted subgraph
of G.

Point independence number The point independence number of G,
f3o(G), is the largest number of points in an independent set of points
of G.

Point-symmetric G is point-symmetric if every pair of its points are
similar.

Polyhedral graph A polyhedral graph is the I-skeleton of a convex
polydedron.

Porcupine graph The porcupine M" is K" with a pendant vertex adjacent
to each of its vertices.

Power of a graph The nth power of G, G", is that graph with the same
point set as G and with v adjacent to u in G" if and only if d(u, v) ~ n
in G.

Prime factor of a graph A non-trivial graph which appears in the
factorization of G as a Cartesian product of prime graphs is a prime
factor.
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Prime graph A non-trivial graph G is prime if G = G. X G2 implies that
GI or G2 is trivial.

Pseudograph A pseudograph is a finite non-empty set of points together
with a collection of not necessarily distinct unordered pairs of not
necessarily distinct points.

Quadratic form of a graph Let G be a graph with V(G) = {VI, ... ,vp },

and let A(G) = [ay] be its adjacency matrix. Let the variable Xi

correspond to Vi, 1 ~ i ~ p. Then the quadratic form of G is

Radius of a graph The radius of G, r(G), is the minimum eccentricity of
its points.

Ramsey number The Ramsey number r(Fi, Fi) of the graphs Fi and Fi is
the smallest integer n such that for any graph G of order neither Fi is
a subgraph of G or Fi is a subgraph of G.

Randomly Eulerian G is randomly eulerian from the point V if every trail
beginning at V can be extended to an eulerian circuit.

Randomly Hamiltonian G is randomly hamiltonian if for every point V

of G any path beginning at v can be extended to a hamiltonian cycle.

Regular graph G is regular of degree n if the degree of each of its points
is n.

Relatively prime graphs Two graphs are relatively prime if they have no
common prime factors.

Rigid graph G is rigid if the set of all compatible mappings of G consists
of only the identity mapping.

r(p,n) r(p,n) is the minimum number of point-deleted subgraphs Gi

= G - Vi required to distinguish graphs of order p with n points
unlabeled.

Self-dual A plane graph G is self-dual if it is isomorphic to its geometric
dual.

Similar lines Two lines X and y of G are similar if there is an induced
automorphism 9 E r*(G) such that 9(x) = y.

Similar points Two points u and V of G are similar if there is an
automorphism fJ E r(G) such that fJ(u) == v.

S. (G) Sn (G), n ~ I, is the graph obtained from G by inserting n new
points of degree 2 in every line of G.

Spanning subgraph A subgraph H of G is spanning if H contains all the
points of G.
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Spectrum of a graph The spectrum of G is the set of eigenvalues of its
adjacency matrix.

Star A star is any of the graphs KI,p_1 •

Strongly Hamiltonian G is strongly hamiltonian if each of its lines
belongs to a hamiltonian cycle.

Subdivision A subdivision of a graph G is a graph obtainable from G by
a finite sequence of elementary subdivisions.

Subdivision graph The subdivision graph S(G) of G is obtained from G
by replacing each new line uv of G by a new point wand the two new
lines uw and wv.

Subgraph H is a subgraph of G if V(H) ~ V(G) and X(H) ~ X(G).

Successor Let W be the n-route VI, V2, ••• , Vn+l, and let Vk be any point
other than Vn adjacent to Vn+l. The n-route V2, ••• , Vn+l, Vk is a
successor of W.

Sum of permutation groups Let A;, i = 1, 2, be two permutation groups
where A; is of order m; and degree d; acting on ~ = {Xil,Xi2' •• • ,X;dJ.

The sum Al + A2 is a permutation group of order ml m2 acting on
Xi U X2 whose elements are all ordered pairs of permutations, written
al + a2, where al E A; and defined by (al + (2)x = a;x if x E Xi.

Sum of two graphs The sum G + H of two graphs G and H is the graph
consisting of G U H and lines joining every point of G to every point
of H.

Tensor composite graph If G is not tensor prime, it is tensor composite.

