
COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT:

Community Run Open Source Software Providing Research Opportunities for

Developers, Users, Contributors, and Teachers

SageMath [217], or Sage for short, is a free open source general purpose mathematical
software system, initiated under the leadership of William Stein (University of Washington), that
has developed explosively within the last ten years among research mathematicians. Stein’s primary
motivational goal was to create software that is efficient, open source, comprehensive, well-
documented, extensible, and free [216]. Sage’s development has reached a point where it
has the potential to become a standard software package that is widely used throughout STEM
disciplines. If funded, the proposed project will allow us to make major progress towards this goal.

Sage is similar to Maple [150], Mathematica [237], Magma [43], and MATLAB [225] (via
third-party packages like SciPy [105]), but uses the popular Python language [175] both as
an implementation and as a surface language. This not only ensures easy access to help with
programming [75, 146, 174], but also provides developers with transferable skills as they work
with a computer language that is ubiquitous in the software industry. Furthermore, Sage has
gained strong momentum in the mathematics community far beyond its initial focus in number
theory, in particular in the field of combinatorics where the capabilities and functionalities of
Sage are much deeper than those of commercial packages.

Sage is community-run, meaning that it is developed and organized by users for users. The
development is driven by research and teaching needs and has a variety of stakeholders: e.g.,
developers, users, contributors, researchers, and teachers. Sage has over 180 developers [171] (more
than 140 currently active [165]). Additionally, Sage combines dozens of open source packages,
thus benefiting from development by an even larger community comprised of a wide range of
mathematicians, physicists, and engineers. With the development of SageMathCloud [218],
thematic tutorials [224], and other systems such as SageTex [72] and FindStat [222, 38], Sage
is becoming more appealing, more accessible, and easier to use for research opportunities and
teaching purposes. SageMathCloud has more than 30,000 active users. There have been
more than 300 updated releases of Sage, with both precompiled binary archives for a variety of
platforms and Sage’s source code available [217], being downloaded over 6,500 times per month
on average [171].

In this proposed project, our main objectives are to:

(1) Deepen Sage functionality in fundamental areas of mathematics amenable to computation;
(2) Lower Sage’s barriers to entry for researchers, educators, students, & industry professionals

and enhance it as a tool for STEM education;
(3) Engage with and broaden the larger Sage development community; and
(4) Improve Sage’s interface with the wider open source software community.

Open source projects need a critical mass of people to sustain themselves (e.g., Wikipedia or
the widely-used Online Encyclopedia of Integer Sequences (OEIS) [212]). Sage has made great
progress, but has not yet reached this point. It is imperative to train the next generation in Sage
to reach this critical mass. The above objectives incentivize a broad scientific community
to devote their time using, developing, or interfacing with Sage by providing tools immediately
relevant to their educational and research endeavors.

We achieve these goals with the following key activities:

• We build on existing functionality in combinatorics to develop new code in three neighbor-
ing areas: statistical mechanics, representation theory, and optimization. (Section 2)
• We leverage new pedagogical tools to produce modules for a wide variety of coursework

in mathematics from calculus to graduate courses. (Section 3)
1

2 COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT

• We foster development in additional areas of mathematics through Sage Days workshops,
sponsored small-group coding sprints as follow-ups, mentorship of young people (particu-
larly those in underrepresented groups), and collaboration with OpenDreamKit to provide
international and interdisciplinary distribution of our products. (Section 4)
• We deliver structural improvements to both Sage and the wider open source commu-

nity, reducing fragmentation of existing software communities and translating Sage’s best
practices to a wider community of software systems. (Section 5)

1. Why Sage is our choice of software for this project

1.1. Sage is designed for science. Two bedrock principles of basic science, mathematics in par-
ticular, are transparency and reproducibility. Computational software is becoming pervasive as
a crucial research tool for constructing examples, verifying conjectures, and running large-but-finite
computations or case-by-case proofs (the four-color problem being a famous example). However,
proprietary software lacks transparency; this makes the code built on top of it far more difficult to
maintain as the base software upgrades, rendering computations irreproducible. Because of this,
the use of open source software, such as Sage, which is released under the GPL version 2+, is
essential for the free exchange of ideas and the ability to detect errors.

Moreover, Sage is designed the way modern scientists and mathematicians think, is optimized
for the understanding of mathematics and provides a programming environment that closely
mimics the structure of mathematics. Sage developers drew on the development work of earlier
mathematical software packages (Axiom, Magma, Aldor, MuPAD, and Fricas). In addition
to supporting object-oriented programming, Sage uses mathematical categories (e.g., of
groups, of rings, or of fields) and axioms (e.g., associativity, existence of inverse) as a design
pattern to dynamically construct its complicated class hierarchy from duplication-free semantic
information. In Sage, this infrastructure is built on top of (and not into) the standard Python
class hierarchy framework and does not require changing the language itself. By building this
structure, Sage is able to organize mathematical objects from a wide variety of settings, while still
allowing them to interact when necessary; see [69].

1.2. Sage is an integrating force. Since Sage is built upon a number of open source software
packages, in addition to its own code base in Python and Cython [36], it can provide a powerful
engine for computations utilizing existing state-of-the-art libraries rather than developing the same
features from scratch. Further, the output of computations from these various highly specialized
and optimized packages can all be processed by the user from within a common platform. For
example, to compute a set of matrices with entries in a finite field of size 28 that satisfy some
polynomial equation, one uses a number theory library like NTL [210]. If this set is closed under
matrix multiplication (i.e., forms a group), then to compute the character table one needs GAP. In
contrast, Sage’s code base incorporates both of these packages and thus requires the user to write
only a few lines of code. For a full list of standard packages accessible through Sage, see [213]; we
highlight here a few standard packages used by a broad collection of scientific researchers, whose
accessibility and usefulness is significantly enhanced by their inclusion in Sage.

Related and incorporated software: R [176] for statistics; GAP [88] for group theory;
Singular [67] for polynomials and commutative algebra; MPIR [96], MPFR [80, 154], and
MPFI [178] for multiprecision arithmetic; Maxima [147], Pynac [219], and Sympy [160] for sym-
bolic computations; ATLAS [235] for matrix computations; NTL [210], Flint [95], and PARI [168]
for number theory; Parma Polyhedra Library [15] (PPL for short) for exact polyhedral compu-
tations and mixed-integer linear optimization; GLPK [144] for large-scale numerical mixed-integer
linear optimization; CVXOPT [7] for convex optimization; cddlib [85] for polyhedral computa-
tions; Symmetrica [131] for symmetric functions.

COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT 3

Not only does Sage incorporate over 100 different open source software components, but its
developer community of 180 people is already larger than most. For comparison, maxima has
41 developers (18 currently active) [226], GAP has 54 (19 currently active) [87], and singular
has 95 developers [211]. This incorporation also provides these other software communities with a
wider audience and potential upstream improvements. In this way, Sage plays an integrating role
similar to that of Linux distributions. For the large number of included upstream packages Sage
provides a degree of quality control by building and testing them on several platforms. While
many of these packages also appear in comprehensive Linux distributions (e.g., Debian), the testing
provided by Sage through the tight mathematical integration is more rigorous.

One particularly noteworthy package is Cython, a programming language that gives C-like
performance with Python syntax (making code nearly interchangeable and very easy for Python
programmers to learn) and provides simple hooks for C/C++ code to be called from Python code.
In fact, Cython began in 2007 as a fork of Pyrex [74] for Sage, and has since grown to be an
independent project, very popular among scientific communities that use Python.

In addition to the standard packages above, there are a number of additional optional packages
that can be installed as part of Sage such as Gambit [149], Coxeter3 [73], CHomP [170, 108],
4ti2 [1], and LattE integrale [223], which do computations in game theory, Coxeter groups,
homology, polyhedral geometry, and lattice point enumeration. Sage provides bindings to C/C++

(as mentioned above), Fortran, and Lisp code, as many libraries are written in these languages.
Sage also provides an interface to a number of proprietary software packages such as Mathemat-
ica, Magma, and Maple and proprietary mixed-integer linear programming solvers, e.g., CPLEX
and Gurobi, thereby providing one common point of access and one common language for
all of these programs. In addition, Sage provides interfaces to two web databases highlighted in the
Notices of the American Mathematical Society [41]: OEIS [212] and FindStat [222], the combina-
torial statistics database, which uses Sage as a backend computational tool. As another tool, any
computational results of Sage can also be embedded directly into LaTeX files via SageTeX [72].

1.3. Sage code is sustainable. Before Sage, there were several mathematical software ecosys-
tems where a researcher or educator driven by the need for computer experimentation would write
a tool for their purposes. Often times such code, especially those written for proprietary software,
contain little to no unit tests or documentation. The lack of documentation makes the code difficult
to use, e.g., there are hidden assumptions about the input. Absence of unit tests can make the
code fragile, e.g., a bug fix in one place can break other functionality. Furthermore, third-party
packages for proprietary software often break with new releases of the underlying software.

In contrast, code to be included in Sage must be fully documented and pass doctests for every
subsequent release. This also ensures that code in Sage will remain valid with each new release,
preventing the current common frustration mentioned above. Further, in Sage, any accepted
code that is removed or whose application programming interface (API) changes must first be
deprecated for a least a year. This gives users ample warning of changes that they may need to
make in their personal code to accommodate changes in Sage and the ability to request that a
feature be reinstated.

1.4. The Sage community is sustainable. With the addition of Sage into the computer algebra
software ecosystem, many first time developers are choosing to code in Sage for all of the reasons
outlined in Sections 1.1–1.3. One further compelling reason for Sage is that both its code base
and interfaces are written in Python, thus the user/developer does not need to learn two separate
languages to use and develop in Sage. Python is a standard language known by millions of people,
used especially in the scientific computing community. Many of the graduate students and postdocs
who have been trained developing for Sage later found employment in industry, working for
such companies as YouTube/Google, Spiceworks, and Epic.

4 COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT

The large user base of Sage has maintained its size consistently over the last several years, but
also has strong potential to grow with even more exposure. It is the strength of this user base
that ultimately will sustain this project beyond the lifetime of this NSF grant. The Sage mantra
is “coding done by users for users”; by achieving critical mass (a realistic goal to achieve in the
next five years through the programs outlined in this proposal), we will ensure that there continues
to be several developers familiar with any given feature and that the code base is maintained and
strengthened for years to come.

1.5. Sage development model. Let us describe the typical development work flow from incep-
tion to proof-of-concept design to final integration into Sage. This work flow serves to enforce
best practices and will apply to the projects described in Section 2.

(1) Mathematical research, teaching needs, or industry suggest a particular new feature or a
bug is discovered in the current code.

(2) Various contributors discuss designs and algorithms for the feature or bug fix at Sage
Days, in person, or electronically, and then collaboratively write some stand-alone code in
the SageMathCloud as proof-of-concept.

(3) Developers discuss where in the code base this feature should be integrated. Once the
location is determined, they transform the stand-alone code into a Git branch on top of the
current Sage code with proper documentation and a test suite. This provides examples
and ensures that possible conflicts with future changes can be detected and resolved.

(4) The Git branch is attached to a trac ticket on the Sage trac server [227].
(5) One or more developers review the code.
(6) When the code receives positive reviews, the Sage release manager integrates the code into

the next release of Sage.

A new stable version of Sage is publicly released on average every 1–2 months with the latest
features. This allows Sage to link with the latest innovations in mathematical computations,
keeping it close to state-of-the-art (but with no need to purchase upgrades).

2. Deepening core functionalities

2.1. Statistical mechanics and exactly solvable models. Statistical mechanics originated
in physics as a means of understanding global phenomena from all possible local interactions of
particles, each of which produces an “admissible state” of the model. The field has grown to include
important connections to probability, dynamical systems, combinatorics, special functions, and now
gauge theory as showcased in Costello and Witten’s talks at Strings 2016 [236]. We focus on the
quantum mechanical case when the admissible states are a discrete family. A central question in the
subject is the evaluation of generating functions on the set of admissible states, known as partition
functions. If the long-term behavior or exact formulas for the partition function are known, then
the model is termed “exactly solvable” [32, 103]. From the physics point of view, these partition
functions provide the total probability measure essential to determining the probability of any given
observable and detecting phase transitions. We first provide a timeline for implementing a complete
tool kit for exploring solvable lattice models. (Brubaker and Scrimshaw)
Year 1: Enlarge and optimize the list of solvable two-dimensional lattice models in Sage. Code
for the six-vertex model by Scrimshaw is in Sage, but could have greater flexibility in its input of
Boltzmann weights. The eight-vertex, Kagomé, and hard hexagon models as outlined in [32] will
be implemented using similar code. (with Schilling)
Years 1–2: Implement a Yang-Baxter equation (a.k.a. star-triangle relation) solver for interactive
solutions to these non-linear equations — a key tool in the solvability of the model. Proof-of-concept
code by Brubaker and D. Bump was used for the six-vertex model and certain generalizations in [44].

COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT 5

Year 2: Implement approximation methods for partition functions with arbitrary Boltzmann
weights using statistical sampling and power series expansion. Develop a graphical interface for
plotting results to determine phase transitions of the model.
Year 3: Add methods of the Kyoto school on algebraic analysis of difference equations arising
from solvable lattice models [102]; in particular, determinantal methods and Wick’s theorem for
evaluation of tau functions in the boson-fermion correspondence as in [241].
Years 4–5: Generalize the above tools to higher dimensional models, e.g., implementing three-
dimensional lattice models and a tetrahedral equation solver as in [33].

