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Abstract

We lay the foundations for a computational theory of abelian varieties
over Q of GL2-type, or equivalently, with factors of modular Jacobians
J1(N). This will make it possible to generalize Cremona’s tables of ellip-
tic curves to higher dimension. We describe algorithms for enumerating
and decomposing GL2-type abelian varieties, isomorphism testing, com-
putation of endomorphism and homomorphism rings, arithmetic with fi-
nite subgroups, computing the modular degree, computing special values
of L-functions, and computing Tamagawa numbers. None of our algo-
rithms use defining equations for varieties, and as such they work in a
great degree of generality allowing us to treat all dimensions uniformly.

See http://wstein.org/talks/2004-02-04-CCR-ModAbVar/modabvar.pdf
for a nice overview talk about what should eventually go in this paper.

1 Introduction

In this paper, we lay the foundations for a computational theory of abelian
varieties over Q of GL2-type. This will support generalizing Cremona’s highly
influential tables [Cre97] of elliptic curves to higher dimension. We describe
algorithms for enumerating and decomposing GL2-type abelian varieties, iso-
morphism testing, computation of endomorphism and homomorphism rings,
arithmetic with finite subgroups, computation of the modular degree, comput-
ing special values of L-functions, and computing Tamagawa numbers. None
of our algorithms use defining equations for varieties, and as such they work
in a great degree of generality allowing us to treat all dimensions uniformly.
There are also several open problems that are suggested by this paper [[give
cross-references]].

As mentioned above, a distinctive feature of our approach is that we do not
use explicit defining equations. This is in stark contrast to the approach taken
by many previous papers and theses [FpS+01] that treat only small dimensions.
We also hope that some of the ideas in this paper may be applicable to [Edi06]
and [?]. The methods in this paper are also used in the forthcoming paper
[CS08]. The author has implemented all of the algorithms described here, and
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they are included in Sage (which is free open source software [S+11]). [[Cite
that whole French paper that does via ad hoc methods something like we do
just for J0(125).]]

In this paper we mostly ignore issues of computational complexity, since
our goal is to describe how it is practical at all to compute explicitly with
modular abelian varieties. Except for [[...?? norm equations]], the algorithm
discussed in this paper mostly amount to linear algebra and have complexity
that is polynomial time in the level N of the abelian variety.

Acknowledgement: A very early draft of this paper was co-authored with
Tseno Tselkov when he was an undergraduate at Harvard University. We thank
Clement Pernet and Allan Steel for discussions about computation of Hermite
and Smith normal form and saturation. Frank Calegari had many helpful ideas
related to enumerating all abelian varieties in an isogeny class (see Section 3.1).
We discussed solving norm equations with Claus Fieker.

1.1 GL2-type and Modular Abelian Varieties

A simple abelian variety A over Q is of GL2-type if End(A)⊗Q is a number field
of degree equal to dim(A). More generally an abelian variety is of GL2-type if
it is isogenous to a product of copies of simple abelian varieties of GL2-type.
Let X1(N) be the modular curve that parametrizes isomorphism classes of pairs
(E,P ), where E is an elliptic curve and P is a point of order N , and let J1(N) be
the Jacobian of X1(N), which is an abelian variety over Q. An abelian variety
A over Q is modular if there is a homomorphism A→ J1(N) with finite kernel.

Ribet observed in [Rib92, §3] that every modular abelian variety is of GL2-
type. His paper also shows [Rib92, Thm. 4.4] that Serre’s conjectures [Ser87]
on modularity of odd irreducible two-dimensional mod p Galois representations
imply the converse. Since Khare and Wintenberger have now completely proved
Serre’s conjecture, we have the following theorem.

Theorem 1.1 (Khare, Wintenberger). Every GL2-type abelian variety over Q
is modular.

Thus to explicitly compute with abelian varieties of GL2-type it suffices to
consider modular abelian varieties, which we do for the rest of this paper.

Remark 1.2. In this paper we only consider modular abelian varieties defined
over Q. It would be interesting to use similar methods to treat the general case
of modular abelian varieties over a number field K, by which we mean abelian
varieties A over K for which there exists a finite degree morphism A → J1(N)
over K for some N . The main complication is that the endomorphism ring
over Q of a simple modular abelian variety A over Q need not be commutative.
Fortunately much is known about its structure (see [Rib80]).