Tensor prime graph G is tensor prime if it cannot be expressed as the
conjunction of two graphs.

8(G) fJ(G) is the minimum number of cliques which cover all the points
of G.

Theta graph A theta graph is a block with exactly two points of degree
3 and all other points of degree 2.

Total automorphism Let E(G) denote the set of all elements of the
graph G. A mapping fJ from E(G) onto itself is a total automorphism
of G if el and e2 are associate elements of G if and only if fJ(el) and
(}(e2) are associate elements of G.

Total chromatic number The total chromatic number of G,X2(G), is the
minimum number of colors required to color the elements (points and
lines) of G such that associate elements are of different colors.

Total graph The total graph of G, T(G), has for its points the elements
(points and lines) of G with two points of T(G) adjacent if and only
if the corresponding elements are associates.
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Total group of a graph The total group of G, I2 (G), is the group of all
total automorphisms of G.

Toughness Let G be a graph of connectivity K, G =1= Kp ; let kn

= max k(G - S), where k(H) denotes the number of components of
H; l'Yiia define tn = n/kn • Then the toughness of G is defined by
T(G) = min tn. If G = Kp , then T(G) = 00.

lC~n

Traceable G is traceable if it has a hamiltonian path.

Trail A trail is a walk in which no line is repeated.

Tree A tree is a connected acyclic graph.

Trivial graph The trivial graph is KI •

2-cell embedding An embedding of G is a 2-cell embedding if every face
of the embedding is topologically homeomorphic to an open disk.

Union of two graphs The union of the graphs G and H, G U H, is the
graph having point set V(G) U V(H) and lines X(G) U X(H).

Unique isometric tree If there is one isometric tree, up to isomorphism,
for the point v of G, then v has a unique isometric tree. If G has the
same unique isometric tree at each of its points, then G has a unique
isometric tree.

Uniquely n-colorable G is uniquely n-colorable if x(G) = n and every
n-coloring of the points of G induces the same partition of the points
into n color classes.

Upper embeddable G is upper embeddable if 'YM(G) = [b(G)/2].
Vertex See "Point".

Vertex of attachment Let H be a subgraph of G. A point v of H is a
vertex of attachment of H in G if it is incident with a line of G not in
H.

Walk A Vo - Vn walk in G is an alternating sequence of points and lines of
G, vo, X., v., ... , Vn-I, X n , Vn, beginning and ending with a point in
which each line is incident with the two points immediately preceding
and following it.

Weight of a point The weight of a point v of a tree T is the maximum
number of lines in any branch at v.

Wheel The wheel on p points is defined by Jt; = KI + Cp- I •

Whitney's inequality For any graph G, K(G) ~ A(G) ~ 8(G).

(0,I)-graph H is a (0, I)-graph if there exists a (0, I)-matrix A such that
H is the graph of A.
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L(Sn-l (G»
porcupine graph
n-fold union of G with itself
closure function of G
number of points of the graph G
minimum number of points in a graph G having r(G) '""- f
planar Ramsey number of Kn and Km

a-permutation graph of G
path on n points
number of lines of the graph G
quadratic form of the graph G
n-cube
radius of G
Ramsey number of Fi and Pi
(see Glossary)
(see Glossary)
symmetric group of degree p
total graph of G
set of points of G
wheel on p points
set of lines of the graph G

2. GREEK LETTERS
ao(G)
al(G)
Po(G)
PI (G)
y(G)
YM(G)
f(G)
Il(G)
I2(G)
r*(G)
8(G)
~(G)

a(G)
a(v)
a(u, v)
E(G)
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point covering number of G
line covering number of G
point independence number of G
line independence number of G
genus of G
maximum genus of G
automorphism group of G
line group of G
total group of G
induced line group of G
minimum degree of the points of G
maximum degree of the points of G
detour number of G
detour number of v
maximum length of a u - v path
an elementary homomorphism of G or the maximum eigen
value of the adjacency matrix of G



fJ(G)
t(G)
IC(G)
i\(G)
V(G)
p(G)
T(G)
X(G)
Xt(G)
X2(G)
XG(i\)
\f;(G)
W(G)
~(S)