From the algebraist’s point of view, a large class of functions important in representation the-
ory, combinatorics, and number theory arise as partition functions of such models. We can take
advantage of and build upon the deep reservoir of algebraic combinatorics in Sage to study these
partition functions and related dynamical systems from this new perspective. The algebraic and
combinatorial objects arising in formulas for these partition functions allow us to explore the signifi-
cance behind, or reason for, the positive expansion of Macdonald polynomials in bases of symmetric
functions [129, 93] or Laurent expansions of cluster variables [77, 53].
Years 1–2: Provide dictionaries between admissible states of lattice models and algebraic combi-
natorial models (tableaux, plane partitions, alternating sign matrices, etc.) and statistics on both
(e.g., charge, energy) [206, 209, 127, 155]. (Schilling, Striker, Dilks, UCD NSF postdoc Gillespie)
Years 1–2: Provide dictionaries between six-vertex models, T -systems and cluster algebras and
implement associated combinatorial formulas as in [70]. (Recent UMN Ph.D. graduate Gunawan,
Musiker, Scrimshaw, UMN Ph.D student Strasser)
Year 3: Interpretations for Macdonald polynomials as partition functions of lattice models have
been given in [54]. We will implement their model and use the dictionaries to explore expansions
in other bases of symmetric functions. (Brubaker, Schilling, Scrimshaw)
Years 3–4: Using plane partitions infrastructure and code of V. Pons, implement dual stable
Grothendieck functions [125] and their non-dual and non-stable analogues. (Grinberg, Musiker).
Years 4–5: Implement an ultradiscrete version of the Korteweg-de Vries (KdV) equation known
as box-ball systems [99], based upon code written by Scrimshaw. (Grinberg, Musiker, Scrimshaw)
Year 5: Crystal bases first arose from statistical mechanics and are related to five- and six-
vertex models. Recent research [44] suggests new connections between their partition functions and
modules of super Lie algebras. The affine crystals associated to these modules will be implemented.
This is connected to goals in Section 2.2. (Brubaker, Schilling, Scrimshaw)

Lattice models can be viewed as discrete time evolution of one-dimensional systems. This has
led to research on discrete dynamical systems arising from the algebraic and combinatorial ob-
jects above. The workshop on “Dynamical Algebraic Combinatorics” at the American Institute of
Mathematics [238], for which Roby and Striker were organizers, made significant progress in under-
standing such systems, such as toggle systems and cluster algebras, by using Sage code to uncover
relationships to existing mathematics [71]. Dilks, Roby, Striker, and students plan to implement
the following to enable expanded research of these systems:
Years 1–2: Implement and enhance discrete dynamical systems, including toggle systems [221],
Bulgarian solitaire, and Suter rotation [181].
Years 3–4: Implement general infrastructure for finding orbit-averages of statistics in discrete,
piecewise-linear, and birational dynamical systems [181]. This will enable further research on the
homomesy phenomenon [173] and the Razumov-Stroganov correspondences [55, 56, 177, 220].
Year 5: Implement code to systematically study orbit structure and the degree of resonance
exhibited by a discrete dynamical system [71].

For toggling of posets, an algebraic geometric analogue known as birational rowmotion was im-
plemented in Sage by Grinberg. Starting with work at AIM [238], Grinberg and Glick (AIM

6 COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT

participant) discovered a connection to cluster algebras, and Musiker and Roby realized combina-
torial formulas, for such dynamics in the case of rectangular posets. This has inspired us to think
about implementations of non-commutative versions of these dynamics in a number of contexts.
Years 1–2: Implement a non-commutative version of birational rowmotion that relates to a conjec-
ture of Kontsevich [115]. Calculations are difficult even in small cases so a computer implementation
is paramount. (Grinberg, Musiker, Roby)
Years 2–3: There are also non-commutative versions of the theory of cluster algebras, one such
theory being quantum cluster algebras [37]. An implementation of quantum cluster algebras into
Sage would lead to research in even more cases and lend applications to hyperbolic geometry and
knot theory through the quantum Teichmüller space [76]. (Grinberg, Musiker).
Year 3: Non-commutative cluster algebras and quantum Teichmüller spaces also naturally arise
in continuous dynamical systems known as cluster integrable systems [81, 90]. An implementation
of cluster algebras from toric diagrams could start by porting over code that physicists such as
Francis Lam, Sebastian Franco, and Yang-Hui He have written in Mathematica. (Musiker)
Years 3–5: In addition to the aforementioned T -systems and cluster integrable systems, there
are also Y -systems that originated from the thermodynamical Bethe Ansatz (as in Zamolodchikov
Periodicity [240]), and were connected to cluster algebras by Fomin and Zelevinsky [78]. We will
implement Y -systems and their non-commutative analogues (e.g., quantum dilogarithms) for cluster
algebras by extending Scrimshaw’s Q-systems code. (Musiker, Scrimshaw)
2.2. Representations of algebras. Representation theory of algebras is fundamental in under-
standing structures arising from many different areas in mathematics and physics, including ge-
ometry, number theory, combinatorics, quantum physics and string theory. Let us illustrate the
interplay between representation theory and computation. In 1990, Kass, Moody, Slansky and
Patera published a two-volume work [111] on representations of affine Lie algebras [107], including
tables of weight multiplicities of their representations and branching rules. In particular, in the
second volume, which consists of these tables, they write in the introduction:

We present a vast quantity of numerical data in tabular form It would indeed
be gratifying if these tables were to appear to the scientists of 2040 as obsolete as the
dust-gathering compilations of transcendental functions appear for us today because
of their availability on every pocket calculator.

These computations can now be done in Sage thanks to a previous OCI Sage grant (see Sec-
tion 7), and the implemented package is helping researchers explore intriguing connections between
weight multiplicities of affine Lie algebras and modular forms in number theory. However, there are
no software implementations of these Lie algebras nor their representations; code in GAP merely
handles the finite-dimensional case. Thus, many of the Lie algebras interesting to physicists (e.g.,
infinite-dimensional Heisenberg, Virasoro) are not available. Likewise, Lie super-algebras, i.e., Lie
algebras with even and odd parts, naturally appearing in statistical mechanics and conformal field
theory, also lack implementations. Furthermore, GAP does not have any specialized linear algebra
code, and Sage’s more optimized linear algebra code allows for the construction of much larger
examples in the finite-dimensional case. By providing an implementation of these Lie algebras, we
afford researchers the opportunity to explore the structure and properties of their representations
such as invariant subspaces and branching rules.