Also many of the algorithms in this paper naturally generalize to the context
of Grothendieck motives attached to modular forms. This is also a topic for
future investigation.
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1.2 Explicit Defining Data for Modular Abelian Varieties

We represent modular abelian varieties over Q explicitly as follows. Let J be
an arbitrary finite product of modular Jacobians JH(N) = Jac(XH(N)) for
subgroups H ⊂ (Z/NZ)∗, where N is a positive integer (see, e.g, [] for the
definition of JH(N)). We will refer to J as an ambient modular abelian variety.
Fix a modular abelian variety A and a finite degree homomorphism ϕ : A→ J .
Then there is an isogeny from the image B of A in J back to A whose kernel
we denote by G, so A is isomorphic to B/G and B ⊂ J :

J

0 // G // B
?�

OO

// A //ii

f
__

0

In other words we can represent any modular abelian variety by giving G ⊂
B ⊂ J , all defined over Q. It remains to explain how we explicitly specify B
and G.

We specify B as follows. The inclusion B ↪→ J induces an inclusion of
rational homology H1(B,Q) ↪→ H1(J,Q) and B is determined by the image
V of H1(B,Q) in the Q-vector space H1(J,Q). We explicitly compute a basis
for H1(J,Z) and H1(J,Q) = H1(J,Z) ⊗ Q using modular symbols [Ste07], and
specify B by giving a basis in reduced echelon form for a subspace V ⊂ H1(J,Q).
Of course, not every subspace corresponds to a modular abelian variety, but we
can determine whether or not a given V corresponds to a valid abelian subvariety
(see ??).

We specify G as follows. Suppose V defines an abelian subvariety B of J as
above. By the Abel-Jacobi theorem, we have

J(C) ∼= H1(J,R)/H1(J,Z),

and letting Λ = H1(J,Z) ∩ V we have B(C) ∼= (V ⊗ R)/Λ. In particular,

B(C)tor ∼= V/Λ,

and we specify G ⊂ B(C)tor by giving the lattice L with Λ ⊂ L ⊂ V such that
L/Λ ∼= G.

For brevity, henceforth we use the term modular abelian variety to mean
a modular (or equivalently GL2-type) abelian variety A that has been given
explicitly by a triple (V,L, J) where V ⊂ H1(J,Q), the lattice L ⊂ V contains
Λ = V ∩ H1(J,Z), and J is specified by a finite ordered list of congruence
subgroups Γ0(N), Γ1(N), and ΓH(N). We use the notation (V, J) as a shorthand
for L = Λ.

1.3 Contents

Turn this table of contents into prose when paper is done. (or maybe not.)
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2.1 Ambient Modular Abelian Varieties

modular symbols; ΓH(N).
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2.2 Enumerating New Simple Modular Abelian Varieties

Algorithm 2.1 (Enumerate Modular Abelian Varieties). Given a modular Ja-
cobian J this algorithm outputs a list of abelian subvarieties of J in each isogeny
class of simple modular abelian varieties of level N .

2.3 Decomposition

2.3.1 New and Old Subvarieties and Quotients

2.3.2 Decomposition as a Product of Simples

[[there is a very interesting algorithm here – this is related to verifying defining
data]]

Algorithm 2.2 (Decompose as Product). Given a modular abelian variety A,
this algorithm finds simple abelian varieties Bi and an isogeny A→

∏
Bi.

2.3.3 Verifying Defining Data of a Modular Abelian Variety

2.4 Arithmetic with Modular Abelian Varieties

2.4.1 Sums and Products

[[problem – the input here should be A = (V,L, J) and A′ = (V ′, L′, J) in a
common ambient B = (V2, L2, J), where we need not assume B ⊂ J ]]

Suppose A = (V, J) and A′ = (V ′, J) are abelian subvarieties of a common
ambient J . Then the A+A′ ⊂ J is given by (V + V ′, J).

Suppose A = (V,L, J) and A′ = (V ′, L′, J ′) are modular abelian varieties.
Then A × A′ = (V ⊕ V ′, L ⊕ L′, J × J ′), where V ⊕ V ′ and L ⊕ L′ embed
diagonally into J × J ′.

2.4.2 Intersection

Suppose A = (V, J) and A′ = (V ′, J) are abelian subvarieties of a common
ambient J . Then A ∩ A′ is an extension of the abelian variety (A ∩ A′)0 =
(V ∩ V ′, J) by a finite component group:

J

0 // (A ∩A′)0 // A ∩A′
?�

OO

// Φ // 0,

The component group is isomorphic to the torsion subgroup of kernel of the
map A×A′ → J sending (x, y)→ x− y, which we compute using Section 2.6.4;
in particular, we have

Φ ∼= (ΛJ/(ΛA + Λ′A))tor .

[[this requires proof]] If A and A′ are preserved by End(J), then End(J) also
acts on Φ via its action on ΛJ .
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2.4.3 Complements (Poincare Reducibility)

[[look in magma code to see how to do this. probably intersection pairing;]]

2.4.4 Quotients by Subgroups and Subvarieties

Suppose A = (V,L, J) is a modular abelian variety and A′ = (V ′, L′, J) is an
abelian subvariety of A, so V ⊂ V ′ and L′ = L ∩ V ′. Using Section 2.4.3, we
compute A/A′ by finding a complement B = (VB , LB , J) of A′ in A along with
surjective projection maps πA′ : A → A′ and πB : A → B. Then the identity
component of A/A′ is isomorphic to B. The component group Φ of A/A′ is
isomorphic to the identity component of the kernel of the natural map A→ B,
which we compute using Section 2.6.4.

