\n",
"
Exercise 20.Use a for loop to print your name vertically.\n",
" \n",
"
Exercise 21. Use a for loop to square the numbers 15, 27, 39 and 84.\n",
" \n",
"```\n",
"225\n",
"729\n",
"1521\n",
"7056\n",
"```\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false,
"deletable": false,
"editable": false
},
"outputs": [
],
"source": [
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"M\n",
"a\n",
"k\n",
"a\n",
"y\n",
"l\n",
"a\n"
]
}
],
"source": [
"for char in \"Makayla\":\n",
" print(char)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"225\n",
"729\n",
"1521\n",
"7056\n"
]
}
],
"source": [
"for val in [15,27,39,84]:\n",
" print(val^2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"deletable": false,
"editable": false
},
"source": [
"## Things to Do with Lists and Loops\n",
"\n",
"### Using loops to make lists\n",
"\n",
"In the previous exercises, you used loops to output values. Often, it is useful to\n",
"store these values in a list.\n",
"\n",
"To start, you’ll need to create a list with no elements. (Think of this as\n",
"tearing out a piece of paper and titling it “Groceries” when making a shopping\n",
"list.) To make such an empty list, enter `listname = []`. Then, use\n",
"`listname.append()` to add computed values to your list.\n",
"\n",
"**Example 6.** This code makes a list of the first ten multiples of 2.\n",
"```\n",
">>mult2 = [] #Set up empty list\n",
">>for n in [1,2,3,4,5,6,7,8,9,10]:\n",
">> mult2.append(2*n) #Compute the n’th multiple of 2 and append to list\n",
">>mult2 #Display the list\n",
"[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]\n",
"```\n",
"
\n",
"Exercise 22. Make a list containing the first five multiples of 3.
\n",
"[3, 6, 9, 12, 15]\n",
" \n",
"Exercise 23. Write a loop that makes a list of the squares of the numbers 0.1,\n",
"0.2, $\\dots$, 0.7. Then, plot your list.\n",
" \n",
"[0.0100000000000000, 0.0400000000000000, 0.0900000000000000,\n",
"0.160000000000000, 0.250000000000000, 0.360000000000000,\n",
"0.490000000000000]\n",
" \n",
"Exercise 24. Create a function and apply it to the numbers 0 through 5,\n",
"inclusive. Plot the list of resulting values.\n",
"
"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[3, 6, 9, 12, 15]"
]
},
"execution_count": 32,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"mult3=[]\n",
"for n in [1,2,3,4,5]:\n",
" mult3.append(3*n)\n",
"mult3"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGGCAYAAABrI8X1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAHdNJREFUeJzt3X2QVmd5P/DvZnGXBMPahLAlZsEdGxNe8sYuQ5YUNRJ3Bp1M0BnFpiVpa6fSITaU2hrKTIuMdZ2qY+wI1HWmttgmwTYxTVtisk4SQqQdky3YTHxparRL6VICGjbBzmKW5/cH4/pbgSMP7HKeXT6fmTPZc3NerufAJN9cz+G+6yqVSiUAAJzQeWUXAABQy4QlAIACwhIAQAFhCQCggLAEAFBAWAIAKCAsAQAUEJYAAAoISwAABYQlAIACpxWWNm3alNbW1kyePDltbW3ZsWPHSY994oknUldXd9z27W9/+7SLBgA4W6oOS1u3bs3q1auzbt267Nq1K4sXL87SpUvT19dXeN53vvOd9Pf3D2+XX375aRcNAHC21FW7kO7ChQszf/78bN68eXhs9uzZWbZsWbq6uo47/oknnsiNN96YH/7wh3nd61535hUDAJxFVXWWjhw5kt7e3nR2do4Y7+zszM6dOwvPve666zJjxowsWbIkjz/+eOGxg4ODGRgYGLENDg5WUyoAwKioKiwdOHAgQ0NDaW5uHjHe3Nycffv2nfCcGTNmpLu7O/fff38eeOCBXHHFFVmyZEmefPLJk96nq6srTU1NI7b169enyiYYAMAZq+pruP/5n//J61//+uzcuTMdHR3D43/6p3+aL37xi6f80vbNN9+curq6PPTQQyf89cHBwRGdpIGBgbS0tOTQoUOZOnXqqZYLAHDGquosTZs2LfX19cd1kfbv339ct6nI9ddfn+eff/6kv97Y2JipU6eO2AAAylBVWGpoaEhbW1t6enpGjPf09GTRokWnfJ1du3ZlxowZ1dwaAKAUk6o9Yc2aNVmxYkXa29vT0dGR7u7u9PX1ZeXKlUmStWvXZu/evdmyZUuS5O67784b3vCGzJ07N0eOHMnf/M3f5P7778/9998/up8EADjn/Nd/JS+/nMydm9TVjc09qg5Ly5cvz8GDB7Nhw4b09/dn3rx52bZtW2bNmpUk6e/vHzHn0pEjR/KhD30oe/fuzfnnn5+5c+fmn//5n/OOd7xj9D4FAHDO+fSnk9///aRSSW65JXnggeS8MVibpOp5lsowMDCQpqYmL3gDAEmSV19NLrgg+fGPfzr21a8mS5aM/r2sDQcAjDt1dcd3kSZV/X3ZqRGWAIBxp74++exnj/0zSVasSN785rG5l6/hAIBx6wc/SA4fTlpaxu4eY9SwAgAYexdddGwbS76GAwAoICwBABQQlgAACtR0WNq4cWPmzJmTBQsWlF0KAHCO8rfhAAAK1HRnCQCgbMISAEABYQkAoICwBABQQFgCACggLAEAFBCWAAAKCEsAAAWEJQCAAsISAEABYQkAoEBNhyUL6QIAZbOQLgBAgZruLAEAlE1YAgAoICwBABQQlgAACghLAAAFhCUAgALCEgBAAWEJAKCAsAQAUEBYAgAoICwBABSo6bBkIV0AoGwW0gUAKFDTnSUAgLIJSwAABYQlAIACwhIAQAFhCQCggLAEAFBAWAIAKCAsAQAUEJYAAAoISwAABYQlAIACNR2WLKQLAJTNQroAAAVqurMEAFA2YQkAoICwBABQQFgCACggLAEAFBCWAAAKnFZY2rRpU1pbWzN58uS0tbVlx44dp3Te1772