Additionally, we can give a combinatorial interpretation of certain Lie algebra representations
by using Drinfeld–Jimbo quantum groups and crystal bases [143, 110, 109]. Crystal bases are also
known to be tightly intertwined with the representation theory of Hecke algebras [8, 128]. A certain
subalgebra of a quantum group has an incarnation as a category using so-called Khovanov–Lauda–
Rouquier (KLR) algebras [112, 182, 183] in a way that respects its crystal structure [130], which has
led to important applications, e.g., [49, 114, 123]. Hence, we give another avenue to examine the

COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT 7

representation theory of Lie algebras and quantum groups by providing the first implementation,
as far as we are aware, of KLR algebras.

The description of our planned implementations is given below.
Year 1: The Fock space representation for the full general linear quantum group based on code
written by Scrimshaw will be finalized (Grinberg, Lee, Schilling, Scrimshaw).
Years 1–2: Based on previous code by Scrimshaw, a generic framework for Lie (super-)algebras in
Sage will be implemented. This will include implementations of the infinite-dimensional Heisenberg
and Virasoro algebras, along with an interface for GAP and LiE [231]. (Grinberg, Lee, Scrimshaw)
Years 1–2: Develop an optional Sage package that includes GAP procedures for category theory
that can interface with Sage code for posets and simplicial complexes. This will improve research
in subgroup complexes, their nerves, and their topological properties as studied by UMN colleague
Peter Webb. (Grinberg, Musiker, Webb)
Year 2: Implement KLR algebras and their modules, making connections with crystals by imple-
menting Kashiwara operators on the modules. (Lee, Schilling, Scrimshaw)
Year 3: Implement KR modules [58, 59] and their crystal bases using the implementation of KR
crystals [163, 132, 137] currently in Sage. The (t-analogs of) q-characters of KR modules, which
are a solution to T -systems, will also be added by using Scrimshaw’s implementation of Frenkel–
Mukhin [83, 84] and Nakajima [157, 159, 158] algorithms. (Grinberg, Lee, Musiker, Scrimshaw)
Year 3: Implement quantum groups for affine Lie algebras. (Brubaker, Lee, Scrimshaw)
Year 3: Implement root multiplicities of infinite dimensional Kac–Moody Lie algebras, weight
multiplicities of their representations and Weyl-Kac characters of the representations. (Lee)
Years 3–4: In relation to this goal, create Sage interfaces for reps and catreps, which are
packages for group representations in positive characteristic and representations of categories that
are implemented in GAP by Webb, see [234]. (Grinberg, Musiker)
Years 4–5: Implement or expose constructions for homological algebra to expand on the code
in Sage that is essential to the representation theory of algebras at a more basic level. This will
include constructing an interface for HomAlg [20], a package for homological algebra constructions
that is implemented in GAP, and improving the interface to Singular. (Musiker, Scrimshaw)

2.3. Optimization, polyhedral geometry, and lattice point enumeration. Optimization is
a key technology in applied mathematics, the sciences, and engineering. We propose to develop new
features that will make Sage the go-to system for research, exposition, and teaching in discrete and
mixed-integer optimization. In the optimization world, there is a well-established infrastructure of
high-performance solvers (such as Gurobi, CPLEX), modeling systems/languages (such as AMPL
[79]), and high-performance languages (recently, Julia [39]). We will not attempt to duplicate or
compete with these; Sage already has interfaces to several of these systems.

Rather the focus will lie on topics with a high potential of synergy with other areas of mathe-
matics. This potential is currently not realized in any existing interactive system; high-level math-
ematical systems such as Mathematica or Maple do not have a strong following in optimization.
Examples of such topics are primal methods in integer optimization (Gröbner bases of toric ideals
[66, chapters 10–11], Graver bases [66, chapters 3–4]), geometry of numbers methods [66, chap-
ter 2], nullstellensatz and positivstellensatz certificates [66, chapters 12–13], total unimodularity
[230, 233, 232], lattice point counting [117], [66, chapters 5–9], cutting plane theory (polyhedral
combinatorics) [62], and the theory of cut-generating functions [30, 31, 61, 25, 24, 63, 21, 22, 23].

As another aspect of this synergy, optimization methods (and the closely related polyhedral
computation tools) are important in several areas of mathematics, including combinatorics, group
theory, and commutative algebra. For example, the decomposition of certain representations of Lie
algebras into irreducible components is given by integral points in a polytope [113, 164]. The duality
theory of optimization provides various kinds of certificates, e.g., for verifying inequalities. Recent

8 COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT

advances in exact (certified) optimization solvers [64, 215, 65] have resulted in greater potential for
optimization methods to give rigorous, rather than just numerical, results. There is also untapped
potential in the combination with classic real-algebraic methods (QEPCAD B, section 5.2).

Köppe together with his Ph.D. students and with additional assistance by Scrimshaw plans to:
Year 1: Develop a Cython interface to Normaliz [50], which provides a superior implementation
of polyhedral methods and lattice point enumeration.
Year 1: Provide a fast implementation of quasiperiodic piecewise linear functions and the spaces
and algebras generated by these. This is the basis for later work on lattice-point-counting functions
[17, 19], as well as on cut-generating functions [18], which both depend on this.
Years 2–3: Integrate and extend the electronic compendium of piecewise linear cut-generating
functions [118] into Sage. Extend it to other models, such as the k-row Gomory–Johnson model
[27, 29], the Yildiz–Cornuéjols model [239], and dual feasible functions [6].
Year 3: Develop a textbook view on the numerical solvers that hides implementation details such
as the upper-bound method and provides textbook-style duality certificates.
Year 4: Develop an interface to state-of-the-art exact (rational) optimization software such as
SoPlex [215] or QSopt-exact [65], as well as GLPK [144], and develop rational-reconstruction
techniques, to provide rigorous duality certificates.
Years 4–5: Implement polyhedra given by parameterized inequalities [121]. Make lattice point
counting functions for polyhedra depending on several real parameters [18] available. Replace
existing proof-of-concept Maple code in LattE integrale [16] by efficient Sage code.

3. Lowering barriers for entry and developing educational tools

In order for Sage to reach its full potential, it is mission-critical for its base of regular users to
broaden beyond the active researcher-programmers who contributed the bulk of its early develop-
ment. We envision Sage as becoming a standard open software tool, used by undergraduates,
graduate students, and professionals in increasingly sophisticated ways as they gain mathemati-
cal experience. As the user base increases, so will those interested in contributing both to the
code and the many innovative educational applications that can be built on top of such a robust
computational engine.

