
Problems and Results Motivated by Efficient
Computation of the Independence Number

Craig Larson

Virginia Commonwealth University
Richmond, VA

The University of Gent
Feb. 22, 2013



I. Introduction, Applications, Complexity



The Independence Number of a Graph

• The independence number α of a graph is the largest number of
mutually non-adjacent vertices.
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I The number of independent sets σ correlates both with alkane
heats of formation and boiling points.

• R. Merrifield and H. Simmons, The Structure of Molecular
Topological Spaces, Theoretica Chimica Acta, 1980.
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Molecular Stability

I Stable benzenoids maximize their matching number

I and minimize their independence number.

• R. Pepper, An upper bound on the independence number of
benzenoid systems, Discrete Applied Mathematics, 2008.
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Which Fullerene Isomers are Stable?

Atoms Isomer # of Isomers α Rank Max Min

60 C60:1 (Ih) 1812 24 1 28 24

70 C70:1 (D5h) 8149 29 1 33 29

76 C76:1 (D2) 19151 32 1 36 32

78 C78:1 (D3) 24109 33 1 (3) 37 33
C78:3 (C2v ) 34 2
C78:2 (C2v ) 33 1 (3)

84 C84:22 (D2) 51592 36 1 (17) 40 36
C84:23 (D2d) 36 1 (17)

• S. Fajtlowicz, and C. E. Larson, Graph-theoretic Independence as
a Predictor of Fullerene Stability, Chemical Physics Letters, 2003.



Shannon Capacity

I The zero-error capacity of a alphabet is lim n
√
α(Gn).

• C. Shannon, The zero error capacity of a noisy channel, IRE
Transactions on Information Theory, 1956.



Optimal Communication Networks

• G. Brinkmann, S. Crevals, J. Frye, An independent set approach
for the communication network of the GPS III system, Discrete
Applied Mathematics, 2013.



Relations to Other Graph Invariants

I Domination number: γ ≤ α

I Clique Covering number: α ≤ ω̄

I Chromatic number: αχ ≥ n

I Matching number: n − 2µ ≤ α ≤ n − µ.

I Clique Number: α(G ) = ω(Ḡ ).

I Covering Number: α = n − τ .
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Calculating the independence number of a graph

I If a graph has n vertices, there are 2n subsets to consider.

I Robson’s algorithm is the fastest existing analyzed algorithm
and runs in O(2.276n).

I Österg̊ard’s Cliquer algorithm is a simple, fast and popular
practical general algorithm.

I New general algorithms may be faster - San Segundo’s BBMC.

• J. M. Robson, Algorithms for Maximum Independent Sets,
Journal of Algorithms 7 (1986) 425–440.
• P. Österg̊ard, A fast algorithm for the maximum clique
problem, Discrete Applied Mathematics 120 (2002) 197–207.
• P. San Segundo, An improved bit parallel exact maximum
clique algorithm, Optimization Letters, 2011.
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I Österg̊ard’s Cliquer algorithm is a simple, fast and popular
practical general algorithm.

I New general algorithms may be faster - San Segundo’s BBMC.

• J. M. Robson, Algorithms for Maximum Independent Sets,
Journal of Algorithms 7 (1986) 425–440.
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Independence number is NP-hard

The Independent Set Decision Problem:

Given a graph G and an integer k , does G have an independent set
of size at least k?

• R. M. Karp, Reducibility Among Combinatorial Problems,
Complexity of Computer Computations, 1972, 85–103.
• M. Garey and D. Johnson, Computers and Intractability, W. H.
Freeman and Company, New York, 1979.
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Does P=NP?

“My hunch is that P=NP, contrary to general belief.”

• B. Bollobás, The Future of Graph Theory, Quo Vadis, Graph
Theory?, 1993, 5–11 .
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II. A Structural Result
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The critical difference d is the maximum value of
|I | − |N(I )|, for all independent sets I . An
independent set Ic which realizes d is a critical
independent set.

Let Ic=red vertices,

then N(Ic)=yellow vertices,

and |Ic | − |N(Ic)| = 0.

d = 0 and Ic is a critical independent set.
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A maximum critical independent set is an
independent set which realizes the critical difference
d and has maximum cardinality.

Let Ic=red vertices,
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An Independence Decomposition

Theorem: For any graph G , there is a unique set X ⊆ V (G ) such
that

1. α(G ) = α(G [X ]) + α(G [X c ]),

2. G [X ] is KE,

3. G [X c ] has the property that every non-empty independent set
I has more than |I | neighbors, and

4. for every maximum critical independent set Jc of G ,
X = Jc ∪ N(Jc).

• L., The Critical Independence Number and an Independence
Decomposition, European Journal of Combinatorics, 2011.