tUyaNCnXXnvt6dwWAOCsqzosbd26NatXr866deuya9euLF68OEuXLk1fX1/heYcOHcptt92WJUuWnHaxAABnW9WTUi5cuDDz58/P5s2bh8dmz56dZcuWpaur66Tnve9978vll1+e+vr6PPjgg9m9e/cp39OklABAWarqLB05ciS9vb3p7OwcMd7Z2ZmdO3ee9LwvfOEL+e53v5s/+ZM/Ob0qAQBKMqmagw8cOJChoaE0NzePGG9ubs6+fftOeM7zzz+fu+66Kzt27MikSad2u8HBwQwODg7vDwwMVFMmAMCoOa0XvOvq6kbsVyqV48aSZGhoKLfeems+8pGP5E1vetMpX7+rqytNTU3DW0tLy+mUCQBwxqp6Z+nIkSO54IIL8nd/93d517veNTx+5513Zvfu3dm+ffuI41966aX8wi/8Qurr64fHjh49mkqlkvr6+jz66KN529vedtx9TtRZamlp8c4SAHDWVfU1XENDQ9ra2tLT0zMiLPX09OSWW2457vipU6fm2WefHTG2adOmPPbYY/n7v//7tLa2nvA+jY2NaWxsrKY0AIAxUVVYSpI1a9ZkxYoVaW9vT0dHR7q7u9PX15eVK1cmSdauXZu9e/dmy5YtOe+88zJv3rwR50+fPj2TJ08+bhwAoBZVHZaWL1+egwcPZsOGDenv78+8efOybdu2zJo1K0nS39//c+dcAgAYL6qeZ6kM5lkCAMpibTgAgALCEgBAAWEJAKCAsAQAUEBYAgAoICwBABQQlgAACtR0WNq4cWPmzJmTBQsWlF0KAHCOMiklAECBmu4sAQCUTVgCACggLAEAFBCWAAAKCEsAAAWEJQCAAsISAEABYQkAoICwBABj7PDhZO/epPangeZEhCUAGENf+UrS3JxcdlnyjnckR46UXRHVEpYAYAzdccexzlJyLDh96Uvl1kP1ajosWUgXgPHuxz8eua+zNP5YSBcAxtA99yS33568+mqyYEHy+OPJlCllV0U1hCUAGGN79iT79ydXXZU0NJRdDdWaVHYBADDRtbQc2xifavqdJQCAsglLAAAFhCUAgALCEgBAAWEJAKCAsAQAUEBYAgAoICwBABQQlgAACtR0WLKQLgBQNmvDAQAUqOnOEgBA2YQlAIACwhIAQAFhCQCggLAEAFBAWAIAKCAsAQAUEJYAAAoISwAABYQlAIACwhIAQIGaDksW0gUAymYhXQCAAjXdWQIAKJuwBABQQFgCACggLAEAFBCWAAAKCEsAAAWEJQCAAqcVljZt2pTW1tZMnjw5bW1t2bFjx0mPfeqpp3LDDTfk4osvzvnnn58rr7wyn/70p0+7YACAs2lStSds3bo1q1evzqZNm3LDDTfkc5/7XJYuXZpvfvObmTlz5nHHT5kyJXfccUeuvvrqTJkyJU899VQ+8IEPZMqUKfnt3/7tUfkQAABjpeoZvBcuXJj58+dn8+bNw2OzZ8/OsmXL0tXVdUrXePe7350pU6bki1/84ikdbwZvAKAsVX0Nd+TIkfT29qazs3PEeGdnZ3bu3HlK19i1a1d27tyZt7zlLSc9ZnBwMAMDAyM2AIAyVBWWDhw4kKGhoTQ3N48Yb25uzr59+wrPveyyy9LY2Jj29vasWrUqv/Vbv3XSY7u6utLU1DS8tbS0VFMmAMCoOa0XvOvq6kbsVyqV48Z+1o4dO/LMM8/kL/7iL3L33Xfn3nvvPemxa9euzaFDh4a3PXv2nE6ZAABnrKoXvKdNm5b6+vrjukj79+8/rtv0s1pbW5MkV111Vf73f/8369evz6/8yq+c8NjGxsY0NjZWUxoAwJioqrPU0NCQtra29PT0jBjv6enJokWLTvk6lUolg4OD1dwaAKAUVU8dsGbNmqxYsSLt7e3p6OhId3d3+vr6snLlyiTHvkLbu3dvtmzZkiTZuHFjZs6cmSuvvDLJsXmXPvnJT+aDH/zgKH4MAICxUXVYWr58eQ4ePJgNGzakv78/8+bNy7Zt2zJr1qwkSX9/f/r6+oaPP3r0aNauXZvvfe97mTRpUt74xjfm4x//eD7wgQ+M3qcAABgjVc+zVAbzLAEAZbE2HABAAWEJAKCAsAQAUEBYAgAoICwBABQQlgAACtR0WNq4cWPmzJmTBQsWlF0KAHCOMs8SAECBmu4sAQCUTVgCACggLAEAFBCWAAAKCEsAAAWEJQCAAsISAEABYQkAoICwBABQQFgCACggLAEAFKjpsGQhXQCgbBbSBQAoUNOdJQCAsglLAAAFhCUAkiQ/+lHy/e8nQ0NlVwK1RVgCIE8/ncycmbS2JgsWJC+9VHZFUDuEJQDy4Q8nBw8e+3nXrmTjxnLrgVoiLAGQV18duf/jH5dTB9QiYQmAfOQjyWtfe+znyy9Pfud3yq0HasmksgsAoHw33pi88EKyZ09y5ZXJBReUXRHUDmEJgCTJJZcc24CRfA0HAFBAWAIAKCAsAQAUqOmwtHHjxsyZMycLFiwouxQA4BxVV6lUKmUX8fMMDAykqakphw4dytSpU8suBwA4h9R0ZwkAoGzCEgBAAWEJAKCAsAQAUEBYAgAoICwBABQQlgAACghLAAAFhCUAgALCEgBAAWEJAKBATYclC+kCAGWzkC4AQIGa7iwBAJRNWAIAKCAsAQAUEJYAAAoISwAABYQlAIACpxWWNm3alNbW1kyePDltbW3ZsWPHSY994IEH8va3vz2XXHJJpk6dmo6OjjzyyCOnXTAAwNlUdVjaunVrVq9enXXr1mXXrl1ZvHhxli5dmr6+vhMe/+STT+btb397tm3blt7e3tx44425+eabs2vXrjMuHgBgrFU9KeXChQszf/78bN68eXhs9uzZWbZsWbq6uk7pGnPnzs3y5cvzx3/8x6d0vEkpAYCyVNVZOnLkSHp7e9PZ2TlivLOzMzt37jylaxw9ejQvv/xyLrroompuDQBQiknVHHzgwIEMDQ2lubl5xHhzc3P27dt3Stf41Kc+lcOHD+e9733vSY8ZHBzM4ODg8P7AwEA1ZQIAjJrTesG7rq5uxH6lUjlu7ETuvfferF+/Plu3bs306dNPelxXV1eampqGt5aWltMpEwDgjFUVlqZNm5b6+vrjukj79+8/rtv0s7Zu3Zr3v//9+dKXvpSbbrqp8Ni1a9fm0KFDw9uePXuqKRMAYNRUFZYaGhrS1taWnp6eEeM9PT1ZtGjRSc+799578+u//uu555578s53vvPn3qexsTFTp04dsQEAlKGqd5aSZM2aNVmxYkXa29vT0dGR7u7u9PX1ZeXKlUmOdYX27t2bLVu2JDkWlG677bZ85jOfyfXXXz/clTr//PPT1NQ0ih8FAGD0VR2Wli9fnoMHD2bDhg3p7+/PvHnzsm3btsyaNStJ0t/fP2LOpc997nN59dVXs2rVqqxatWp4/Pbbb89f/dVfnfknAAAYQ1XPs1QG8ywBAGWxNhwAQAFhCQCggLAEAFBAWAIAKCAsAQAUEJYAAAoISwAABWo6LG3cuDFz5szJggULyi4FADhHmZQSAKBATXeWAADKJiwBABQQlgAACghLAAAFhCUAgALCEgBAAWEJAKCAsAQAUEBYAsaVgweTf/mX5Ac/KLsS4FwhLAHjxje+kbzpTcmiRckVVyTPPVd2RcC5QFgCxo0/+7OfdpQOHEg+8Yly6wHODTUdliykC/z/GhtH7k+eXE4dwLnFQrrAuPH97yc33ZR897vHvo776leTlpayqwImukllFwBwqt7whuTb305efDGZPj2pry+7IuBcICwB48qkScmMGWVXAZxLavqdJQCAsglLAAAFhCUAgALCEgBAAWEJAKCAsAQAUEBYAgAoICwBABQQlgAACtR0WLKQLgBQNgvpAgAUqOnOEgBA2YQlAIACwhIAQAFhCQCggLAEAFBAWAIAKCAsAQAUEJYAAAoISwAABYQlAIACwhIAQIGaDksW0gUAymYhXQCAAjXdWQIAKJuwBABQQFgCACggLAEAFBCWAAAKCEsAAAWEJQCAAqcVljZt2pTW1tZMnjw5bW1t2bFjx0mP7e/vz6233porrrgi5513XlavXn3axQIAnG1Vh6WtW7dm9erVWbduXXbt2pXFixdn6dKl6evrO+Hxg4ODueSSS7Ju3bpcc801Z1wwAMDZVPUM3gsXLsz8+fOzefPm4bHZs2dn2bJl6erqKjz3rW99a6699trcfffdVRVpBm8AoCxVdZaOHDmS3t7edHZ2jhjv7OzMzp07R62owcHBDAwMjNgAAMpQVVg6cOBAhoaG0tzcPGK8ubk5+/btG7Wiurq60tTUNLy1tLSM2rUBAKpxWi9419XVjdivVCrHjZ2JtWvX5tChQ8Pbnj17Ru3aAADVmFTNwdOmTUt9ff1xXaT9+/cf1206E42NjWlsbBy16wEAnK6qOksNDQ1pa2tLT0/PiPGenp4sWrRoVAsDAKgFVXWWkmTNmjVZsWJF2tvb09HRke7u7vT19WXlypVJjn2Ftnfv3mzZsmX4nN27dydJXnnllbz44ovZvXt3GhoaMmfOnFH6GFBbvvWt5Iknkrlzkze/uexqADgTVYel5cuX5+DBg9mwYUP6+/szb968bNu2LbNmzUpybBLKn51z6brrrhv+ube3N/fcc09mzZqV73//+2dWPdSg3t5k8eLk//7v2P5f/mXyG79Rbk0AnL6q51kqg3mWGE/+4A+ST37yp/uLFydPPllePQCcGWvDwSh7/euL9wEYX6r+Gg4otmpV8o1vJA8/fOydpSonrAegxvgaDgCggK/hAAAKCEsAAAWEJQCAAjUdljZu3Jg5c+ZkwYIFZZcCAJyjvOANAFCgpjtLAABlE5YAAAoISwAABYQlAIACwhIAQAFhCQCggLAEAFBAWAIAKCAsAQAUEJYAAAoISwAABWo6LFlIFwAom4V0AQAK1HRnCQCgbMISAEABYQkAoICwBABQQFgCACggLAEAFBCWAAAKCEsAAAWEJQCAAsLSOeyBB5J3vSu5885kYKDsagCgNk0quwDKsXNn8p73JEePHtv/7/9O7r+/3JoAoBbVdGfJQrpj5+mnfxqUkuTrXy+vFgCoZRbSPUc980xy/fXJ0NCx/VtvTf72b8utCQBqka/hzlHt7cm2bck99yQzZyZr15ZdEQDUJp0lAIACNf3OEgBA2YQlAIACwhIAQAFhCQCggLAEAFBAWAIAKCAsAQAUEJYAAAoISwAABYQlAIACNR2WNm7cmDlz5mTBggVllwIAnKOsDQcAUKCmO0sAAGUbF2HpRz8quwIA4FxV82HpjjuSGTOO/fxP/1RuLQDAuaem31navj1561uTZCBJU6ZOPZRDh7yzBACcPTXdWXrllZH7P/pRcvRoObUAAOemmg5LN92U3HDDT/c//OHkvJquGACYaM5a9Ni0aVNaW1szefLktLW1ZceOHT/3nMbG5LHHfvqu0h/+4RgXCQDwM85KWNq6dWtWr16ddevWZdeuXVm8eHGWLl2avr6+n3tuQ0OyePFZKBIA4ATOygveCxcuzPz587N58+bhsdmzZ2fZsmXp6ur6ueeblBIAKMuYd5aOHDmS3t7edHZ2jhjv7OzMzp07x/r2AABnZNJY3+DAgQMZGhpKc3PziPHm5ubs27fvhOcMDg5mcHBweH9gYGBMawQAOJmz9oJ3XV3diP1KpXLc2E90dXWlqalpeGtpacldd92VCy+88GyUCgAwbMw7S9OmTUt9ff1xXaT9+/cf1236ibVr12bNmjUjxhobG08argAAxsqYd5YaGhrS1taWnp6eEeM9PT1ZtGjRCc9pbGzM1KlTR2yNjY1jXSoAwHHGvLOUJGvWrMmKFSvS3t6ejo6OdHd3p6+vLytXrjwbtwcAOG1nJSwtX748Bw8ezIYNG9Lf35958+Zl27ZtmTVr1tm4PQDAaavphXQBAMpmpTUAgALCEgBAAWEJAKCAsAQAUEBYAgAoICwBABQ4K/MsnUilUsnLL79c1u0BgHPUhRdeWNUSaqWFpZdffjlNTU1l3R4AOEcdOnQoU6dOPeXjS5uUsprO0sDAQFpaWrJnz56qPtzPWrBgQZ5++unTPn80r1Mr16ilZzvRfn8827G5xmg919GoZbSuUSu1TMRnWyu/P57t2F3ndJ7tuOks1dXVVf0H5ieL6p6u+vr6M/5DOlrXqZVr/EQtPNuJ9vvzE57t2NRyps91tGrxbMeullq5xmhex7Mdu+uMxrM9mXPqBe9Vq1bVzHVq5RqjpZY+Ty3VMhpq6fPUUi2joZY+Ty3VMhpq5fPU0u/PaKmV5zIRn+3JjIu14QYGBtLU1FT1d4z8fJ7t2PFsx4bnOnY827Hj2Y6ds/Fs69evX79+TK48yurr6/PWt741kyaV9s3hhOXZjh3Pdmx4rmPHsx07nu3YGetnOy46SwAAZTmn3lkCAKiWsAQAUEBYAgAoICwBABSo+bC0adOmtLa2ZvLkyWlra8uOHTvKLmlCePLJJ3PzzTfn0ksvTV1dXR588MGyS5oQurq6smDBglx44YWZPn16li1blu985ztllzUhbN68OVdfffXwxHMdHR15+OGHyy5rQurq6kpdXV1Wr15ddinj3vr161NXVzdi+8Vf/MWyy5ow9u7dm1/7tV/LxRdfnAsuuCDXXnttent7R/0+NR2Wtm7dmtWrV2fdunXZtWtXFi9enKVLl6avr6/s0sa9w4cP55prrslnP/vZskuZULZv355Vq1blX//1X9PT05NXX301nZ2dOXz4cNmljXuXXXZZPv7xj+eZZ57JM888k7e97W255ZZb8txzz5Vd2oTy9NNPp7u7O1dffXXZpUwYc+fOTX9///D27LPPll3ShPDDH/4wN9xwQ17zmtfk4Ycfzje/+c186lOfyute97pRv1dNTx2wcOHCzJ8/P5s3bx4emz17dpYtW5aurq4SK5tY6urq8uUvfznLli0ru5QJ58UXX8z06dOzffv2vPnNby67nAnnoosuyic+8Ym8//3vL7uUCeGVV17J/Pnzs2nTpnz0ox/Ntddem7vvvrvsssa19evX58EHH8zu3bvLLmXCueuuu/K1r33trHzjVLOdpSNHjqS3tzednZ0jxjs7O7Nz586SqoLqHDp0KMmx/6gzeoaGhnLffffl8OHD6ejoKLucCWPVqlV55zvfmZtuuqnsUiaU559/PpdeemlaW1vzvve9Ly+88ELZJU0IDz30UNrb2/Oe97wn06dPz3XXXZfPf/7zY3Kvmg1LBw4cyNDQUJqbm0eMNzc3Z9++fSVVBaeuUqlkzZo1+eVf/uXMmzev7HImhGeffTavfe1r09jYmJUrV+bLX/5y5syZU3ZZE8J9992Xf/u3f9O1H2ULFy7Mli1b8sgjj+Tzn/989u3bl0WLFuXgwYNllzbuvfDCC9m8eXMuv/zyPPLII1m5cmV+93d/N1u2bBn1e9X8nOt1dXUj9iuVynFjUIvuuOOO/Pu//3ueeuqpskuZMK644ors3r07L730Uu6///7cfvvt2b59u8B0hvbs2ZM777wzjz76aCZPnlx2ORPK0qVLh3++6qqr0tHRkTe+8Y3567/+66xZs6bEysa/o0ePpr29PR/72MeSJNddd12ee+65bN68Obfddtuo3qtmO0vTpk1LfX39cV2k/fv3H9dtglrzwQ9+MA899FAef/zxXHbZZWWXM2E0NDTkl37pl9Le3p6urq5cc801+cxnPlN2WeNeb29v9u/fn7a2tkyaNCmTJk3K9u3b8+d//ueZNGlShoaGyi5xwpgyZUquuuqqPP/882WXMu7NmDHjuP9Rmj179pj8JbCaDUsNDQ1pa2tLT0/PiPGenp4sWrSopKqgWKVSyR133JEHHnggjz32WFpbW8suaUKrVCoZHBwsu4xxb8mSJXn22Weze/fu4a29vT2/+qu/mt27d6e+vr7sEieMwcHBfOtb38qMGTPKLmXcu+GGG46bmuU//uM/MmvWrFG/V01/DbdmzZqsWLEi7e3t6ejoSHd3d/r6+rJy5cqySxv3Xnnllfznf/7n8P73vve97N69OxdddFFmzpxZYmXj26pVq3LPPffkH/7hH3LhhRcOd0abmppy/vnnl1zd+PZHf/RHWbp0aVpaWvLyyy/nvvvuyxNPPJGvfOUrZZc27l144YXHvVc3ZcqUXHzxxd63O0Mf+tCHcvPNN2fmzJnZv39/PvrRj2ZgYCC333572aWNe7/3e7+XRYsW5WMf+1je+9735utf/3q6u7vT3d09+jer1LiNGzdWZs2aVWloaKjMnz+/sn379rJLmhAef/zxSpLjtttvv73s0sa1Ez3TJJUvfOELZZc27v3mb/7m8L8LLrnkksqSJUsqjz76aNllTVhvectbKnfeeWfZZYx7y5cvr8yYMaPymte8pnLppZdW3v3ud1eee+65ssuaMP7xH/+xMm/evEpjY2PlyiuvrHR3d4/JfWp6niUAgLLV7DtLAAC1QFgCACggLAEAFBCWAAAKCEsAAAWEJQCAAsISAEABYQkAoICwBABQQFgCACggLAEAFBCWAAAK/D+t8oXccW/NcAAAAABJRU5ErkJggg==",