3.1. Leveraging Sage for education. The advent of SageMathCloud, which allows anyone
to create an account and run Sage commands on a remote server, has made the power of Sage
accessible as a tool for teaching. With just a browser, one can now access Sage and work on
collaborative projects rather than having to go through the hurdle of installing Sage locally. An
important aim of this grant is to build on the existing Sage thematic tutorials to develop
further materials for use in undergraduate and graduate classes — even with advanced high-school
students. The existing thematic tutorials are great introductions to the functionality of Sage on
certain topics, such as symmetric functions and root systems, and we intend to build on this success.

Although the web has allowed easy sharing of free and open-license textbooks for decades now,
most of these are still available largely as traditional pdfs or mostly-static HTML webpages, which
fail to take advantage of online interactivity. We plan to use cutting-edge authoring tools,
particularly MathBook XML [35] and XIMERA [60]. The former is a hybrid markup language,
easily learned by anyone familiar with LaTeX and HTML, that allows a single source file to be
output in a variety of forms suitable for printing or online use. More importantly, material such
as proofs of theorems can be embedded as expandable “knowls,” which reveal or hide themselves
as needed to the reader who clicks on them. Sage examples can be embedded as cells, via the
SageCellServer [185], which the reader can try out immediately, modify and try again, or cut
and paste the code into a Sage worksheet elsewhere. Similarly, exercises can be embedded to

COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT 9

give students real-time formative assessment on their learning; XIMERA is particularly adept at
this, providing easy LaTeX authoring tools and computing statistics on student success. A large
body of educational research (e.g., [3, 42, 57, 68, 82, 86, 94, 106, 122, 142, 148, 166, 169]) points
to the importance of engagement and interactivity in improving student learning, so this kind of
technologically-created back-and-forth is highly desirable.

The PIs will incorporate Sage in their teaching throughout the project and collaboratively
develop teaching tools for use in the broader community. As tools are created, they will be shared
by those teaching similar courses for feedback and adaption to different sites, leading to greater
robustness from the outset. These can later be refined and improved by us and others, as described
in Section 3.2. Sage provides a invaluable avenue for students to come to grips with complicated
computations and to see the power of theorems and conjectures in action.

Below is a timeline for some of our goals; we expect to produce additional tangibles as well.
Years 1–2: Convert existing thematic tutorials to a format that is easily accessible from the cloud,
as editable worksheets rather than static webpages. (Lee)
Years 1–2: Develop a thematic tutorial for high school students, “Mathematics behind the Rubik’s
Cube”, based on a “Mentor Connection” program at UConn. (Lee and Roby)
Years 1–2: Write new introductory thematic tutorials on permutations, Catalan objects, and
combinatorial objects arising in statistical mechanics. These tutorials will be accessible both as
teaching tools in college classes as well as tools for outreach to high school students, as discussed
in Section 4.4. (Brubaker, Dilks and Striker)
Years 1–2: Update the cluster algebras and quivers compendium [156] developed under the previ-
ous OCI grant to include the recent explosion of new functionality and updates from the research
community. Convert it to a hyperlinked thematic tutorial, designed to easily be updated as new
Sage code is developed. (Musiker)
Years 2–3: Develop interactive Sage worksheets for working with cluster algebras, based on pro-
totypes used in lecture in Fall 2016 and examples and exercises from previous semesters. (Musiker)
Years 2–3: Expand Schilling’s Sage thematic tutorial [202] to accompany Stanley’s undergraduate
textbook [214]. (Roby and Schilling)
Years 1–3: Collaboratively develop teaching tools in Sage for applied linear algebra courses.
Although we can build on the fine work Beezer has done in creating a model interactive linear
algebra text for math majors [34], here we develop the standard sophomore-level course for a
general STEM audience. Some of us will develop Sage-coded examples, and others will rework
them for most effective presentation using online tools. (Brubaker, Grinberg, Roby)
Years 2–4: Develop teaching tools for an undergraduate graph theory course, which take advantage
of Sage’s large library of graphs and methods. (Grinberg, Scrimshaw)
Years 2–3: Develop Sage teaching tools for optimization classes. Extend Sage’s textbook-
style simplex tableau code so that it can be used to teach variants of the simplex method, the
cutting-plane method, and branch-and-bound. Develop a textbook-style interface to state-of-the-
art optimization solvers. (Köppe)
Years 4–5: Collaboratively develop interactive modules for abstract algebra and for enumerative
combinatorics classes for undergraduates. (Musiker, Roby, Striker)

3.2. Curating and disseminating teaching tools. During the first year of the grant, we will
create a webpage (e.g., linked from [217]), where we will store the learning tools and make them
easily searchable by subject matter and type of tool. Code and examples may be stored locally or
as links pointing to an author’s website or github repository, as appropriate. In addition to actively
curated high-quality examples (both our own and others), we will advertise this repository through
the sage-edu mailing list, through meetings of the AMS and MAA, and through the NexT fellow
program aimed at early-career college professors.

10 COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT

4. Engaging and broadening the larger Sage community

The ten of us represent an active portion of the Sage developer community in algebra and
combinatorics. We also plan to interface with the larger Sage developer community in other areas.

4.1. Sage Days. We are planning to hold five Sage Days meetings in the US associated to this
grant, as well as two smaller Women in Sage Days (see Section 4.4) and one Sage Education Days.
Sage Days are one-week workshops aimed to teach Sage to new users, to walk new developers
through the development process, and, most of all, to collaboratively develop new features. Sage
Days are extremely interactive, with much time devoted to design discussions and coding sprints.
For each Sage Days we expect about 25–40 participants, ranging from undergraduate and graduate
students to postdocs and senior researchers. The Sage Education Days will include participants
who are active in pre-college education. The Sage Days in 2021-22 at UMN will include industry
professionals and focus on their experience with Sage and mathematical functionalities of interest.

Year Host Theme (Organizers)
2017–18 UMN Statistical mechanics (Brubaker, Grinberg, Musiker, Scrimshaw)
2017–18 UCD Women in Sage Days (Schilling, Striker)
2018–19 NDSU Lattice models & algebraic combinatorics (Dilks, Grinberg, Striker)
2019–20 UConn Categorification & Lie (super-)algebras (Lee, Roby)
2020–21 UCD Polyhedral geometry & optimization (Köppe, Scrimshaw)
2020–21 UConn Sage Education Days (Lee, Roby)
2021–22 UMN Connecting Mathematics and Industry (Brubaker, Musiker)
2021–22 NDSU Women in Sage Days (Schilling, Striker)

As will be discussed in Section 7, Musiker, Schilling, and Scrimshaw have all had previous ex-
perience organizing such conferences. These previous Sage Days have resulted in many users
(including Brubaker, Bryan Gillespie, Maria Gillespie, Striker and countless others) becoming de-
velopers, making their first contribution to Sage (and continuing to make contributions), fixing
numerous bugs and related issues, adding many new features, and engaging in design decisions.