An Independence Decomposition

Theorem: For any graph G , there is a unique set X ⊆ V (G ) such
that

1. α(G ) = α(G [X ]) + α(G [X c ]),

2. G [X ] is KE,

3. G [X c ] has the property that every non-empty independent set
I has more than |I | neighbors, and

4. for every maximum critical independent set Jc of G ,
X = Jc ∪ N(Jc).

• L., The Critical Independence Number and an Independence
Decomposition, European Journal of Combinatorics, 2011.



An Independence Decomposition

Theorem: For any graph G , there is a unique set X ⊆ V (G ) such
that

1. α(G ) = α(G [X ]) + α(G [X c ]),

2. G [X ] is KE,

3. G [X c ] has the property that every non-empty independent set
I has more than |I | neighbors, and

4. for every maximum critical independent set Jc of G ,
X = Jc ∪ N(Jc).

• L., The Critical Independence Number and an Independence
Decomposition, European Journal of Combinatorics, 2011.



An Independence Decomposition

Theorem: For any graph G , there is a unique set X ⊆ V (G ) such
that

1. α(G ) = α(G [X ]) + α(G [X c ]),

2. G [X ] is KE,

3. G [X c ] has the property that every non-empty independent set
I has more than |I | neighbors, and

4. for every maximum critical independent set Jc of G ,
X = Jc ∪ N(Jc).

• L., The Critical Independence Number and an Independence
Decomposition, European Journal of Combinatorics, 2011.



An Independence Decomposition

Theorem: For any graph G , there is a unique set X ⊆ V (G ) such
that

1. α(G ) = α(G [X ]) + α(G [X c ]),

2. G [X ] is KE,

3. G [X c ] has the property that every non-empty independent set
I has more than |I | neighbors, and

4. for every maximum critical independent set Jc of G ,
X = Jc ∪ N(Jc).

• L., The Critical Independence Number and an Independence
Decomposition, European Journal of Combinatorics, 2011.



An Independence Decomposition

I X is orange, X c is green,
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I Every graph decomposes into a KE graph and a graph where
every independent set I has more than |I | neighbors.
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Integer Programming (VPIP)

For every vi in V = {v1, v2, . . . , vn}, let w(vi ) ∈ {0, 1},

Constraints: w(vi ) + w(vj) ≤ 1 if vi is adjacent to vj

Objective: maximize
∑

w(vi ).
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A Useful Result

Theorem
(Balinsky, 1965) There is an optimal solution to VPLP with
weights w(vi ) ∈ {0, 1, 12}.
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• G. L. Nemhauser and L. E. Trotter, “Properties of vertex packing
and independence system polyhedra,” in Mathematical
Programming, 1974.
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Picard-Queyranne Theorem

Theorem
(Picard, Queyranne) There are a unique maximal set of variables
which are integral in optimal VPLP solutions.
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Facts

For a optimal solution V0,V1,V 1
2

of VPLP, and a critical

independent set Ic , . . .

1. |V0|+ |V1|+ |V 1
2
| = |Ic |+ |N(Ic)|+ |(Ic ∪ N(Ic))c |.

2. V0 = N(V1).

3. |Ic | − |N(Ic)| ≥ |V1| − |V0|.
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Optimal Solutions give Critical Independent Sets

Let V0,V1,V 1
2

be a feasible solution of VPLP with N(V1) = V0,

and Ic be a critical independent set, . . .

Theorem
V0,V1,V 1

2
is an optimal solution of VPLP if, and only if, V1 is a

critical independent set.
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2. X c = V − X , and
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III. Efficient Computation of the Independence Number



When can independence number be computed
efficiently?

For claw-free graphs.

• G. Minty, On maximal independent sets of vertices in claw-free
graphs, Journal of Combinatorial Theory. Series B, 28 (1980)
284–304.



When can independence number be computed
efficiently?

For perfect graphs.

• M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković,
Recognizing Berge graphs, Combinatorica 25 (2005) 143–186.



When can independence number be computed
efficiently?

For Bipartite and König-Egerváry graphs:

• König, Egerváry, 1931; Kuhn, 1955; Deming, Sterboul, 1979.
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15. (P5,K4 − e)-free (Arbib, Mosca, 2002; Brandstädt, 2004)
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When can independence number be computed
efficiently?

When l(G ) = u(G ), for an efficiently computable lower bound
l ≤ α and efficiently computable upper bound α ≤ u.



Residue Lower Bound

Given a graph G with degree sequence (d) the residue is the
number of zeros at the result of the Havel-Hakimi process.

I 4, 4, 3, 3, 2, 2, 2.

I 0, 0, 0.

I R = 3.

R ≤ α Graffiti, 1988; Favaron, Maheo, Sacle, 1991; Griggs,
Kleitman, 1994.
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Cvetkov́ıc Eigenvalues Bound

• Cvetkovic bound: α ≤ min{# of non-negative eigenvalues, # of
non-positive eigenvalues}

• Eigenvalues: 3, 1, 1, 1, 1, 1, -2, -2, -2, -2.
• α ≤ 4.