2.5 Finite Subgroups

2.5.1 Defining Data

data: (L ⊃ Λ,K,A).
morphisms between

2.5.2 The n-Torsion Subgroup

2.5.3 Intersection of Finite Subgroups

G ∩H

2.5.4 The Cuspidal Subgroup

2.5.5 The Rational Cuspidal Subgroup

i.e. C(Q), which we can compute by getting GQ action on C(Q).
arithmetic with: G+H, G ∩H, G/H.

2.5.6 The Torsion Subgroup

point counting over finite fields
divisor, multiple of order
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2.5.7 The Shimura Subgroup

2.6 Morphisms Between Modular Abelian Varieties

2.6.1 Defining Data for Morphisms

2.6.2 Natural Maps

2.6.3 Morphisms Defined by Finite Subgroups

2.6.4 Kernels of Morphisms

2.6.5 Images of Morphisms

2.6.6 The Universal Property of the Cokernel

2.6.7 The Projection Morphism

2.6.8 Left and Right Inverses

2.7 Endomorphism Rings and Hom Spaces

2.7.1 Computing End and Hom

The following saturation algorithm will be important when computing End(A)
and Hom(A,B).

[[insert very quick summary of Hermite and smith forms]]
[[this should go in paper on hnf, etc. writing with Clement Pernet]]

Algorithm 2.3 (Saturate). Given a subgroup L of Zn, this algorithm computes
the saturation (QL)∩Zn of L in Zn. Let M be a matrix whose rows are a Z-basis
for L.

1. [Hermite Normal Form] Find the Hermite Normal Form H of M t.

2. [Inverse] Compute S = (Ht)−1M using the “last big row” trick. Then
output S whose rows are a basis for the saturation of L.

Proof. It suffices to prove that (Ht)−1M has rows that span the saturation of
the row span of M . [...]

Note that one could instead replace H by an LLL reduced basis for the
rowspace of M t, but this is usually much slower because the p-adic/modular
algorithm [?] for computing Hermite normal form is fast.

If A is an abelian variety of dimension 2 then after chosing a basis for Λ =
H1(A,Z), we have

End(Λ) ∼= Mat2d×2d(Z) ≈ Z(2d)2 .

Proposition 2.4. Let A be a simple abelian variety over a number field K, let
Λ = H1(A,Z) and embed End(A/K) in End(Λ) by the action of endomorphisms
on homology. Then

End(A/K) = (End(A/K)⊗Q) ∩ End(Λ),

where the intersection takes place in End(Λ)⊗Q.
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We will use the following lemma in the proof of Proposition 2.4.

Lemma 2.5. Let K be a number field. If an element x ∈ C is fixed by every
element of Aut(C/K), then x ∈ K.

Proof. If x ∈ K, this is standard Galois theory. If x 6∈ K, then x is transcen-
dental. Since x + 1 is also transcendental, the fields K(x) and K(x + 1) are
isomorphic via a map σ sending x to x+1. Every automorphism of a subfield of
C extends to C, so σ extends to an automorphism of C that does not fix x.

Proof of Proposition 2.4. An element of End(A/C) is just a complex linear map
on Tan(AC) that preserves Λ. The inclusion of End(A/K) in the right hand side
is obvious, so suppose ϕ ∈ (End(A/K)⊗Q)∩End(Λ). Then there is a positive
integer n such that nϕ ∈ End(A/K). Thus nϕ ∈ End(A/K) ⊗ Q induces
a complex-linear endomorphism of Tan(AC), so ϕ = (1/n)nϕ also induces a
complex-linear endomorphism of Tan(AC); also, by hypothesis ϕ preserves Λ.
Thus ϕ ∈ End(A/C).

There is a nonzero integer n such that nϕ is defined over K, so for any
σ ∈ Gal(C/K), we have σ([n]ϕ)− [n]ϕ = 0. But

σ([n]ϕ) = σ([n])σ(ϕ) = [n]σ(ϕ),

so
[n](σ(ϕ)− ϕ) = 0,

which implies σ(ϕ) = ϕ, since the kernel of [n] is finite and the image of σ(ϕ)−ϕ
is either infinite or 0. By Lemma 2.5, ϕ ∈ End(A/K).

Algorithm 2.6 (Endomorphism Algebra as Field). Given a simple modular
abelian variety A over Q, this algorithm computes a number field F and an
isomorphism End(A)⊗Q→ F .