Each Sage Days has its own wiki page [197], which allows participants to add suggested features
and report progress coming out of their coding projects both at and after the workshop. Summaries
of the design discussions and decisions reached at each Sage Days are also included.

4.2. Fostering Sage development through coding sprints. In addition to the Sage Days,
we are requesting funds in Years 2–5 for a program to maintain and strengthen our network of
developers. We would provide opportunities for follow-up visits (as small group 3–5 days coding
sprints) for participants of the Sage Days funded by this grant. We have secured space and
support from both the Institute for Mathematics and its Applications (IMA) and the School of
Mathematics at the University of Minnesota, where the Minnesota PIs will be available for technical
and scientific support, but would require funds for the costs of participants that apply for follow-up
visits. To encourage these coding sprints, priority projects would be identified by the community
and applications solicited at said Sage Days.

As a prototype for what we have in mind, we note that the interface to the CHEVIE GAP
package [89, 228], which implements complex reflection groups, was heavily discussed at Sage
Days 64.5 and was one of eight priority topics identified at this meeting [192]. This code was
subsequently finished during a focused 5-day 5-person coding sprint, i.e., Sage Days 80 [194].

Furthermore, we have backing from the larger Sage development community for such coding
sprints. Brubaker and Musiker have co-authored a proposal to the IMA, located at the University
of Minnesota, to sponsor and host 10–20 such Sage coding sprints open to developers and users in
science and industry for 2017–18. If the IMA funds this proposal, applications would be selected

COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT 11

by a 9 member review board, which includes PIs Brubaker, Musiker, and Schilling, Sage founder
Stein, Henry Cohn from Microsoft Research and Sage developers from other areas of mathematics
such as arithmetic geometry and topology. The pre-proposal to the IMA met with enthusiastic
reviews and the final proposal is pending approval. However, the IMA is only able to fund this
program for 2017–18 with no possibility of renewal.

4.3. RA support. The undergraduate and graduate student RA support requested in this grant
will expose beginning researchers to the powerful functionality available in Sage. They will gain
experience in basic coding to implement novel algorithms for research-level mathematics and com-
putational science, leaving improved functionality in Sage as a lasting byproduct. Moreover, our
experience has shown that computing examples and developing an algorithm to solve a mathemati-
cal problem is one of the best ways to gain understanding of the intricacies of modern mathematics.

This project will also serve as a gateway to meeting collaborators on mathematical projects
(including future Ph.D. advisors) and in related areas of mathematics and computational science.
For example, Maria Gillespie met Schilling through Sage Days, and the mathematical collaboration
begun there is now funded through an NSF postdoctoral fellowship.

At all four institutions, both undergraduate and graduate students have been actively working
with and contributing to Sage over the last 3–5 years. These include PIs Dilks and Scrimshaw
(now postdocs), along with many other students who have successfully moved on to positions in
academia or industry.

4.4. Increasing the participation of women in mathematics and computer science.
Mathematics and computer science are two subject areas that see the smallest percentages of
women participants. Sage has a great ability to demystify the coding process and make it more
accessible to diverse populations. Striker has seen this first-hand. She became familiar with pro-
gramming through attending Sage Days, and as a result, gained the ability and the confidence
to implement features into Sage that were relevant to her research and to mentor others in Sage
programming. For the past two summers, Striker spent two weeks teaching ten North Dakota high
school students, a majority of whom were women, about computational mathematics. She intro-
duced them to programming and Sage; many students said it was their favorite part of the entire
summer program. The students began the program with no coding experience and completed it
knowing that mathematics and computer science are accessible fields for them. Sage has been the
perfect platform for this learning opportunity. Striker will continue this summer outreach and, as
a result of this grant, will write an introductory tutorial on this material; see Section 3.1.

The Women in Sage workshops, organized by Schilling and Striker in Years 1 and 5, will build
on the successes of previous such workshops by increasing the number of women in the community
of Sage developers. There have been Women in Sage Days once per year since 2010; see [197].
Striker is an organizer of another such workshop in France in Jan. 2017 [195]. Women and people
from underrepresented groups will be actively recruited to attend the other Sage Days as well.

4.5. International collaboration. This project will work in collaboration with OpenDreamKit
(see [161]), a Horizon 2020 European Research Infrastructure project funded for four years starting
in 2015 (led by Nicolas Thiéry). The mission of OpenDreamKit is to build a sustainable ecosystem
of open source mathematical software, which includes support for Sage. OpenDreamKit will
streamline access, distribution, and the portability of Sage to a wide range of platforms, including
high performance computers and cloud services, and improve user interfaces such as those through
SageMathCloud. This Sage infrastructure support will complement our proposed activities
and make our code highly visible within a broad interdisciplinary framework. In addition, there
is an international community with members in Australia, Austria, Canada, France, Germany,
India, Israel, Italy, Japan, South Korea, and elsewhere, that will contribute to and benefit from
this grant’s activities through the Sage Days and newly-created code.

12 COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT

5. Delivering best practices to the wider open source math software community

As an innovation in mathematical software, we propose to provide deeper integration by
spreading Sage’s best practices for software development and community interaction to the wider
open source math software community; in particular, for specialized scientific software.

5.1. Issues and goals. We plan to address the following specific issues and goals. Solutions to
these problems are offered in Sections 5.2 and 5.3.

Sustainability and long-term viability. While the open source software world is thriving,
there are many individual open source projects, even some of critical infrastructure importance,
that have a very narrow developer base. A widely-publicized example is OpenSSL, which suffered
serious security flaws as a result of a narrow developer base, which was unable to ensure sustained
development and review of the software. This phenomenon is even more true in the world of
mathematical software, where many projects essentially have one lead developer who is faculty or
an academic researcher, together with a few members of his or her research group. For example,
LiDIA [40, 140, 141], a sophisticated C++ library for number theory, under development for over a
decade, all but disappeared from the web when the lead developer lost interest. Merely developing
a Sage interface to the software has little effect on its development community. Köppe has first-
hand experience with this, as the maintainer of the computational software packages 4ti2 and
LattE integrale. These systems have been interfaced to various larger systems, such as GAP,
Macaulay2, Polymake, Sage; but this integration has been a one-way street, except for the
occasional bug report received from the maintainers of these systems.

Code quality, documentation, discoverability. Many essential libraries were developed be-
fore today’s widespread best practices on software quality assurance. Consider QEPCAD B, a
system for real algebraic computation and quantifier elimination in the first-order theory of the
real numbers. It is the strongest open source system that implements partial cylindrical algebraic
decomposition (PCAD); only the proprietary Mathematica system has a better implementation.
However, QEPCAD B is severely underdocumented and has no active developer community.