List of Symbols

minimum number of cliques covering all the points of G
intersection number of G
connectivity of G
line connectivity of G
crossing number of G
point arboricity of G
toughness of G
chromatic number of G
line chromatic number of G
total chromatic number of G
chromatic polynomial of G
achromatic number of G
density of G
intersection graph of S
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Index

Achromatic number
chromatic number, 15
complement of a graph, 14
elementary homomorphIsms, 15
point independence number, 14

Adjacency matrix, 203
incidence matrIx, 203

ao- critical graph, 33
ao-minimal graph, 33

ao-critical point, 32
minimum point cover, 33

ao-minimal graph, 32
ao-critical graph, 33
blocks, 33
odd cycles, 33

ao-minimal line, 32
minimum line cover, 33

Asymmetric graphs, 99, 100
least number of lines, 1()()

Asymmetric trees, 99, I()()
Attachment, vertex of (see vertex of

attachment)
Automorphism, 89

induced line, 92
line automorphism, 92

total, 93

/30 -minimal graph, 34
degrees, 34
odd cycles, 34

Betti number of a graph, 119, 127
maximum genus, 127

Bipartite graph
composition, 86

conjunction, 85
pOInt covering number

line independence number, 30
pOInt independence number, 30

sums, 79,80
3-connected cubic

hamlltonicity, 170
Block

ao-minimal graph, 33
hamiltonian line graphs, 187

Bridge
I-factor, 35

Cactus, 127
Cage

(d,g),53
(3,5), see Peterson graph
(3,6), see Heawood graph
(3, 7), 55
(3,8), see Tutte-Coxeter graph
(4,5),56
(4,6), 56
(5,5), 57
(7,5),57
n-unitransitivity, 96, 97

Cartesian prime graph, 83, III
Cartesian product of graphs, 80

complements, 80
connectedness, 83, 84
hamiltonici ty, 83
line chromatic number, 80, 81
total chromatic number, 81

Center of a graph, 144, 192, 201
detour center, 192

Center of a tree
point-deleted subgraphs, 144
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Centroid, 201
X-cri tical graph

X-minimal graphs, 8, 9
hne connectedness, 9

x-minimal graph
x-critical graphs, 8, 9
line connectedness, 9

Chromatic number, I
complement of a graph, 5
density, 1
gIrth for genus one graphs, 5
girth for planar graphs, 7
maxImum degree, 2, 3
permutation graphs, 8
point arbonclty, 38

Chromatic polynomial (see chromiaI)
Chromial,9

isomorphism, 10
properties of, 9, 10

Circuit, 153
CIrcular arc graph, 208
Circumference, 197
Clique, 206ff

point independence number, 29
Clique graph, 65, 206

line graphs, 66
necessary and sufficient conditions

for, 78
Closure function of a graph

reconstruction from, 151
Closure of a graph, 160
Coarseness of a graph, 133
Cocycle rank, 119
Compatible mapping, 47
Complement of a graph, 59

Cartesian product, 80
chromatic number, 5
connectivity, 21
line chromatic number, 12
hne connectivIty, 21
line graphs, 64, 65
sums of graphs, 79

Complete graph
hne graph of, 61

Components
conjunction, 85
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Composition of graphs, 85
blparti teness, 86
non-commutativity of, 86

CompositIon of groups, 89
ConjunctIon, 84

blpartiteness, 85
components, 85
connectedness, 84, 85

J -Connected, 71
total graphs, 71, 72

n-Connected, 72
cycles, 21
hamiltonIan connectedness, 183f
line graphs, 26
minimum degree, 21
m-line connectedness

total graphs, 27
pOInt disjoint paths, 23
smallest n for dIsjoint paths, 47
total graphs, 27

3-Connected
hamiltonian-connected, 184
maximal planar, 26
planar

uniquely embeddable, 25
4-Connected

planar, cychc connectvity, 24
5-Connected

planar, cycltc connectvity, 24, 25
Connectedness

Cartesian product, 83, 84
conJunctIon, 84, 85
hne graphs, 65
local connectedness, 17, 18
number of lines, 17
point-deleted subgraphs, 142
2-polnt-deleted subgraphs, 148
unIque colorabilIty, II