1. [Find Af ] Using Algorithm ?? find an isogeny ϕ : A→ Af , where Af is a
newform abelian variety.

2. [Choose random endomorphism] Randomly pick [[how??]] an endomor-
phism ϕ of Af and compute its minimal polynomial g.

3. [Does endomorphism generate?] If deg g = dim(Af ), then let F be the
number field generated by a root α of g. Otherwise, go to step 1.

4. [Define an isomorphism] Let Ψ be the unique field homomorphism End(Af )⊗
Q→ F that sends ϕ to α. Compose this with the isomorphism End(A)⊗
Q→ End(Af )⊗Q induced by ϕ to obtain the desired isomorphism.

Proof. By [Rib92, ???] because A is simple, modular, and defined over Q, we
know that End(A) ⊗ Q is a number field of degree equal to dim(A). (If we
instead consider End(A/Q), then End(A/Q) ⊗ Q could be a non-commutative
division algebra. Again we emphasize that by definition End(A) contains only
the endomorphisms of A that are defined over Q.)
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By the primitive element theorem, there exists a ϕ such that if f is the
minimal polynomial of ϕ, then deg(f) = dim(A). Then since deg(f) = dim(A)
it follows that the map Ψ is an isomorphism (a nonzero homomorphism between
number fields of the same dimension is an isomorphism).

Algorithm 2.7 (Compute End(A)). Given a simple modular abelian variety
A, this algorithm computes End(A).

1. [Find Modular Form] Since A is simple we can use Algorithm ?? to find a
newform f such that A is isogenous to the abelian variety Af . It suffices
to compute End(A) ⊗ Q = End(Af ) ⊗ Q, since by Proposition 2.4 this
yields End(A). Thus it suffices to compute End(Af ).

2. [Initialize] Let d = dim(Af ), let n = 1, and let V be the zero subspace of
End(Af )⊗Q.

3. [Compute Hecke operator] Using Algorithm ??, compute the restriction
of the Hecke operator Tn to Af , as an element of End(Af )⊗Q.

4. [Increase V ] Replace V by V + Q · Tn.

5. [Finished?] If dim(V ) < d, increase n and go to Step 3.

6. [Saturate] Compute End(Af/Q) = V ∩ End(ΛAf
) using Algorithm ??.

Proof. We need to show that the algorithm terminates, i.e., that the Hecke
algebra generates End(Af/Q)⊗Q. But by [Shi73, Thm. 1] the image of T ⊗Q
in End(Af/Q)⊗Q is a subfield of degree dimAf . But Af is simple by [Rib80,
Cor. 4.2], so [Rib92, Thm. 2.1] implies that End(Af/Q)⊗Q also has dimension
dim(Af ). Thus the Hecke algebra generates End(Af/Q)⊗Q. By Proposition 2.4
once we have End(Af/Q)⊗Q we apply Algorithm ?? to get End(Af/Q).

Algorithm 2.8 (Compute Hom(A,B)). Given modular abelian varieties A and
B, we compute Hom(A,B) as follows.

1. [Factorizations] By Proposition 2.4 it suffices to explain how to compute
Hom(A,B)⊗Q. For this, we compute using Algorithm ?? factorizations∏
i∈I C

ei
i and

∏
i∈I C

fi
i of A and B up to isogeny (with isogenies) respec-

tively, where I is some index set, the C ′is are non-isogenous simple abelian
varieties, and ei, fi ≥ 0. For the rest of this algorithm we replace A, B,
by these products.

2. [Simple case] When A ∼ Ce and B ∼ Df , where C,D are simple abelian
varieties we compute Hom(A,B) in the following way. If C and D are not
isogenous Hom(A,B) = 0. If C and D are isogenous,

Hom(A,B)⊗Q = Hom(Ce, Df )⊗Q = Mate×f (End(C)⊗Q).
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3. [General case] We compute each Hom(Ceii , C
fj
j )⊗Q as in Step 2 and obtain

Hom(
∏
Ceii ,

∏
C
fj
j ) ⊗ Q as a matrix with blocks Hom(Ceii , C

fj
j ) ⊗ Q for

each pair (i, j).

Proof. Suppose first that A ∼ Ce, B ∼ Df with C,D simple abelian varieties.
When C and D are not isogenous there is no morphism A→ B, so Hom(A,B) =
0. When C and D are isogenous, a morphism Ce → Df over Q is given by an
e× f matrix with entries from End(A)⊗Q, where the (i, j)th entry represents
the morphism between the ith component of A and jth component of B. We
get End(A) ⊗ Q using Algorithm ??. Once we have Hom(A,B) ⊗ Q, to get
Hom(A,B) we only need to apply Proposition 2.4.