Genericity without code duplication and community fragmentation. Even with Sage
bridging the gaps between mathematical software ecosystems, the goal of “building the car” can
conflict with the genericity expected of a general-purpose mathematical system. As a case study,
consider polyhedral computation, an important tool in combinatorics, optimization, and commu-
tative algebra. Sage uses PPL, a state-of-the-art and industrial-strength library. Yet, this library
(as well as all other available polyhedral computation libraries implemented in C or C++) is limited
to computation over rational numbers. However, in general-purpose mathematical software such
as Sage, there is demand for computations with polyhedra over more general ordered fields. As
a basic example, platonic solids require polyhedra over real algebraic numbers. Moreover, not all
combinatorial types of polyhedra appear in rational polyhedra. As a consequence, Sage contains,
in addition to an interface to PPL, a generic implementation of polyhedral computations – an
apparent contradiction to the principle “don’t reinvent the wheel.” Thus, a user switching from
a rational to an irrational algebraic polyhedron will pay two performance penalties – a reasonable
one for the more costly basic arithmetic operations; but then also a huge one for using a basic
implementation of an algorithm instead of one written by a domain expert. It could be countered
that, in the spirit of open source development, the implementation in Sage would be improved over
time. However, this rarely happens because of fragmentation of the developer community.
State-of-the-art implementations are fast in part because of years of research and algorithms engi-
neering in response to benchmark studies and new challenges from applications [10, 9, 119]. Hence,
experts will not typically work on the Sage implementation because they have no incentive: they
do not want to be associated to code that does not compete with the leading implementations.

COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT 13

5.2. Engineering Sage as an added value for the upstream library developers. The key
to engaging the developers and users of the upstream library with the Sage community is to add
a suitable incentive. We plan to initiate an effort to add function-level documentation and testing
of the upstream library. The idea is that Sage, and specifically Cython, will play the role of a
unit testing framework for the upstream library. By providing this infrastructure, and initiating a
project to supply the documentation and tests, the upstream developer and user community can
be broadened and will have an incentive to engage with the Sage community. Schilling and Mike
Hansen were successful with this approach for Buch’s upstream library LRCalc [51]. We propose
a refined approach, in which the documentation and testing code will become part of the upstream
library (rather than the Sage library) and only depend on Cython, not on all of Sage. Köppe
plans to focus this work on QEPCAD B, mentioned above, as a target system, in Years 3–5. He
plans to involve undergraduate and graduate students in this project in a software seminar.

5.3. Pushing Sage’s genericity and categories to upstream libraries. Consider the C and
C++ based implementations lrslib, PPL, and Normaliz, all of which are leading implementations
of polyhedral methods. Some of these systems already have a potential genericity by the use of
C++ templates. We plan to make Sage’s general ordered fields available using C++ classes based
on the Pynac class ‘numeric’ or the Boost::Python template classes. More generally, these
classes would be generated from Sage categories; the category of ordered fields would be but one
example. Köppe and Scrimshaw plan to focus this work on Normaliz as a target system in Years
1–2. It is a state-of-the-art implementation of polyhedral methods, which by far outperforms other
implementations and is under active development by a small group. A genericized version of it
would provide fast generic polyhedral computations for Sage.

We plan to document the technical and community aspects of the work on Normaliz so that
the lessons learned can then be applied by other Sage developers to additional systems of interest.

6. Broader Impacts

Many of our goals, projects and activities involve broader impact components. Here, we organize
those impacts into two broad categories and point to the relevant sections in the proposal.

Sharing and Dissemination. Enhanced infrastructure for research §2; public availability and
dissemination of code §1.5; outreach to community and sharing/developing code through workshops
§4.1; fostering engagement of broader community §4.2; sharing best practices with the broader
developer community §5; international collaboration §4.5.

Human Resources and Training. Improved STEM education §3.1, §4.3 and educator devel-
opment §3.2; globally competitive STEM workforce and increased partnership between academia
and industry §1.4; increased participation of women in mathematics and computer science §4.4;
training of community and students in the code §4.1; training of broader developer community §5.

Metrics. Sage development is done via Git branches submitted to the Sage trac server [227].
We will keep track of:

(1) trac tickets developed under this project using the tag CROSSPRODUCT,
(2) publications citing Sage at http://www.sagemath.org/library-publications.html,
(3) number of participants, new developers, new users, trac tickets from each Sage Days.

7. Results of Prior NSF Support

The PIs have been supported by the following NSF grants in recent years:
• OCI-1147161/OCI-1147247: Collaborative Research: Sage-combinat: Developing and Sharing
Open Source Software for Algebraic Combinatorics (2012–2016) (Musiker, Schilling w/Bump, Stein)
• DMS-1401208: Conference on Representation Theory and Related Topics (2014–2015) (Lee)

http://www.sagemath.org/library-publications.html

14 COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT

• DMS-1406238: Metaplectic automorphic forms and matrix coefficients (2014–2017) (Brubaker)
• DMS-1320051: Infinite-Dimensional Relaxations of Mixed-Integer Optimization Problems (2013–
2017) (Köppe)

In what follows, we will focus mainly on the Collaborative Research grant that was focused on
Sage development, and on aspects of the above DMS grants most relevant to the proposal at hand.
In addition, numerous other NSF grants have supported the general development of Sage over the
past 10 years, see [184]. In particular, the Research Training Grant DMS-1148634 in Combinatorics
at University of Minnesota (2012–2017) (co-PI Musiker with Pylyavskyy, Reiner, and Stanton) has
supported Scrimshaw’s postdoctoral fellowship and travel. This has lead to numerous developments
and improvements to Sage, which aided in developing the results of [162, 167, 199, 201, 208].

7.1. Intellectual merit. The collaborative grant OCI-1147161/OCI-1147247 focused on Sage-
Combinat, a subproject of Sage whose mission is “to improve Sage as an extensible toolbox for
computer exploration in (algebraic) combinatorics and foster code sharing between researchers in
this area.” Many new features were implemented as part of this project including rigged config-
urations, new models for crystal bases, puzzles (used to count Littlewood–Richardson coefficients),
various tableaux that arise in the combinatorics of the affine Grassmannian, branching rules for
Lie algebras, the category framework, computations for cluster algebras, and new constructors for
posets and signed permutations.

The symbiotic relationship between mathematical research and the code has been extremely
powerful. As a characteristic example of the synergistic activities involved, we highlight a specific
development (cf. [229]) which implements nonsymmetric Macdonald polynomials. As far as we are
aware, there is no other mathematical software system which currently computes nonsymmetric
Macdonald polynomials in this generality. This ticket was a truly collaborative effort carried out by
many people at the ICERM program “Automorphic Forms, Combinatorial Representation Theory
and Multiple Dirichlet Series” [172] in the Spring of 2013. This was immediately used in the paper
[46] to give a representation theoretic interpretation of specializations of these polynomials.