Connectedness modulo a subgraph (see
J-connected)

n-Connectedness
total graphs, 72

ConnectIvity
hamlltonlclty, I 58ff, 164
Iterated lIne graphs, 26



maximum, 20
minumum degree, 19, 20
point independence number

toughness, 28
spanning subgraph, 18
subgraph, 18
toughness, 28

Contraction, 118
reconstruction, 152

Critical n-connectedness
minimum degree, 23

Crossing number, 130-132
Cubic graph

bridgeless
I-factorable, 35
I-factor and 2-factor, 35

cyclic groups, 103
I-factor, 35
groups, 103, 108
planar

chromatIc number, 13
planar 3-connected

hamIltonicIty, 165ff
traceability, 178

3-connected bipartite
hamiltonici ty, 170

Cutpoint
induced subgraph, 18
n-connectedness, 21

Cycle
odd

ao-minimal graph, 33
J3o-minimal graphs, 34

Cycle multiplicity
line graphs, 66, 67
total graphs, 69

Cycle rank, 119
Cycle connectivIty, 170

cubic non-hamiltonian planar
graphs, 171 f

4-regular non-hamiltonIan planar
graphs, 172f

5-regular non-hamIltonian planar
graphs, 173ff

planar graphs
4-connected, 24
5-connected, 24

Index

Cyclic group
cubiC graphs, 103
graphs, 103, 105, 107, 110

(D, t, d, b)-graph (see graph (D, t, d, b))
Degree

J3o-mInimal graphs, 34
maximum

minimum point cover, 31, 32
minimum

connectivIty, 19, 20
crItIcally n-connected, 23
lIne connectivity, 19, 20
maximum independent set of
points, 31, 32
n-connectedness, 21
pOInt arborIcity, 36
point covering number, 29

Degree sequence, 159ff, 195f
graphical, 160, 195
isomorphism, 196
line-deleted subgraphs, 147
point-deleted subgraphs, 141
n-point-deleted subgraphs, 147

Density
chromatic number, 1

Derived graph (see line graph)
Detachment modulo a subgraph (see J

detachment)
J-Detachment,68

line graphs, 68
total graphs, 70

Detour center, 192
center, 192

Detour-connected graph, 192
hamiltonian graphs, 193

Detour number, 192
Detour path, 191
Diameter, 197f

complements, 197
radius, 198

Disconnected graphs
reconstructibility, 141

Distance distribution of a graph, 196ff
IsomorphIsm, 197
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Dual of a graph
combinatorial, 119

planar graphs, 119
subgraphs, 120

geometric, 209ff
isomorphism, 209
self, 210

Duke's conjecture, 127, 128

Eccentricity, 192, 197
Embedding, 115

minimal, 125
2-cell, 125

Entire graphs, 73
eulerian graphs, 75, 76
hamiltonian graphs, 76, 77
isomorphism, 74, 75

Eulerian graphs, 153ff
entire graphs, 75, 76
hamiltonian graphs, 157
line graphs, 67, 186ff
total graphs, 189

External stability (see stabIlity, external)

n-Factor, 35
I-Factor

bridges, 35
cubic graphs, 35
2-factor,

bridgeless cubic graph, 35
n-Factorable, 35
I-Factorable

bridgeless cubic graphs, 35
Fixed line, III
Fixed-point-free graph, 111
Forbidden subgraphs

line graphs, 60
planar line graphs, 64

Forcibly hamiltonian degree sequence,
162

Four color theorem
Heawood map coloring theorem, 6
Kempe's "proof" of, 6
planar Ramsey numbers, 122
point arboricity, 38

Friendship theorem, 198

254

G(2, 2, 2, 4), 50
G(2, 2,5,16), 50
G(2,2, 10,56), 51
G(3, 2, 4,35), 53
Galvin's counterexample, 44
Generalized Ramsey number (see