In general, when A =
∏
i∈I C

ei
i and B =

∏
i∈I C

fi
i we get Hom(Ceii , C

fj
j ) as

before and combining these blocks we obtain Hom(A,B).

2.7.2 Computing Discriminants of Endomorphism Rings

2.7.3 The Hecke Subring

computing its index; structure of quotient in full ring.

2.7.4 Atkin-Lehner Operators

2.7.5 The I-torsion Subgroup for any Ideal I

for I ⊂ T or I ⊂ End(A).

2.8 Isogenies and Isomorphisms of Modular Abelian Va-
rieties

2.8.1 Isogenies From A to B

Algorithm 2.9 (Test if Isogenous). Given two modular abelian varieties A
and B, this algorithm decides whether or not A and B are isogenous, and if so
returns an isogeny between them.

1. [A, B both simple] When A and B are both simple they are isogenenous
to abelian varieties Af and Ag attached to newforms; we can find explicit
isogenies using Algorithm ??. Then A is isogenous to B if and only if
Af = Ag, i.e., f and g are Galois conjugate.

2. [Pair off factors] When A and B are not simple we pair off factors, i.e.
for any C in a factorization of A we check if there is an isogenous D in a
factorization of B. If such D exists and the multiplicities of C in A and D
in B are the same we remove D and continue with another C. Otherwise,
A and B cannot be isogenous.

Proof. When A and B are simple, by [Fal86, §5] A ' Af and B ' Ag are isoge-
nous if and only if the corresponding newforms f and g are Galois conjugate,
since f and g determine L(Af , s) ad L(Ag, s).

11



If A ∼
∏
i∈I A

ei
i and B ∼

∏
i∈I B

ei
i , indexed so that Ai ∼ Bi for all i ∈ I,

then we get that the products
∏
i∈I A

ei
i and

∏
i∈I B

ei
i are isogenous, so A and

B are also isogenous.
Conversely, suppose that A ∼ B and ϕ : A → B is some isogeny. Let

A ∼
∏
i∈I A

ei
i and B ∼

∏
j∈J B

fj
j be factorizations of A and B into products of

powers of non-isogenous simple abelian varieties. Fix an index i ∈ I. Combining
the maps from Ai to A, from A to B, and the projection to Bj for each j we
obtain morphisms φij : Ai → Bj for all j ∈ J . Since the image of an abelian
variety is an abelian variety and all Bj ’s are simple it follows that ϕij(Ai) is
either zero or all of Bj , which means that Ai and Bj are isogenous. It is not
possible that all ϕij(Ai) are zero since that would imply that ϕ is the zero map,
so we find a Bj isogenous to Ai. Removing Ai and Bj from the factorizations
and repeating this argument yields that A and B are isogenous if and only if
there is a bijection σ : I → J such that Ai is isogenous to Bσ(i) for all i, and
ei = fσ(i).

2.8.2 Isomorphisms from A to B

In this section we describe an algorithm to decide whether two simple modular
abelian varieties are isomorphic, and if so to give an isomorphism. We do not yet
know an algorithm to decide whether two nonsimple modular abelian varieties
are isomorphic (just need a way to enumerate elements in lattice of small norm
– might be straightforward if don’t care about speed!).

Algorithm 2.10 (Norm Equation). Given an order O in a number field K and
an element a ∈ Q, this algorithm finds all solutions in O to the norm equation
Norm(x) = a, up to units of O.

Replace the following by a reference to Henri Cohen’s book, etc. [[Claus
Fieker suggests the following algorithm (we should expand on that)

1. [Class Group] Find the class group of K.

2. [Ideals of bounded norm] Use linear programming [[huh??]] to find all
ideals of norm up to some bound.

3. [Solve] Deduce all solutions to the norm equation up to units.

]]

Algorithm 2.11 (Test if Isomorphic). Given simple modular abelian varieties
A and B, this algorithm either proves that A and B are not isomorphic, or
returns an isomorphism between them (or all isomorphisms, up to units).

1. [Equal?] If A = B, return “yes” and the identity map.

2. [Isogenous?] Determine whetherA andB are isogenous using Algorithm ??.
If A and B are not isogenous then return “no”, and if A and B are isoge-
nous, let f : B → A be an isogeny.

12



3. [Degree of isogeny] Compute d = deg(f). If d is not a square, return “no”.

4. [Endomorphism algebra] Compute the number field K = End(A)⊗Q, and
an embedding of End(A) into K using Algorithm ??.

5. [Hom space] Compute Hom(A,B) using Algorithm ??.

6. [Image of Hom space] Compute the image Hf of Hom(A,B) in End(A)
got by composing with f .

7. [Endomorphism ring] Compute the order O in K equal to End(A) using
Algorithm ??.

8. [Solve norm equation] Find solutions (up to units of O) of the norm equa-
tions Norm(x) = ±

√
d in O. If there are no solutions, return “no”.