In addition to these research-relevant functionalities, as part of this grant, we have co-organized
and/or supported 8 Sage Days. Most of the Sage Days had about 25–40 participants (depending
on the topic), with the Sage Days in Paris having over 50 participants (cf. [187, 196, 188, 189, 190,
191, 192, 193]). The workshops consisted of mathematical presentations, presentations on Sage
and coding sprints. The mathematical presentations included tutorials on the relevant mathematics
for the entire audience and more advanced talks for interested participants.

Mathematically, some of the features implemented at these workshops included (a) checking
whether a lattice is atomic, semi-modular, or modular; (b) Littelmann path models for crystals; (c)
quasisymmetric functions and nonsymmetric Macdonald polynomials; (d) construction of posets of
semi-standard Young tableaux; (e) computations of characteristic and zeta polynomials of posets;
(f) re-implementing cluster seeds more efficiently via F -polynomials rather than rational functions;
(g) allowing other variable labels and other types of mutations; (h) presenting upper cluster alge-
bras; (i) constructions of subword complexes; (j) basic implementation of fully packed loops; (k)
improved support of tableaux classes; and (l) further extensions to alternating sign matrices.

In DMS-1320051, a classic infinite-dimensional relaxation of integer optimization problems by
Gomory-Johnson has been made algorithmic. A comprehensive survey on this relaxation has been
compiled to facilitate further research. The survey is integrated with interactive software [98] writ-
ten in Sage, including an electronic compendium of extreme functions in the literature. The grant
DMS-1406238 has produced new connections between lattice models and matrix coefficients for
p-adic algebraic groups. Many of these findings were aided by Sage with explicit acknowledgment
and code produced for these projects could be integrated into future Sage releases.

COLLABORATIVE RESEARCH: SI2-SSI: SAGEMATH CROSS PRODUCT 15

7.2. Broader Impacts. The Sage Days included a strong outreach component and have been
a potent tool for connecting researchers and recruiting Sage users and developers. A number of
participants of these Sage Days workshops have become more active Sage developers; of partic-
ular note are Emily Gunawan, Frederico Castillo, Maria Gillespie, and PIs on this current grant
Brubaker, Dilks, Grinberg, Roby, Scrimshaw, and Striker.

Here is feedback given during some of the accompanying post-workshop surveys: “I learned how
to use Sage and the whole editing process. This was like learning to fish rather than being given a
fish.” “[I was] able to interact with many more experienced people who were able to teach me a lot
of what I needed to know to work on my research goals.” “I was able to speak with Sage experts
with whom I have mathematical interests in common. I hope what I learned will enable me to use
Sage productively in my own research.” “The workshop was very inclusive. I was happy to meet
people in my field and very happy to meet people at my level using Sage for similar tasks as I
need.” “The idea of taking my proprietary code and contributing it to the open source community
will be something I will work on that I would not have done beforehand.”

In addition to disseminating software features and actively engaging the research community
at Sage Days, a considerable effort was made to make the code accessible by documenting and
explaining it in books and tutorials. Lam, Lapointe, Morse, Schilling, Shimozono and Zabrocki
wrote a book on “k-Schur functions and affine Schubert calculus” [126], which includes many
examples in Sage. This book is freely available on the arXiv and the Springer website. In the
summer of 2012, Schilling and Zabrocki did a major overhaul of the symmetric function code in a
15,000 line patch that also includes a new tutorial on symmetric functions.

Under the grant OCI-1147161/OCI-1147247, a number of graduate student RA’s have also been
supported. This model has been quite successful, both providing the graduate students with a
deeper understanding of the mathematical material as they consider how to implement cutting
edge algorithms or definitions, and leading to computations that are useful in their research. At
UC Davis, Scrimshaw (now a PI on this grant and an extremely prolific Sage contributor) and
Roger Tian were funded as graduate students. At the University of Minnesota, Alex Csar, Theo
Douvropoulos, Dilks (now also a PI), Emily Gunawan, and Ben Strasser were funded. Dilks was
a reviewer for several tickets and also started running the Patchbot system, which automatically
attempts to apply tickets in progress and runs a full doctest suite. In DMS-1320051 and DMS-
1406238, project funds have assisted 5 Ph.D. students and 4 undergraduates.
7.3. Outcomes. Here we give some further highlights regarding the outcome of grant OCI-
1147161/OCI-1147247 (see also the annual reports on this grant for more details):
• A total of 314 patches were merged into Sage; many more are currently being developed [227].
• 34 papers/preprints/REU Reports [104, 162, 134, 205, 180, 179, 133, 152, 14, 204, 153, 203,

137, 13, 151, 136, 11, 12, 132, 135, 198, 199, 200, 207, 124, 138, 101, 92, 4, 5, 2, 145, 139, 100]
and 2 books [126, 52] featuring Sage were written by Musiker, Schilling, their collaborators and
students.
• Currently, at least 55 papers, 3 books, 4 theses, and 20 preprints cite or acknowledge the

SageCombinat project. For more details and updated information see [186].
In DMS-1320051, 5 refereed journal articles [26, 28, 30, 31, 118], 3 book chapters [27, 121,

97], 2 submitted manuscripts [29, 119], 1 arXiv preprint [120], and 61 merged Sage tickets were
written by Köppe and his collaborators and students. The open source software [98] with an
electronic compendium of extreme functions was published on github [116]. DMS-1406238 has thus
far resulted in 5 refereed journal articles [45, 47, 48, 46, 91] and 2 arXiv preprints submitted for
publication.

	1. Why Sage is our choice of software for this project
	1.1. Sage is designed for science
	1.2. Sage is an integrating force
	1.3. Sage code is sustainable
	1.4. The Sage community is sustainable
	1.5. Sage development model

	2. Deepening core functionalities
	2.1. Statistical mechanics and exactly solvable models
	2.2. Representations of algebras
	2.3. Optimization, polyhedral geometry, and lattice point enumeration

	3. Lowering barriers for entry and developing educational tools
	3.1. Leveraging Sage for education
	3.2. Curating and disseminating teaching tools

	4. Engaging and broadening the larger Sage community
	4.1. Sage Days
	4.2. Fostering Sage development through coding sprints
	4.3. RA support
	4.4. Increasing the participation of women in mathematics and computer science
	4.5. International collaboration

	5. Delivering best practices to the wider open source math software community
	5.1. Issues and goals
	5.2. Engineering Sage as an added value for the upstream library developers
	5.3. Pushing Sage's genericity and categories to upstream libraries

	6. Broader Impacts
	Sharing and Dissemination
	Human Resources and Training
	Metrics

	7. Results of Prior NSF Support
	7.1. Intellectual merit
	7.2. Broader Impacts
	7.3. Outcomes