Ramsey number, generahzed)
Genus of a graph, 124, 125

lines, 129
maximum, 126

betti numbers, 127
Geodetic graph, 202
Girth of a graph, 197

chromatic number for genus one
graphs, 5

chromatic number for planar graphs,
7

circumference
diameter, 197

diameter, 197
maximal even, 50

Graph
(D. t, d,p), 50

(0, I)-Graph. 205
Graphs with no reconstruction, 151
Grinberg's Theorem, 164ff
Grotzsch graph, 214, 215
Group of a graph, 89ff, 10lff

Hamiltonian graphs, 155
CartesIan products, 83
connectivity, 158, 164
cychc connectivity, 170ff
detour-connected graphs, 193
entire graphs, 76, 77
eulerian graphs, 157
hamiltonian-connected graphs, 182
hne graphs, 67, 187
mInImum degree, 159
number of lines, 159
pancyclic graphs, 185
pOInt Independence number, 159
power of a graph, 176

n-HamiltonIan graphs, 181, 185
squares of graphs, 185



Hamiltonicity
the regular polyhedra, 155ff
strongly hamiltonian graphs, 182
the square of a bridgeless graph, 177
squares of trees, 176
total graphs, 189
toughness, 158

HamiltonIan-connected graphs, 181 ff
n-connectedness, 183
3-connectedness, 184
hamiltonian graphs, 182
minimum degree, 182
number of lines, 182
point independence number, 183
strongly hamiltonian graphs, 182

Hamiltonian index, 187ff
minimum degree, 188

Heawood
counterexample to Kempe's "proof"

of four color theorem, 6
map coloring theorem, 6

Heawood graph, 54, 213
Hoffman-Singleton graph, 57
Homeomorphism of graphs, 117
Homomorphic image

reconstruction from, 152
Homomorphism

elementary
achromatic number, 14, 15

elementary
(point) chromatic number, 4

Hypohamiltonian graphs, 179ff
Hypotraceable graph, 179, 181

Independence number
point

achromatic number, 14
Independent set, 29
Independent set of lines

maximal, 30
maximum independent set of
lines, 31

maximal independent set of lines, 31
maximum, 30

Independent set of points
maximal, 30

Index

maximum independent set of
points, 31

maximum, 30
maximal independent set of
points, 31
minimum degree, 32

Identical permutation groups, 110
Induced isomorphism (see

isomorphism, induced)
Induced hne-automorphism (see

automorphism, induced line)
Infinite graphs

non-reconstructibiltiy of, 140
Interchange graph (see line graph)
Internal stability (see stability, internal)
In tersection graph, 205
Intersection number, 205
Interval graph, 207
Isometric graphs, 198ff

isomorphism, 199
Isometric tree, 200
Isomorphic graphs

entire graphs, 74
isospectral graphs, 203
path length distribution, 196

Isomorphism, 89
chromials, 10
induced, 90, 92

line isomorphism, 92
groups of a graph of, 93
line, 92

induced isomorphism, 92
isomorphism, 90

line graphs, 61, 63
line isomorphism, 90

Isospectral graphs, 203
isomorphic graphs, 203

Join of graphs (see sum of graphs)

K6

monochromatic triangles in 2-edge
colorings, 12

K-cri tical graph
K-minimal, 18, 19
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Kempe, 6
Kuratowski's theorem, 118

Ln ( G), 189ff
Levi graph (see Tutte-Coxeter graph)
Lexicographic product (see composItIon

of graphs)
Line chromatic number, 80

Cartesian products, 80, 81
complement of a graph, 12
cubic planar graphs, 13
maximum degree, 12

m-Line connected, 72
total graphs, 72

LIne connectedness
X-cri tical, 9
x-minimal, 9
line graphs, 27

m-Line connectedness
line disjoint paths, 23
n-Connectedness

total graphs, 27
total graphs, 27

LIne connectivIty
complement of a graph, 21
mInImum degree, 19, 20

Line core, 38
LIne cover, 29

minimal, 30
minimum line cover, 31

minImum, 30
ao-minimal line, 33
minImal line cover, 31
line cover, 30

minimum line cover, 30
LIne covering number, 29

point independence number, 29
total graphs, 72

Line disjoint paths
m-line connectedness, 23

LIne graph, 59
cliques, 66
complements, 64, 65
complete graph of, 61
connectedness, 65
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n-connectedness, 26
cycle multiplicity, 66, 67
J-detachment,68
eulerian graphs, 67, 186ff
forbidden subgraphs, 60
hamiltonicity, 67, 187ff