9. [Lift to Hf?] For each solution (up to units), check whether it lies in Hf .

10. [Isomorphic?] If a solution x lies in Hf , then return “yes” and x ◦ f−1.
(Note that at this point we could also output x ◦ f−1 and continue on to
return representatives for all isomorphisms up to units.)

11. [Not isomorphic?] If none of the solutions lies in Hf , return “no”.

Proof. Let f : B → A be an isogeny and denote its degree by d. Define

Hf = {f ◦ g : g ∈ Hom(A,B)} ⊂ End(A).

Since degree is multiplicative, A and B are isomorphic if and only if the subset
Hf of End(A) contains an element of degree d. Embed End(A) into the number
field K = End(A)⊗Q and let O be the order in K that is the image of End(A).
By [Mil86, Prop 12.12], for x ∈ K we have Norm(x)2 = deg(x). Thus, finding an
element of degree d in Hf is equivalent to finding x ∈ O with Norm(x) = ±

√
d,

such that x ∈ Hf , where we view Hf as a subset of K using the above inclusions.

Using Algorithm ??, we find all x such that Norm(x) = ±
√
d, up to units of

O. There are may be infinitely many units, e.g., if K is a real quadratic field,
so there are often infinitely many solutions to the norm equation and we cannot
directly check whether at least one of these infinitely many are in Hf . However,
because there are only finitely many solutions up to units, it will suffice to show
that Hf is stable under units and to check whether each representative solution
is in Hf . Thus to finish the proof of correctness of the algorithm, we verify that
x ∈ Hf if and only if xu ∈ Hf , where u is any unit of O. If x = f ◦ g for
some g ∈ Hom(A,B), then xu = f ◦ (g ◦ u) is in Hf since g ◦ u ∈ Hom(A,B).
Conversely, if xu ∈ Hf , then by what we have just shown x = xuu−1 ∈ Hf .

Discuss how non-simple case works. Still just need to solve a norm equation
but solving it is more complicated (?).
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2.8.3 The Minimal Isogeny

A small extension of Algorithm ?? gives us the minimal degree of any isogeny
between two isogenous modular abelian varieties. [[delete below and just say
that we run through all square multiples of d instead of just d in the algorithm
above. the below is riddled with errors anyways.]]

Algorithm 2.12 (Minimal Isogeny). Given simple modular abelian varieties
A and B, this algorithm checks if A and B are isogenous and if so returns the
minimal degree of an isogeny A→ B together with an isogeny of that degree.

1. [Equal?] If A = B, return 1 and the identity map.

2. [Isogenous?] Determine whetherA andB are isogenous using Algorithm ??.
If A and B are not isogenous then return “not isogenous”, and if A and
B are isogenous, let f : B → A be some isogeny.

3. [Degree of some isogeny] Compute deg(f) using Algorithm ??. Write
deg(f) as ab2, where a is squarefree.

4. [Endomorphism algebra] Compute the number field K = End(A)⊗Q, and
an embedding of End(A) into K using Algorithm ??.

5. [Hom space] Compute Hom(A,B) using Algorithm ??.

6. [Image of Hom space] Compute the image Hf of Hom(A,B) in End(A)
got by composing with f ...

7. [Endomorphism ring] Compute the order O in K generated by End(A)
Algorithm ??.

8. [Initialize] Let i = 0.

9. [Solve norm equation] Increase i by one and find the solutions (up to
units of O) of the norm equations Norm(x) = ±abi in O. If there are no
solutions, repeat this step.

10. [Lift to Hf?] For each solution (up to units), check whether it lies in Hf .

11. [Isogenous of degree ai2?] If a solution x lies in Hf , then return ai2 and
x ◦ f−1.

12. [Should try isogeny of higher degree] If none of the solutions lies in Hf ,
return to Step 9.

Proof. Let f : A → B be an isogeny and denote its degree by d = ab2, where
a is squarefree. Define Hf = {φ ◦ f : φ ∈ Hom(B,A)} ⊂ End(A). Since degree
is multiplicative, B and A are isogenous via an isogeny of degree d′ if and only
if Hf contains an element of degree dd′. Embed End(A) into K = End(A)⊗Q
and let O be the order in K generated by End(A). By Proposition 12.12. in
Milne’s ”Abelian Varieties” for x ∈ K we have Norm2(x) = deg(x). Thus,

14



finding an element of degree dd′ in Hf is equivalent to finding x ∈ O with

Norm(x) = ±
√
dd′, such that x actually comes from Hf . Hence, the possible

values for d′ are ai2 for i ∈ N . We can find all x such that Norm(x) = ±
√
dd′

up to units of O. The proof that this suffices is the same as the end of the proof
of Algorithm 2.11.