• D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs, 3rd
ed., 1995.



Cvetkov́ıc Eigenvalues Bound

• Cvetkovic bound: α ≤ min{# of non-negative eigenvalues, # of
non-positive eigenvalues}

• Eigenvalues: 3, 1, 1, 1, 1, 1, -2, -2, -2, -2.

• α ≤ 4.
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I Independence Number Theory implies α = 2.
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Lovász Theta Function
• The Lovász number of a graph G is:

ϑ(G ) = max[1− λ1(A)

λn(A)
]

over all real matrices A with aij = 0 if vi ∼ vj in G , with
eigenvalues λ1(A) ≥ . . . λn(A)

α ≤ ϑ = 4
• L. Lovász, On the Shannon capacity of a graph, IEEE
Transactions on Information Theory, 1979.
• D. Knuth, The sandwich theorem, Electronic Journal of
Combinatorics 1 (1994).
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Number

1. Residue Lower Bound

2. Cvetkovic Upper Bound

3. Lovász Theta Upper Bound

4. Even minus Even Horizontal Lower Bound

5. Fractional Independence Upper Bound

6. 50 Efficiently Computable Bounds are Known
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Problem 5

I Find More Efficiently Computable Bounds for α.



When can independence number be computed
efficiently?

I When the graph has a vertex v of degree n − 1, and α of
G − N[v ] can be computed efficiently. (So
α(G ) = α(G − N[v ]))

I When the graph has twin vertices v and w (that is,
N[v ] = N[w ]) and α of G − v can be computed efficiently. So
α(G ) = α(G − v)).

I When the graph has a simplicial vertex (that is, a vertex v ,
where N[v ] is complete. So α(G ) = α(G − v)).
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When can independence number be computed
efficiently?

When G has a non-empty critical independent set, and α of G [X c ]
can be computed efficiently.
• L., A note on critical independence reductions, Bulletin of the
ICA 51 (2007) 34–46.



What is an α-reduction?

G is α-reducible if it is possible to efficiently find a smaller order
graph G ′ such that α(G ) can be computed in terms of α(G ′).

1. Is disconnected.

2. Maximum degree = n − 1.

3. Has twin vertices.

4. Has a simplicial vertex.

5. Has a non-empty critical independent set.

6. Has a foldable vertex (Fomin, Grandoni, Kratsch, 2006).

7. Has a magnet (Leveque, de Werra, 2012).
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Problem 6

I Find new α-reductions.



IV. The Independence Number Project

Joint Work with Patrick Gaskill



What is the Independence Number Project?

The main idea is to find the smallest graphs whose independence
number cannot be efficiently computed (according to existing
Independence Number Theory) and use these graphs to help
extend the theory.

I Connected graphs with n ≤ 4 either have a degree n − 1
vertex, or a foldable vertex.

I Then we generated all graphs with n = 5, and checked if:
I they were reducible (and α could be computed in terms of the

independence number of a graph with n < 5),
I they had an α-property, or
I the best upper bound equals the best lower bound.

I Then we generated all graphs with n = 6, . . .

I Then we generated all graphs with n = 7, . . .

I Then we generated all graphs with n = 8, . . .

I Then we generated all graphs with n = 9, . . .
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What is the Independence Number Project?

I But we got stuck at n = 10.

I For this graph (I?bbrr[ko), α = 4 but the best lower bound =
3,

I It has no n − 1 vertices, no foldable vertices, no simplicial
vertices, no magnets, or any other α-reductions,

I It has a claw, a bull, a chair, a co-chair, a house, a P5, a P, a
co-P, a gem, and a diamond.

I It demands new theory.
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Problems

1. Characterize of and Efficiently Identify Separable Independent
Sets

2. Find new forbidden subgraph characterizations, especially one
that applies to I?bbrr[ko. Find an efficient algorithm for
P5-free graphs.

3. Efficiently characterize graphs where α = residue.

4. Efficiently characterize graphs where α = ϑ.

5. Find new efficiently computable bounds for α, especially lower
bounds, and especially one that gives equality for I?bbrr[ko.

6. Find new α-reductions, especially one that applies to
I?bbrr[ko.
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3. Efficiently characterize graphs where α = residue.

4. Efficiently characterize graphs where α = ϑ.

5. Find new efficiently computable bounds for α, especially lower
bounds, and especially one that gives equality for I?bbrr[ko.

6. Find new α-reductions, especially one that applies to
I?bbrr[ko.
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I Python: python.org

I nauty: cs.anu.edu.au/~bdm/nauty

I Grinvin: grinvin.org

I Github: github.com

I Wordpress: wordpress.com
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Thank You!

The Independence Number Project:
independencenumber.wordpress.com

clarson@vcu.edu

independencenumber.wordpress.com