LIne graphs
isomorphIsm, 61, 63
iterated

connectivIty, 26
line connectivity, 27
planar, 63, 64

Line group of a graph, 92, 93
Line Independence number, 29

bipartite graphs, 30
point covering number, 29

Line isomorphism (see isomorphIsm,
line)

Line symmetry
I-transItIvIty, 96
pOInt symmetry, 94, 95

Line-deleted subgraphs
degree sequences, 147
graphs not reconstructable from, 146
pOInt-deleted subgraphs, 146
propertIes obtainable from, 138
subgraphs isomorphic to a gIven

graph, 147
Local connectedness

connectedness, 17, 18
Lower embeddabllity, 127-129

McGee graph, 55
Majortzlng sequence, 162
MaxImal outerplanar graph (see

outerplanar graph, maxImal)
MaxImal planar graph (see planar

graph, maxImal)
MaxImum degree

chromatic number, 2, 3
Itne chromatIc number, 12
randomly eulerian from a point, 154
total chromatic number, 13, 14

MaxImum genus (see genus, maxImum)
MaxImum matching, 122, 123



Minimal embeddIng (see embedding,
minImal)

MinImum degree
hamiltonIan Index, 188
hamiltonIan connectedness, 182
hamlltoniclty, 159
traceabIlity, 178

Monochromatic triangles
edge coloring of K6 • 12

Non-commutativity
composition of graphs, 86

Non-reconstructable graphs, 139
InfinIte, 140

Number of lines
hamiltonIan-connectedness, 184

Outplanar graphs, 122
charactenzatlon of, 123
complements, 124
hnes of, 124
maxImal, 124

non-IsomorphIc point deleted
subgraphs, 143

Pancyclic graphs, 185ff
4-connected planar graphs, 186
hamiltonicity, 185

Path length distnbution, 196
isomorphic graphs, 196

Pendant vertex-deleted subgraphs,
centers of trees, 144

Permutation graph, 88
chromatic number, 8

Petersen graph, 36, 54, 109, 146, 158,
164, 179,213

generalization of, 213
Planar graph, 115

complements, 116
cubic

chromatic number, 13
cubic 3-connected

hamiltoniclty, 165ff
traceability, 178

Index

4-connected
cychc connectIvIty. 24
pancyclicity, 186

5-connected
cychc connectIvIty. 24

degrees, 116
duals, 119
line graphs, 63, 64
hnes of, 115
maxImal, 115, 189

hamiltonicity, 169
3-connected, 26

pOInt arboncity, 37
squares of graphs, 120
unIquely embeddable

3-connected, 26
Planar Ramsey number (see Ramsey

number, planar)
Planarity

total graphs, 121
POInt arbonclty, 26

chromatic number, 38
minImum degree, 36
planar graphs, 37

POInt cover, 29
mInImal, 30

minimum point cover, 31
minImum, 30

ao-critical point, 33
maxImum degree, 31, 32
minImal point cover, 31
point cover, 30

mInImum point cover, 30
POInt covenng number, 29

bIpartIte graphs, 30
external stability number, 32
hne Independence number, 29
mInImum degree, 29

POInt disjoint paths
n-connectedness, 23

POInt Independence number, 29
bipartite graphs, 30
chromatIc number, 3
chques,29
connectlvl ty

toughness, 28
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Point independence number, continued
hamiltonian graphs, 159
hamiltonian-connected graphs, 183
line covering number, 29
total graphs, 72, 73
traceabihty, 178