2.9 Complex Periods

2.9.1 The Period Lattice

Compute period lattice numerically

2.9.2 The BSD Real Volume

BSD real volume ΩA – possibly just use Dokchitser and L(A, 1)/ΩA via modular
symbols. [[dokchitser no good – not rigorous.]]

2.10 Component Groups

2.10.1 Supersingular Curves

2.10.2 Definite Quaternion Algebras

describe algorithm; will finally have to implement something in sage if I’m to
compute the tables at the end.

Basically this sec is just a quick reference to Pizer, Kohel, Dembelle.

2.10.3 The Component Group

cite my other papers on this topic and give some examples.

2.10.4 Tamagawa Numbers

2.10.5 J1(N)

include stuff about J1 from conrad-edixhoven-stein. generic bounds. no real
theory?

Mention open problems.

2.11 Complex L-Series

2.11.1 Local L-factors

via characteristic poly of Frobenius in complete generality: factor as newform
abvars, use Hecke polys

2.11.2 Numerical Evaluation at any Point

anywhere (via Dokchitser)

15



2.11.3 The Rational Part of the Special Value

(generalize Agashe-Stein?)

2.11.4 Order of Vanishing (Analytic Rank)

2.11.5 Zeros in the Critical Strip

(Rubinstein)

2.12 p-adic L-Series

2.12.1 The Definition

2.12.2 Computing to Given Precision

Factor up to isogeny using newforms; compute series for that, except if there is
a p in isogeny degree, in which case give up (?) or? Generalize wuthrich-stein
to dimension > 1. Help from Robert Bradshaw.

[[Do the computation in M [T ] where M is a modular symbols module, like
in Mazur-Tate-Teitelbaum. It’s just that sum and projection.]]

2.12.3 Computing the Leading Coefficient and Order of Vanishing

3 Computing the Isogeny Class

Discuss problem of finding lots of non-isomorphic A in the isogeny class of Af .
Various ways to compute finite Gal(Q/Q)-stable subgroups of A. (I.e., kernel

of maps to higher level Np. Intersection with other Ag’s. Intersection with (or
image of) cuspidal subgroup, Shimura subgroup, cut out using Hecke operators
when the dimension is bigger than 1, etc.)

Example 3.1. We show that the Q-isogeny class of 43B contains at least three
non-isomorphic abelian varieties.

[[replace by sage]]

> J := JZero(43);

> A := J(2);

> A;

Modular abelian variety 43B of dimension 2, level 43 and

conductor 43^2 over Q

> G := RationalCuspidalSubgroup(A);

> G;

Finitely generated subgroup of abelian variety with invariants [

7 ]

> B := A/G;

> B;

Modular abelian variety of dimension 2 and level 43 over Q

16



> IsIsomorphic(A,B);

false

> Adual := Dual(A);

> IsIsomorphic(Adual,A);

true Homomorphism from modular abelian variety of dimension 2 to

43B given on integral homology by:

[ 1 0 -2 -1]

[ 1 0 -3 -1]

[ 0 2 -2 -1]

[ 0 1 -1 -1]

> Bdual := Dual(B);

>> Bdual := Dual(B);

^

Runtime error in ’Dual’: The modular embedding of argument 1 must

be injective.

> J2 := JZero(43*2);

> phi := NaturalMap(J,J2,1);

> phi2 := NaturalMap(J,J2,2);

> H := Kernel(phi-phi2);

> H := Kernel(phi-phi2);

> H;

Finitely generated subgroup of abelian variety with invariants [

7 ]

> A;

Modular abelian variety 43B of dimension 2, level 43 and

conductor 43^2 over Q

> A/H;

Modular abelian variety of dimension 2 and level 43 over Q

Homomorphism from 43B to modular abelian variety of dimension 2

given on integral homology by:

[ 1 0 1 0]

[ 1 -1 0 -1]

[ 1 -1 -1 1]

[ 1 1 -1 0]

Homomorphism from modular abelian variety of dimension 2 to 43B

given on integral homology by:

[ 3 1 1 2]

[ 1 -2 -2 3]

[ 4 -1 -1 -2]

[ 2 -4 3 -1]

> C := A/H;

> IsIsomorphic(A,C);

false

> IsIsomorphic(B,C);

false
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> G;

Finitely generated subgroup of abelian variety with invariants [

7 ]

> H;

Finitely generated subgroup of abelian variety with invariants [

7 ]

> G eq H;

false

> G +H;

Finitely generated subgroup of abelian variety with invariants [

7, 7 ]

3.1 The Class Group – Noneisenstein Isogenies

Here we make this more precise. Suppose that N is prime. Let A be a simple
modular abelian variety and let f be the associated normalized newform. Denote
by O the finite Z-algebra generated by the coefficients of f and consider H =
Cl(O). Let S = {qi} be a set of representatives for H such that qi has odd
residual characteristic and is non-Eisenstein. Then the following proposition
describes all possible simple abelian varieties that are isogenous to A with an
isogeny whose kernel has support outside the Eisenstein primes and primes of
residual characteristic 2.