Point symmetry
line symmetry, 94, 95

Point-deleted subgraphs
connectedness, 142
degree sequences, 141
K4 ,141
line-deleted subgraphs, 146
non-isomorphic

maximal outerplanar groups, 143
properties obtainable from, 137
trees, 142

properties obtainable from, 137
subgraphs isomorphic to a given

graph, 142
trees, 142

n-point-deleted subgraphs
degree sequences, 147
reconstruction from, 147

Polyhedral graph, 122, 164
Porcupine graph, 87
Powers of a graph

hamiltonicity, 176ff

Radius, 197
diameter of a graph, 198

Ramsey number, 39
bounds on, 39
generalized, 44

bound on, 45
planar, 121

four color theorem, 122
r(K3 , K3 , K3 ), 45
table of, 40

Randomly eulerian from a point, 153ff
blocks, 154
maximum degree, 154

Randomly hamiltonian graphs, 181, 184
Reconstructable graphs, 136-138
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Reconstructibili ty
dIsconnected graphs, 141
separable graphs, 141

Reconstruction
closure function from, 151
contractions, 152
homomorphic images, 152

reconstructIon problem
sharpness of, 138

Regular graphs
isomorphism, 196
sums of graphs, 79

RelatIvely Cartesian prime, III
RigId graph, 47
Robertson graph, 56
Robertson-Wegner graph, 57
n-Route,96

Separable graphs
and reconstructibility, 141

Similar hnes, 94
Similar points, 94, 139
Spanning star

diameter of a graph, 198
Spanning subgraph (see subgraph,

spanning)
Spectrum of a graph, 203
Square of a graph

hamiltonicity, 176ff
planarity, 120

Stablhty
external, 48
external number of

point covering number, 32
internal, 48

Strongly hamiltonian graph, 181
hamIltonian graph, 182
hamiltonIan-connectedness, 182

SubdivIsion of a graph, 117
Subgraph

connectivity, 18
duals, 120
Induced

outpoints, 18
unique colorability, II



spanning
connectivity, 18

Sums of a graph, 78
bipartiteness, 79, 80
complements, 79
regulari ty, 79

Sums of groups, 89
Symmetric group

least number of lines, 112

Tensor composite graph, 85
necessary and sufficient conditions

for, 85
Tensor prime graph, 85
Tensor product (see conjunction of

graphs)
Theta graph, 158

hamiltonian graphs, 158
Thomson graph, 213
Torus, 6
Total chromatic number, 80

cartesian product, 81
maximum degree, 13, 14

Total coloring conjecture, 14
Total graphs, 69, 72

n-connectedness, 27, 72
m-line connectedness, 27

cycle multiplicity, 69
J-detachment, 70, 71
eulerian graphs, 189
hamiltonian graphs, 189
m-line connectedness, 27
line covering number, 72, 73
planarity, 121
point independence number, 72, 73

Total group of a graph, 93
the group of a graph, 93

Toughness
connectivity, 28

point independence number, 28
hamiltonicity, 158

Traceable graphs, 178
cubic planar 3-connected graphs, 178

Index

hamiltonici ty, 178
minimum degree, 178
point-independence number, 178

Trail, 153
n-Transitive graph, 96
1-Transitivity

hne symmetry, 96
Trees

homomorphic image reconstructIon,
152

non-IsomorphIc pOInt-deleted
subgraphs, 142

point deleted subgraphs, 142
Turan's theorems, 48, 49
Tutte graph, 37, 165, 170ff
Tutte-Coxeter graph, 55
2-cell embedding (see embedding, 2-cell)
2-edge coloring

K6 of
monochromatic triangles, 12

2-point-deleted subgraphs, 147
connectedness, 148

Unicyclic graphs, 202
Unique colorability

connectedness, II
induced subgraphs, II

Uniquely embeddable
planar

3-connected, 25
n-Unitransitive graphs, 96

cages, 96, 97
Upper embeddibility, 127-129

Vertex of attachment, 68

Wheel
3-connectedness, 22

Whitney's inequality, 19
Wreath product of groups (see

composition of groups)
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