Proposition 3.2. Let ϕ : A → A′ be an isogeny whose kernel has support
outside the Eisenstein primes and primes of residual characteristic 2. Then
A′ ' A/A[q] for some q ∈ H.

This method gives us at least part of the isogeny class. [[Note that at the
end of his notes Frank mentions a relation between the Eisenstein primes and
non-trivial isogenies.]]

3.2 Eisenstein Isogenies

Quotient out by any subgroup of the cuspidal subgroup.
Quotient out by any subgroup of the Shimura subgroup Σ. The Shimura

subgroup is by definition the kernel of the natural map J0(N)→ J1(N) induced
by X1(N)→ X0(N). Paper Ling and Oesterlé that describes Σ in computable
terms directly at level N .

Suppose A,B ⊂ J0(M) are simple and non-isogenous, for some M . Then
A/(A ∩B) is isogenous to A.

Remark: Kernels of endomorphisms have square degree. So quotienting out
by any rational subgroup of nonsquare order gives a nontrivial isogeny. Get
these from C.
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3.3 Enumerating the Isogeny Class

Do all the operations above suffice to enumerate all elements of any isogeny
class? If not, what do we miss.

4 Tables of Modular Abelian Varieties

4.1 Contents

For each N ≤ 125 (say), compute all modabvars for J0(N). Also for each
N ≤ 49 (say), compute all modabvars for JH(N) for all H. Also do J0(389),
say. For each compute:

1. Field F = End(A)⊗Q); disc(F ); description of O = End(A) ⊂ F and of
T′ ⊂ End(A).

2. first few coefficients of q-expansion

3. all non-isomorphic elements of the isogeny class (found using our meth-
ods), which we label

4. a graph showing the isogenies with their structure (degree, etc.)

5. the matrix showing structure of intersections between all simple new ab-
vars of level N

6. index of T in End(Af )

7. discriminant of End(Af )

8. modular degree; modular kernel with Hecke action (?)

9. cuspidal subgroup

10. rational cuspidal subgroup

11. torsion subgroup (if possible)

12. real volume to some precision

13. component group orders (or bounds) – this will require implementing
quaternion algebra ideal arithmetic.

14. tamagawa numbers

15. analytic rank

16. rational part of special value

17. first 10 zeros in the critical strip

18. leading coefficient of p-adic L-series for first 10 good primes.
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4.2 Factors of J0(N) for N ≤ 125

4.3 Factors of JH(N) for N ≤ 49

4.4 Minimal Isogenies

Connections with computing curves X whose Jacobian is an Af .
[[Papers of people about this, and they care about whether Af is isomorphic

to its dual. Frey students...]]

4.5 Birch and Swinnerton-Dyer

Connections with BSD. Away from 2 and minimal degree of isogeny, the order
of X (mod maximal divisible subgroup) is a perfect square (reference [[william
will find]]). Our data is consistent with [[william will find]].

4.6 Other Examples

J0(389).
[[move this into the paper itself]]

4.7 Level 35

It’s not obvious that Af is iso. to its dual.

[35, 2, 2, 1, 6, x^4 + 2*x^3 - 7*x^2 - 8*x + 16],

Mention 6-author paper and Hasegawa, but that kernel of modular polar-
ization is NOT kernel of multiplication by an integer, so Wang excludes.

Kernel is (Z/2Z)2, which is not ker([2]) = (Z/2Z)4.

> J := JZero(35);

> A := J(2);

> Dual(A);

Modular abelian variety of dimension 2 and level 5*7 over Q

> Kernel(ModularPolarization(A));

Finitely generated subgroup of abelian variety with

invariants [ 2, 2 ]

There is a solution, and it gives an iso.

4.8 Level 69: The first Af that is not isomorphic to A∨
f

Let A be the second factor in the decomposition of J0(69). [[Say dim(A) = 2,
etc., which determines A.]] Then A is not isomorphic to its dual A∨ because
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there are no solutions to the norm equation [...]. A minimal isogeny between A
and A∨ is of degree 4 and is given on the integral homology by

1 0 2 −2
0 1 0 0
−2 1 0 2

4 −2 2 −4


[[That’s meaningless without a basis!]]

4.9 Level 195: An Af not isomorphic to its dual, though
there are solutions to the norm equation

[195, 5, 3, [4, 4, 4, 4, 176, 176], 0, 6, x6 − 14 ∗ x4 − 4 ∗ x3 + 49 ∗ x2 + 28 ∗ x+ 4]
There are solutions to the norm equation, but none of them works.
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