"text/plain": [
"Graphics object consisting of 1 graphics primitive"
]
},
"execution_count": 33,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"square=[]\n",
"for n in [0.1,0.2,0.3,0.4,0.5,0.6,0.7]:\n",
" square.append(n^2)\n",
"square\n",
"list_plot(square)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[6, 8, 10, 12, 14, 16]"
]
},
"execution_count": 34,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"func=[]\n",
"for n in [0,1,2,3,4,5]:\n",
" func.append(2*n+6)\n",
"func"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"deletable": false,
"editable": false
},
"source": [
"We can use loops to process data.\n",
"
\n",
"Exercise 25. The time in wt5_time
is measured in hours. Create another list\n",
"in which it is given in minutes.\n",
" \n",
"Exercise 26. Convert the temperatures in wt5_temp
from Celsius to Fahrenheit.\n",
"(The formula is $F = (9/5) C + 32$.)\n",
" \n",
"\n",
"Exercise 27. Plot a time series of your transformed data.\n",
" \n",
"Exercise 28. Plot a trajectory of the transformed temperature data and the\n",
"original heart rate data.\n",
"
\n"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"minutes=[]\n",
"for x in wt5_temp:\n",
" minutes.append(x/60.0)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"cel = []\n",
"for x in wt5_temp:\n",
" cel.append((9/5)*x+32)"
]
},
{
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": [
"timeseries=list(zip(minutes,cel))\n",
"list_plot(timeseries)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAGECAYAAADEN3+HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsXXd0VNXXPUlIgSRACAES0iAQSqhSQpGOoIiCoICCFBEF2ydFkaJ0EGkWuqKgFFFQmqDSq3QpCSVAQgkQAuk9mZnz/bF/1/dmMpPMTCYN7l7rrWlv3ruv3bvvOfucY8fMTBISEhISEhISEiZhX9wNkJCQkJCQkJAo6ZCESUJCQkJCQkIiH0jCJCEhISEhISGRDyRhkpCQkJCQkJDIB5IwSUhISEhISEjkA0mYJCQkJCQkJCTygSRMEhISEhISEhL5QBImCQkJCQkJCYl8IAmThISEhISEhEQ+kIRJQkJCQkJCQiIfSMIkISEhISEhIZEPSiVhYmZKTk4mWQZPQkJCQkJCoihQKglTSkoKVahQgVJSUoq7KRISEhISEhJPAEolYZKQkJCQkJCQKEpIwiQhISEhISEhkQ8kYZKQkJCQkJCQyAeSMElISEhISEhI5IMyxd0ACQkJCQmJ4oJWS3TpEtGJE0SnTxM5OxP5+xMFBODV35+oShUie2leeOJRqgjTkiVLaMmSJaTVaou7KRISEhISpRAxMSBHx4/j9dQpotRUEKJ69Yh0OqJbt4jS05X/ODkR+fnpkyixBATgt7Jli++YJIoGdlwKkxklJydThQoVKCkpicqXL1/czZGQkJCQKIHIyCA6exbESJCk27fxm7c3UWgoUatWeG3enMjNDb8xEyUkYN1bt/BquNy/j/UEvLxyEyn15ypViOzsiv4cSNgOkjBJSEhISJR6MBNdu6ZvPTp/nkijIXJxASEKDVVIkq9vwQhMVhbR3bu5iZSaYKmtVMLVZ8xC5e8PK5WLS8HPg0ThQRImCQkJCYlSh/h4xXIkloQE/Fanjr71qGFDIkfHom0fM9pojEiprVRqLF9O9PbbRdtOCfMhCZOEhISERIlGdjbRhQv61qNr1/BbpUoKMQoNJWrZksjDo3jbay6ysoiioxUCFRpKVLducbdKwhQkYZKQkJCQKDFgBnkQxOjECaIzZ0AuHB2JmjTRtx4FBUltkETRoFRFyUlISEhIPF5ISUGkmtp69OABfgsMBDF65RWQo6ZNpc5HovggCZOEhISERJFAnfNIkKPwcFiV3N3hThs+HCSpZUuiqlWLu8USEgokYZKQkJCQKBTcv68f0n/6tJLzqEEDojZtiEaPVrQ7Dg7F3WIJCdOQhElCQkJCosAQOY/U2iN1zqNWrYgmT8Zrs2ZKziMJidICSZgkJCQkJCyCyHmkJkci51HZsiBEr7yiCLM9PIji4ohycqBBysqClcnFRZYckSg9KFVRcurSKBERETJKTkJCQqIIEBdHdPIkiNH+/USHDuVex8uLqFYtWJOSkogePVKWrCzT23ZyAslSLy4ueX829ztT60jXn4Q1KFWESUCmFZCQkJAoODIzQYbU5ObePaJ9+4j++EO/9EdecHYmqlxZf/H0zP3ZyQmuO/WSmZn3Z3PWyc627LgdHW1DvCxZp4z055R6yEsoISEh8RggOzs3+RGLqe/T0szbdvnyRD16wL3m5ZWbCLm6Fm8uJK0WVqyCEi/1d0lJKNRrap3MTMvaWKaM7clZhQooGFy5cuGcVwl9SMIkISEhUcKQk4OyGpaQn5SU3NtxcNAnN87OIAK3bhnf7/PPE3XtCu1RkyalJ+eRgwNRuXJYigo6nULSbGEly8hABOHDh3mvYwze3ij/0rAhUaNGeK1Xr/Rcv9IC6ZKTkJCQKERoNKhxZgn5SUrKvR17e+NuLkNXmPo3BweiXbuI/v4bAu1Ll/RzHqlLilSpUvTnRsIyMMOSKMhTfDzyWF24QHTxIpaoKKzr4EBUu7Y+iWrYEMlApdDeOkjCJCEhIWEmtFqixETLyI8oCKuGnR1qoFlCfipWNG+gS0oi2r6daNMmor/+gpVC5DwSJUXq1pWD5uOKlJTcJOriRZArIqRzCAnJTaQ8PYu33aUBkjBJSEg8kdDpckdzmUN+dLrc2/LwMI/8iO89PGwbqRUXR7R1K0jSnj1w6bVqRdS3L5YaNWy3L4nSB2YkETUkUZcuKYJ54dZTkyjp1tOHxYTp7t27NH78eNq1axdlZGRQcHAwrVq1ipo1a0ZERMxM06ZNo5UrV1JCQgKFhobSkiVLKCQk5L9tZGVl0bhx42jDhg2UkZFBXbp0oaVLl5Kvr69ZbZCESUJCwhiys4nOnYMOJD/yEx8Pi5EhKlSwjPxUqlQ8EVAxMUS//060eTPRgQMgcu3aEb38MtFLLxGZ2Z1KPMHQaJBPy5BIqd16wcEKgXrS3XoWEaaEhARq2rQpderUiUaNGkVVqlShGzduUGBgIAUFBRER0dy5c2nWrFm0evVqCg4OppkzZ9KhQ4fo6tWr5O7uTkREo0aNou3bt9Pq1avJ09OTxo4dS/Hx8XTmzBlyMGPaJQmThISEGo8eEa1YQbRkCWbSAu7ulpMfJ6fiO478cOcO0W+/gSQdOYJBq1MnkKTevWXttcJCZiZIxI0b+otGA2Lq54dX9fsKFYq71dYjJYUoLEyfRBm69Ro0yE2kHne3nkWE6ZNPPqGjR4/S4cOHjf7OzOTj40MffvghjR8/nohgTapatSrNnTuX3n77bUpKSiIvLy/66aefqH///kREdO/ePfLz86OdO3dS9+7d822HJEwSEhJERJcvE335JdGPP+Lz668TvfEGkb8/Om9n5+Jtny0QGQmCtHkzEkc6OhJ16wZX24svPv6DVFEhISE3IRLL3btKTioXF6KaNYmCgmBZjI7GEhOjn7fK3T03iTIkVuXLF286BkvAjBxdhiRK7dbz8dEnUI0awa33ODyHRBYSpvr161P37t0pOjqaDh48SNWrV6d33nmHRowYQUREkZGRFBQURGfPnqWmTZv+979evXpRxYoVac2aNbRv3z7q0qULxcfHk4eHx3/rNG7cmHr37k3Tpk3Ltd+srCzKUqWKTU5OJj8/P0mYJCSeQDBDp7NoESLAqlYlevddopEjkSPoccCVKwpJ+vdfDNLPPQeS1LNn6bZeFBd0OlgfTZEiYT0hgsYsKMj44uNj3B2VkwNCER0NS6AgUur39+/rkyo3t7wJlbBUlWRSlZMDt56aRF24QHTzJn5Xu/V69CAaOLD0JvG0qNmRkZG0bNkyGjNmDE2cOJFOnjxJH3zwATk7O9PgwYMpJiaGiIiqGtiFq1atSrf+l/gjJiaGnJyc9MiSWEf83xBz5swxSqQkJCSeHGRmEq1bB4tSWBhR48ZEq1cTDRhQ+mewzBhoNm+GcPvSJQymzz9PNGECyJIsVps/srMxUBsjRJGR+skmfX1BgBo2hDtTTYoMhiez4OhIFBCAxRRyckCajBGqS5cQ1WiKVOVFrIqTVDk6EtWvj+V/TiMiyu3WO3eOaOhQolmziKZOxbqlrUSNRYRJp9NR8+bNafbs2URE1LRpUwoPD6dly5bR4MGD/1vPzuDKMXOu7wyR1zoTJkygMWPG/PdZWJgkJCQefzx4QLRsGdHSpdAq9exJ9PXXRB07luyZd35gJjpzBgRp82ai69cx8L34ItHs2XC7lS1b3K0seUhJMW0lun1biWJ0dER0YFAQUefORCNGKISoRo3iObeOjnAX+/ubXkeQKkNCdecOSNXff+N3dbSmq6tpQtWqFbR5RQ13d6LWrbEInDtH9NlnsDLNnk00fToCFErLc2wRYfL29qb69evrfVevXj3avHkzERFVq1aNiGBF8vb2/m+d2NjY/6xO1apVo+zsbEpISNCzMsXGxlKbNm2M7tfZ2ZmcS/sUUkJCwiJcvAi327p1MOEPG0b0f/+HZHylFTodEkhu2gTx9q1b0CD17k30zTcY2IXonBnJCdPT9TM9i89+fih2+7iBGSTZFCl6+FBZ191dIUH9++tbiXx9S58Fg8h8UhUTk5tQRUfDnbt7t0KqHB1hoXztNaIXXijabOiGaNKEaNs2aPE+/RQu5qZNiWbMgLuupBMniwhT27Zt6erVq3rfRUREUMD/bJA1atSgatWq0e7du//TMGVnZ9PBgwdp7ty5RETUrFkzcnR0pN27d1O/fv2IiOj+/fsUFhZGX3zxRYEPSEJCovRCpyP6808QpT17iKpXxyx0xIjimSWrwYyByhSBMfU5JQVWgRMnjG83IIDo5Emigwf1/29OrbKaNYm6d8fSuTMIRGmARgNrkClSpK5xV60aCFBwMAZ+NSmqXLnkD7KFAUdHEGY/P30LjhoaDUjU9u2YdAwYAPdenz6w8HTuXHxaotBQPBOHDhFNngyrcatWIE5dupTca2qR6PvUqVPUpk0bmjZtGvXr149OnjxJI0aMoJUrV9LAgQOJCGkF5syZQz/88APVrl2bZs+eTQcOHMiVVmDHjh20evVqqlSpEo0bN47i4uJkWgEJiScU6emIdPvyS6KrV4maNycaMwbh8o6Opv+n1ZpHWtSfLSU86s/GklZaCnt7DFZubkox1XLl9Iur5vfZxQWWhL/+wnLjBga/Nm2Inn0WBKpJk5KTKycuDm7Vw4fR1lu3MKATwQoUEKCQoFq1lPc1a8Ld9KRAJFONi8MSHw9dVt26SlSetbh+nWj9epCniAgES/TvD/LUokXxkRQRxDF5MiYOHTqAOLVrVzztyQsWJ67csWMHTZgwga5du0Y1atSgMWPG/BclR6QkrlyxYoVe4soGDRr8t05mZiZ99NFHtH79er3ElebqkiRhkpAoHUhNhdjWFAm5cYNo3jx9kWtwMNFTT5lHYnJyzG+Lg4P1BMWcz/b2yI30xx9wiSQnY5AT2bYLc1C6cQPE6c8/ifbtg4XGyws6qO7d8VocOZqio4kWLiRauRJk4Jln4FJVW4n8/fMmxaURzLgGauKT13vxaiqTPBECG+rXh0hdnQPJx8ey+0po59avJ9qwAa69WrXgshs4EM9fcYAZz86nn0Lr1L07iFOLFsXTHmOQpVEkJCRshrQ0omPHiPbvx3LqlPFs2sZQpgwGhIKSF1PrFMagnJYGkrJ5M9GOHXC/1aunkKTGjYt+5p6djWsgrE///ovvmzRRrE9t2hRugs4rV4i++IJo7VpYiN57j+iDD0pn2ofMzLxJjrH3wjJkiDJl4Fr29MQi3hv7Trx3cEC+MRFtFhaGRbgtPTxAoNQkqkED1B7MD1otntP163EPJyfDujtwIKxPKilykUGng75vyhSI3F98EZOq4iJyakjCJCEhYTUyMjA4HziAjvfkSVh9vLyQgbpjR4g6XV0xQ96zh2j5cnT8AQEQcQ8fjgR+pQXJyZgJb9qEPFAZGSBGgiQZxMXYFOnpcGdFRSF8PiYGA2qZMiCExpb4eFyfvXtB6AQ8PZG2oGdPuHyM/ddwu/mRv1OniD7/HCVbvL3hVn3rrZKhrdJoYMExx9Kjfp+enntbdnYgJKZIjilC5O5uGwKt0+E+UJOoixfhzhauTl/f3CQqr9pwGRm4r9etI9q5E9vp3BnkqU+fon9GtVqin38mmjQJ5+7MmaLdvzFIwiQhIWE2MjMR5bV/Pwbh48cxk/b0BDkSJKl+fWVgSE0l+uEHoq++guuoTRsMpL16lZ4EdvHxiO7ZvBli1exsuAoESbJVtFpGBgbCmzeVRZCjmzeJYmOVdcuUgSBapwNJNVwKo2d3cDBOqO7ezb3uU0+BKJsicnmRvLx+c3AAiUlOBgFUvxou4vu8zoW7u3mWHvX7ihVLZgRedjZIk5pEhYUpSSTt7eESVZOohg2hFVMfT0IC7vV16xCM4OSECLuBAyG8L8qg9fXrsd/oaASBFCckYZKQkDCJrCxYjYSL7Z9/8J2HB8SZnTphCQnJLTC+fRuh8t9+C9L0yitEo0cTtWxZPMdiKWJjibZswcCxbx9mvG3aQIjep0/eYd+mkJmJ86ImQepFnbvXwQH7CAxE3qDAQP3FxyfvQdsUkcrJgfUgJwdEcPduuBMNZ/ChobAwhIQo66v/m5VFtHEj0fnzyn/8/GCx0mpN79NUe+Li9OsAFhUcHWENU7u1hDXmcclmk5xMFB6uT6IuXkReMyK4rYU+qlkzWAWFyzY6Glqn9euhLapYEc/ya68RtW9f+IEF8fGwWC9fjmjZ4oQkTBISEv8hO5vo9GmFIB07BqtHhQroHAVBatTIdEd54gTSAmzahEiwt9+GhqU05Jq9d08pbnvoEL7r0AEk6aWX8td0ZGWBEJmyEKkJgYMDzokhERLkyMen6C1w168r2ichHq9SBWLtZ5+FeLxCBaKffoJG6do1hIF/8on54eBJSdCmXLqEQTw8HO+jo/G7nZ1SENnQrVWxIlxD7u54VS9lylhG0MT77GzsWxCJ/xWlIAcHxRqjJlKG1pjSCmZMCgzdev/+S9S1K55fwwjFS5dgdVq/Hvezry/Rq6/CrV6nTuG1tX17TNK2bi28fZiDUkWYlixZQkuWLCGtVksRERGSMElIFBAaDQiS0CAdOQJ3h7u7QpA6doRgOK9BQqOBbmXRIlihatWCPmno0JJf0uPWLaVu27FjGHi7doWrrVcvfaFydjZy2xgSIbHcu6e4f+ztMaAYEiGx+PqWbJekKfG4gKcn3JQm8g1TcnJuUhQerk+MgoJg2QgJwVK/PvRUxZnhXFhj1CTi4kVYwIj0rTFqq5S3d8nNH2QJ9u5FItVGjWB5NFYmhhnP+bp1RL/8AmK9cSPcdrYGM9HYsUQrVuAamNJgFQVKFWESkBYmCQnroNFg4BMapMOH4S5zdUXeE2FBatrUvME8KYnou+/gert1C+Rq9GiIiUvyLPzaNaVu25kzcL107w6C1KQJUWKicSuRumq9nR00FcbcZTVqgBA9DuHysbEoRTNrVu7f3NwQVSWSKGZmKgTJVsSIGSQ+IUFZEhNzf05MxPXo1Akkzpb5m0T2cUOXVni4IgqvVCm3W8/caLWShlOnoFXy8QFZzsuympFBNGgQ3NcrVhC9+aZt2pCVBTL2zTdoT926eC3OCZgkTBISjzG0WmhMhIvt8GHMoMuVI3r6aUWo3ayZZYN7ZCQG0VWr0LENGACi9L8E/yUOzLBwbNyI5JjqaDEnJwzicXEY5EUeHDs7DBjG3GWBgSAIhRmaX9y4eZNo/nxcYwcHuF6efRbEJCwMbhm1CF2NkBC4YUNDMdA5O+O+M0V21J8Nv0tMNJ1vy9UVhMTDA67Ca9fQpjJloJUTFtI2bQqnJIhOh/NkKLI2jFYzdOvlFa1WUnD5Mlyxzs7QudWsaXpdrRZpI5YuRWHdzz6z3tp27x70SitW4Fp264ZtP/dc8SdilYRJQuIxgk5HdOGC4mI7dAgDjosLUdu2ygDSooXlgz0zXHaLFkFL4OFBNHIk0bvvFk++FmPQaGAFElahLVvy1j14e5sWVfv7Pz6iX0tw7BjRkCHQMwm4uuqXKyHCPeXjg8XNDYT09m3L91ehAu4lQXzEYvjZ8LuKFXPfw8zIASUsqAcOoPacoyPIm5ggtG5duG6/rCxk084vWk1Noho2hCWuJFlmb90CaRLlfRo2NL0uM9GcOUgDMGIEyJM5VuqMDJybc+fgDty8Gc/d0KEg3XXr2uxwCgxJmCQkSjF0OrgFxABx8CCiSpydMSgIghQaav3gn5ND9OuvIEqnT2N2/OGHMMMXdSFPrRYzUGOC6ps3MWCbSpTZsCHcBXXrKoSopM/ybY3MTMVqc/s20dGjWI4cMZ5o0Rw4OOQmMvHxxvPmeHsjIWK/fhAJV6hQuARBWBYFeTpwAJFhTk54JsTz0apV0eimhK7LUB8lotVcXOCuNHTtVa9efPqo2FhYFqOikKfJlGZNYPVqPGc9eiCPkrqPiIkBMTp/Xnm9ehX9mL09LJNvvIFC2xUqFOphWQVJmCQkShGYYSpXz6DFANCqlTKDbtWq4GQgPh4lLRYvhtXmmWeQP6lbt8Izjet0iCQzJqiOisIgL1wdRIjg8vMDiTIMSR88GKSuY8fHQ0tEpJTcyE/Po/58+7aiJzIXlStD0+bjk7fVp2LF/JMxCvH4n39CD3PuHL5v2hS6sWefBbkvCvemTqcQqP37McGIi8NkQjw/gkAVJZkW0Wpqa5Q6m3fFirmtUQ0aGBdkFwaSkpBx+9QpRJE++2ze6+/YoQjA33gD99/589CBEeGeadQIesEmTZD4tUGD4hX7mwNJmCQkSjCYYdoXGqQDBxSNhqGLwVbWnogIJJlcvRrWmkGDYFFSlYMsEB48QAJLY1ai27f1LR1eXrldZUI/FBWFTNu//45t+vgoiSSffrpkuTbMBTP0YUePgmTcvJmbDKkJozWwswMhuHtXcaG1akU0YQJyKBW2TiQmBpqYv/6Cm+fhQ7j0OncGgereHa6pokB+FlrxfBXEQluQtols3moideWKcg9Ur55bZF6/fuEQj4wMWAb/+guZwLt2xfdaLWQAx46BDJ87h3ZmZir/bdgQkXeCHNWoUfx6JGsgCZOERAkCM7QjYgZ84AAsJw4O0B2JKDZbRwEJ7NyJmWHlytAmjRwJK46tMH06akQJeHqaDrsPCNCPiMnKUjQOW7ZgYAsMVEhSaGjp64Szs4nOnlVcY8eOKbPwkBC4rQwtOmXKgHTcvatY1u7eVZJe2tnhXKoj0kJC4Iq0s0PW9XnzQMaeew45lNq1Kx6Xj06HAVYUDj52DGQgKEixPnXqVHSRUTodiInaAiU0gGoXd8uWxadvy842ro+KisLv9vY4f4bWqFq1Cp7GIjsb56JDB+TdOnIE1ywlBVbckBCFFDVpgj7q1VcRiXvuHDLTl2ZIwiQhUYxgRkcnyNH+/Rj87O0RuSYIUtu2hV+PKz4eHV7TpjC729olMXs2BKGTJkHHEhiY/zFlZGAw3bSJaPt2aECCgxWS9NRTpSv3TXw8BhhBkE6dwky8bFkQvrZtsbRqhcHNWIJHYRXKixgZWhsTEyHC/fJLuKD69yf6+GMMaiUJycl4BkTup8hIDMRt2yrWpyZNiu6aa7UgJGoLVFISrlebNooLr2XL4o+YTEnR10cJMiUiGZ2doT9s0ADPzcCB5k2G4uIUndvy5UqEaYUKuC5PP42lRYvcfYZOB6vlyZOwjFWubNtjLmpIwiQhUcS4dUvfxXb7NgaAp55SXADt2hV9sctBgyDqDA+He8uWmDcPA/S0aQg5zgupqbB0bdqE17Q0dPJ9+yLjdkhI6SBJwlooyNHRo9CfEUH8LMhR48YYbCMi9BM8GiNG6lxGxoiRIe7fB0latgzWgWHDiMaNKzqXV0FhLPP4m2+i3E5xQKTpEPrBQ4cUAtW2rfL8Nm9e/ARKIDZWn0CJiDRmREOOGaNk6WZG/3TkCFKQHDmC+5EI7j9RM/D4cRxjfm7vWbOIPv0Uz3F+uqfSAEmYJCQKGdHR+gQpKgqDYOPGiom/ffviTXD3+++oj/bTTyBOtsSXXyJH0+TJRDNmGF8nMREWpM2bMThmZoJACktSYZZdsBWysnK712Jjca0bNMD1Fq61tDTbEiNDXL8Okrp6NWb977yDzOul2SWSnY3cPB98gOMaMqS4WwQCde6cfhqPlBRcL3Uaj+bNS1bgQVwcrEVffQUNGRFIvL29Qorq18fE7emn8ervj/JASUk4ViIQrPBwpO5ghg6tUiVYn06dgm7p008xUXocUKoIkyyNIlEacO+e0oHu3w+BMxG0BMLF1r49OpaSgIcPMTC3aQPiZEvrzZIlyKXy8cdEn3+uv+1Hj9DRbt5MtGcP0he0aqUUt61Rw3btKAzExeV2r2Vl4Tc3NxBgUfvs/PnceYyIQIYaN0bEUIMGWNfBAe448ap+n993Fy4g2eTvv0MwP3o0dGglMUTbWgwbhgzQp05hUC9J0GhAoNSZ9FNSoOURiWJffx3WmuJAdjZqPR45gmXfPn1xNhGK6i5cSFS1Kj7rdNAOHjpENHMmvgsNRT93507++3z1VSQ5fRxQqgiTgLQwSZQkxMQoJvr9++FaIQIJESb6Dh1Krv++Xz90nOHhSidpC6xcicK7o0cTLVgAshQTg8F882acL50O5LFvX8xefX1tt39bghlZpNXutStXirtV+cPZOX+S5eiIAd3VFURPvDf8nNdv4nPZsoUvvE9Lg2bIzg7amKLOBWYJNBpYHUXfcPgwJgYjRkBsX5T3+6NH0ICdPQti3qaNvv7o0CGQ7b17EXAxcCDuk/XrlUkfkZLKICEh/30OHQpLYMeOhXFERQ9JmCQkLMTDh/pRbEKXUreuYoLv2NG20WWFhV9+gQD455/xait8/z0qmL//PtFHH0FEvnkzZrX29jDd9+0Lk70tSZqtkJWFxItHj8JFuHevddtp2xaDUYsWGOSrVIHr8dNPlagmInzu1QuWII0Grh71q7HvcnJwXlevVrbToweIJ5Hp/xluMysL9dBSU0FGxKL+nJqKdcwZLcqVs45s5UfUnJ0VC+WlSzinAwagdEtpQXIyaqMtXIhzOnw4iJO/f+Hu98EDpAGIjUUS2rZtjeuPmJF37YMPzN92zZpKZJxYAgJKh87QUkjCJCGRD+LiEB0jXGzh4fi+dm3FxdahQ8kpD2IuHjyAFaxzZxAnW+Gnn5A0kgiD2qlTEMA+8wxI0osvIp1AScKjR8gJ9N13ij7DEpQpA5ermhzVr593GHdUlH59Lnt7WAAGDFDIkzFkZ2PWP3curFwdOmDQ7d69cAcpZkQtGpIpY+TK1G+m1jV0CxmDvb0+gVKXbnnpJeutYq6uRa8vSkmBu3r+fJCoYcOIJk4E0bA17t5FCoDkZFiSjZUaSUrCc7t8Ofq3WrVQQPvkSaJ//sm9/ujRaHOtWiU/2aQtIQmThIQBEhJgnhYE6cIFfB8UpLjYOnYsPh2CLcCMQebYMXSQXl4F3+aVK9AfCULp7AyLR9++CC0uKTqatDTkcVq5Etc5L/j7g6CIAV4U5q1TR58cNW5s3cCh00EXInJTNWsGl4mTE85d//44d66uIBfffQf3ZnQ0iOcnnyCoikuCAAAgAElEQVQ/UGmHVmuelcvwt6VL8X+RzNTYuqYK96oh3JLmki03N7jYq1RRFi8vy3MziWOYNw+BD0OHgjjZSr936xYmRBoNrKS1aun/fvcu7r0NG2Bp7N0bE5tHjzCJunABJFzNErp0QaRlYRP0kghJmCSeeCQlYeAUbjYRchsYqJCjTp3QIT8uWLsW4tPfflNcOJaCGWHKmzbB3SbCj4mINm7EDLUwkmtaisxMuNcWL4br0RicnZF/ytMTg9ilS0r0kJ+fPjlq1sw25E+nw323di3RunVo59GjIGm//oq2njwJy4ogakSw3n38MayDTzrS0nBd7O1N65nUhNdaC5jh59RULIaoUAHkqWpVfTJlbPHwUPReaWlI/TBvHnJ1DR6MfGVqC6SluHEDZKlMGViWDK1XiYlwzT16BKLk7o778dQpnMcXX4S1s3t3RFpqNHjWFyxATcmQEKKxYyESf1KKVEvCJPHEISUF4kuhQTp7FgOSn5/iYuvYEYTpccS9e+jsevTAQG0JmNFZbt6M5fp1DBLMMPn36YOZaXGWJXn4UIleO3AAA4AhnnkGUWl37uD3W7fwvaenPjlq0cL2GqsLF3De16+HpahGDQhsBw7M7S6ZPx8aMIFGjRBxJ6EgPBzX6bXXYIErKmRm4l6LjdVfHjzI/V1sbG5Ll4MDrFJqEuXmhkmMKMZbrx5C/y3N7H/lCixBbm4gS4bW8OxsfPfoESxljx4pFuEBA/Ke7DCj/5w/H3q8atWgVRw5suRE/hYWJGGSeOyRmorBU7jYzpyBC8DHRyFInTph4HrcTczMcPGcPYuBxtwO7soVuLB++w3kwtMTlqm+faFr6d8fn9etK3j5BUvAjGrn6ug1EaVoiLJlEZV0/Tr+5+oKa5GaHAUGFs49cOcOCNK6dbDKeXoiOnHQILjUxD41GoR9b9gAjYuAoyPyKL3+OkiThD5Wr4am5scfcY5KGphhyTZGpIwtcXHGt1OjRv6Wq9hYPI/e3kjXIXJv3buHGn5//60f5t+zJ+7FXr0sT5Z75QrRokVEa9aAAL7xBupOlpbEqBaDSyGSkpKYiDgpKam4myJRgpGayjxhArOTEzMRc7VqzK++yrxiBXNEBLNOV9wtLHp8/z3Oxfbt5q2fkcH86afMjo44f++8w7x3L3NODn7ftQvn96WXmLOzC6/d6vYcPsz8+efML7zA7OmJ47G3Z27YkLlMGXw2XBwdmZs3Zx41CucgLIxZoynctiYkMH/7LXOHDsx2dswuLsz9+zNv28aclaWsd+sW88qVzH37MleooN/uVq2Y79wp3HY+LhgyhLlcOeZLl4q7JQVHdjbz/fvMx48zv/ii/j3Rpg1zz57MLVsyBwYyly1r/J7PbwkKYr54kTkxseB94YMHzFOmMFeujHu9Tx/mY8dscipKFKSFSeKxAzMSIv7f/8E8/tFHcHfUqfP4W5Dywp07cEP16YMCrPnh0CGit95CPa8JEyBGVWsV9uzB7LRbN2gbCqMURGysfnLIM2fgTnB1havMyQlWGXXElEDv3gilbtkSVpmi0FlkZaG8zLp1RDt2oG2dO8OS9NJLmMFnZODcioKzly9Dy+LtrWRZ7t0bFiZbl6h5nCH0TA4OsNKV5PxMliIzE+kT5syBpWjAAKSiqFcPv6elEW3bBrekNXByyt9yVaUK7lFvb9P9aEYGrHwLF8LS27o1BOK9ehWvm95WkIRJ4rHCjRvIIbJzJ/zxX3/9GJuHLQAzxJuXLqGWVF5lWBISICr+7juIQleuzJ1R+cABnN+OHZGI0hZkRKeDiV/tXhNEyNERnbp4zcqCi8MQn3wCcleU3YJOB03HunUQaycmKsVNBwzAAHP5slIT7eBBDIC+vrgmXbviuOfPx3VZsgQDjITlCAsDQS5qPVNRISsLOc7mzIH+rW1bZN3etg2JVQWefx4TmW7dlIni8eOQHvTqhQAItf7KlO4qNjb3c1a9OpLNiqVevdwESqfDhGHBAkwOatXCfV/qJwDFa+CyDIsXL+Z69epxcHCwdMlJ6CE9HSZhZ2dmf3/m339/Ml1uprB8Oczwf/5peh2djnnjRuaqVZnLl2detoxZq8293uHDzK6uzM88AxeZtUhPZz54kHn2bObnn2euVCl/N4KXF66x+rsxY5ivXbO+Hdbi4kXm8eOZ/fzQjsBA5kmT4BJKSGDetIn5zTeV352dmbt1Y16wAC5BnY753DnmFi3gxnj3Xeai7tI0GriuHz1ivnuX+cYN5vBw5rNn4VLZt4/5r7/gwjZ2L5RECLfzTz8Vd0tsj9RU5j/+YB450vjzsWqVvrtXIDISz07btpY/s5mZcAufOYN+9aOPmENDmR0csM/KleGSX7QI942hq/urr7De9evWH3dJgbQwSZR67NyJKI07d2D+nTSpZISzlxRERSGp4muvwVpkDLdvE737LmaFffrAMmcsz9Q//2DW2qIF1rXE7fHggb716OzZvHPkuLujaGnLlogeu3wZM+krV3A8770HK05RXuvoaAiy165FtFulShDMvvoqrGx//w0324kTCCyoWxdV2rt3x2xcnK/0dLhUFi6Eq+Obb5DWICsL1qfMTPPem7ueqfdarfnH7uaGfFNNmqCtTZrAxVvSQsqZkc9o82ZEdBpL1FhaoNPhORFi7aNH8cz4++M57NgR9+Tnn8OySYQoSnVgQEICouxycmBlslWJptRU9AeHDmE5cQL3VvnyKLciLFBr1qDtkZG22W9xQhImiVKLW7cQkbFlC0JoFy8u3Z1jYUCnw7mJikJ0lru7/u9aLVxAkyYhPcDixdDPGENSEjrq5GSc95YtMWAGB+ceNHU6EBw1QVLXozKEszMGYBGt1qIFthsRgfatWQOS8dJLIMft2lmvR9Pp0LGbSy5iYhBVdPy4/nbc3fF7drbx/VStigglw+2Kgc0aODriXLm4YDH1Pq/fLH3v4AB3z7//IkfZv/8iMpEZEZH16ikEqmlTkCpRb6y4UJr1TLdvKwRp715EzLm5wZ0m3Gy1a+vf/zk5+hrCl14i+uwzHHfv3riHjx/HM1VYyMxEig5BoI4e1S84PXUqCFRoaOm6HmpIwiRR6pCdDd/4jBnomBctInrllSdb0G0KixeDYOzdC/GxGhcuoAjoqVNE77xDNHt23tqfrCxkpT5xAikJ7t3D9w4O0OOkp4NUmSIQAvb2yAOlDudv0EDp8LVaCKcXL8bAUaUKwpW7d8c+rl7FrFptZbHEupJf+6xF2bIoU+LmZpx4pKYip47ApEmKGN0cAiMK6ZYEpKWBgAsCde4c7idR4iQwUN8S1aQJ8pwV5TMq9EwDBxJ9+23R7ddSpKZCE/j331iuXsUz0qIF8oV160bUqlX+5Vv278czPnw4tqeeoFy+XPSTSY0GFuG+ffHZwwPWLkdHHJuwQLVpU3KqAOQHSZgkShX27IEr5vp1WDmmTMltNZEArl/HbH/YMJAPgYwMounTITKuUwduujZtLNt2TAxccitXGk8MaQzt26Mtffsav2ZxcXAtzJ+v/33NmnC3Cvdd2bKwdJUta1uLipMTXDibNmHAEfD2hqUoIgJEoVo1DGLPPosBLT8XBzMsVB9+iEFk/nwQwMeN4Gs0OEdqEvXvv0pOoUqV9ElU06a4/wozb5coAv3TT4hULEl49Iho1ChE9ObkgGQKC1LnzpZb6XQ6WJDatEG+punTld969kRf2by5TQ8hX/zwA87/w4c4nvBwxQJ18CDc9Pb2uB8EgWrXznZuQ5uj+ORT1kPmYXryEB3N3K8fxIPt20NwK2EaGg0EnjVrMqekKN/v2YP8K05OzDNmGBeIGkKrxflevpz59deZK1Y0LcquWpW5dWvmrl2RP6ZfP+Z27Zg9PPTXc3BAXiI3N9PbqlGDuXt35g8+YF68mHn3bubbt20vPg4LQ74uf3/TOZw6dULup3PnLAsmiIzEMRAhB9P9+7Zte0mHTgfB8LZtzNOnQxxco4Zybl1cIHofMYJ56VIIzVNTbbv/119HkMLly7bbbkFx5Aizry/yiH39NYIWbBGk8sknyrmdOhX5nNauZa5TB98tXVrwfViC115jbtbM+G86HYIJvvuOefBgBE2Ittevz/zxx7a9F2wBaWGSKNHIyYEAeepU+L3nz8dM8XGbndsaCxdCAH/wIGZscXGo+7RmDdxGK1Zgdm8M6emoyyW0R7t2md6PyHMkdEdCKK7Vwip09SqsDlevoi1hYfm3vUULhD43awZXXfXq1l9vjUYJm46JweuDB8jn9Ouvpv8XFKSItTt1gpvN0v1+9RV0JJ6eqBP2/PPWHcPjiMREiJPVlqhLl3De7OxgKVFbopo0gWvWGqSm4p5ydIQ72ZoiybaCToc+bOJE5CjasAHubFsgIgLPYlISUn788Yfym1YLC+eyZUht0aWLbfaZF3Q6WGffeANpEMzB7dtI0XHwINJ0+PrCOtusWeG21VxIwiRRYnHoELQ1ly8jgmv69LzzB0kAV65ggBk1CsTJ0B00bJhS9JOI6P59fXH2v/9iXUM0aYKoHEGOatWCJkFNisT7a9egFyKCq6t2bRC08uXh7rp5E7917AhRalAQ2h0eDlJ16RKIGxH0DfXrgzyFhECLIeq7GRIh8V68xsXpV1rPCy+8oJCkguTuOnsW2rB//0VOsJkzLSdcTyKysnDd1STq/HnUfiRCDh+hhxIkqmZN/XvZFISeadAg05GihY24OKIhQ0BkPvkEGkxbuSN37IBWy9sb5Khixdyuco0GpP3UKRDH2rVts29TuHABkgBj+klzcPUqjun8eTxD48aVAA1f8Rq4rIN0yT3euH+fedAgpTTE2bPF3aLSg5wclEwIDkY+HWPuoJQUlIcZNEjfPVKjBs63i4vyXe/ezDt2wBX122/Mc+YwDxuG8gyiLIlY/PyYu3RB+ZSvvkLZlMhIuAePHmUeMAClS8qVQx6ZsDCl3RoNc0wM8/nzyPuzejXKmAhXgrlLSAjcgO+/zzxzJlwQQ4eadvl17Yr3b79d8HOfmso8bhzcjY0aMZ84UfBtPunQauGu+vVX5okTmXv0YPb2Vq6huzvz00/jeq9ahb4iM9P4tlatwn/Wri3aY2DG/S9ccDt32m67Wi3ztGk4rhdfRJmT33/H53Pncq+fkIC+oU4dvC9MzJ+PvqQgudqysuBmtLNj7tgRLvnihLQwSZQYaDQwGU+eDPP53Lm5rSFFheRkhOJHRuZ+TUsjCgiAsNJwqV69eGdBn3+OTNd9+8KVZugO2rYNovn79zFLb9sWroGkJLiQwsOVbdWrh6inW7dgXieChahOHWUJDsZrrVq58yGlpUFsPnmyYrHy84MVJzNT3xL08KGyD4Hy5ZXQ/KpVsXh5YbuPHinLw4doY145nQTat4cItVs3pSjpkiU4J7/8gmhLa/D336jWfv8+xLVjx+Yf1SRhPR48gBVKLTCPiACNqlMH1kpDMBMNHozM9GfOmHZJ2xI6Hay8EybAwvXzz3gGbIHkZFistmwhmjYNz5m9PZ4DPz/kB/v669z/i4hAaH+rVrBMFVZ/9eyzOOd//VXwbe3fj6LK6emQE1j7nBYUkjBJlAj88w/cb+fPo37Z7NmIqiks5OTAX26MEEVF6VcLL1cOZKhmTby6umKAjorCEhOjrFumDCK4DIlUYCBeq1YtPP1VWBgSOhKh4/zgA5j93dygJ/rgA3SulSvjfWysfvScGoaESLz38iKKjzfu/hLvT5wwnWvIzU0hQGoiZOy7/LQmqakgeBcvwg22bFne63t74/wI115ICFx9bm4oYbJrF7ZTq1be21Hj4UOiMWOQyLJLF6Llyy37v4RtcO4cCMLdu3C5DRxofL3UVESKOTkVvp4pLg4JNHfsIBo/Hs+irUj01atwZd+7h3vvhRf0fx8/HqkU7t1DFKghdu8meu451NtcsMA2bRI4eRLavb/+wmTknXdss934eKK330YU67BhmOAVdYR0qSJMS5YsoSVLlpBWq6WIiAhJmB4DPHqEh/v77yHsW7YM+piCghmEwBQhunNHsWjY22NGJgiR4WuVKnmTnIwMfQIllps38Rofr6xbtqxCnsSrerE24V9SkqLvqlkTM87y5aEJmTAh//+/8gpm33Xq4FyEhxMdOQICGxOjkKLY2Nz6pnLlQHCionJ/P20arFiCCFmTsE6jgSbq4kX9xVTmYC8vWNoGD4ae4+pVRRsVHo7lxg1F2xQQAJJ7+DA+HzkC61tebWVGqPqYMXi/cCH2J4MRihbMGJTHjYNF9Oef87ccXbwIa8/gwbBWFAb++Yeof39YQ3/6CSJsW0HolXx8MAEydrwREfh+wwZMBozhm28wcVq1CsLsguLcORCl7dsxEZk2DVUDbOkhYEbgynvvoU/ZubNwk3EaolQRJgFpYSr90GpRHHPCBDwEs2fDsmSJeTg1VSEnhoQoKkoRDRPBNWWKEPn7F677RLj31CRKvaiz4VaoYJxIie+E24sZJObqVXR8v/2WfzuqV8cMnAhk6qOPIE4uXx6z7cOHQRaOHcO5dXZGYsXq1U1bgsqVw74XL1ZKlrz/PsqwWFqyhBkzYkNidPmyIiD39sa5uHYNZFugb18MIj16mFeqIz0d7VWTKHVUkZ0d7g9hjRKvdeogaebbb0PMOnCgUt5EomgRH4+BfutW3HNffGHcmmIMq1YRvfkmIrFee812bRLk+ZNPMPHbuNF2LjidDuLnKVOIXnwRRCyv4a99e1jS9uwx3daRI5Erad8+lDNR/5aQgImFWCIjce+7uGC/FSrgNToabRF46y0sHh74vXx5/SzktsD163jWK1QAOS3MXF5qSMIkUeQ4fRpm2lOnYLKeO9f4gKPRwBJkSkv08KGyrouLQi4MCVGNGkVbvd4SMMN0b8o6FRFh2fZGjwaR+fFHWJd8fGC5O30a+poOHTBAeHmhozl8GHqOnBx0Pm3bIg3B00/DdWFqALp6FSRJlCzp0wezPnNLliQng6wYkqOEBPzu5gaS0rAhlrp1QfZ27YIOKzMTEXaDBoEs2Sp68ssvcQ47d0YUlrBMCaKpRmgotEohIYg4kpqlosORI7iP09Jgne7Vy7L/Cz3Tli14NmyhZ4qPR3+2fTsmI7Nm2e6eMKVXMoaUFJyXv/5CeyIj0QcaQqvFb8JCM2AAvhMEKSlJWVdMOP38MHlJTka/oZ6U5gVBsp56ChHPzz1XcO3UyZPQX06dirqMRQFJmCSKDAkJKAexfDkGwaVL8bCaIkS3byvFQe3skJPDGCGqWRMkoTjE4baARgOXnjosX7waG6itRatW6EyFsNvHBwRHLCEheXdixkqWvPUWrC2mcsnk5OBYDInRrVv43cEBg5UgRmIJCMA1P3YMVoCNGzEgNWwIkvTqq7abuavBjIFp82YQ+vr18f3u3RCKC4SGgtQ+eIDPjo44DrU1KiQE6QmKPRT6MYJWC2v01Kkg9+vWWX8fCD2TszPqrBVEz3T8OFxwqamYRPTsaf221NBq4WacMgUTxHXr8t/2wIFIJSIQFIQ8SHfuKJaiGzdw/xoGSrRsiVQAQUHoV8WrekJy8yb0WGvWwNI8eTIsfRoNiJRYkpL03ycmgkyePo1++5138L+CaFUnT8aE++RJuNELG5IwSRQq0tNBgKZMwSAkUL8+CFFqqvKdh4e+VUhNiPz9S15VdEvADBeSsZxF168rHZeLiyK0Vr8GB+P8XL8OgrJvH4iDjw9cESNHgoiai65dYaFRu/1MCdLj4jCLX7oUnWVoKFwgL7+sXBNmdMiGxOjKFeXYfH1zE6O6dXNf1ytXIGRdvx73jq8vrAkDB+pXYS8spKVh4CBCdM6cOYg2atwYQlp1Er1HjxSXnlonJYIGXFxwjII8ubjAPeHoqP9a0O+eBFJ27x7ugYMHYVH49NOCuWKYkZfs449htfnsM+u2sWgRdJgtWoDc+Ptb3yYBjQbbmjkT/cTzz8PVZ0qvExMDi8/Zs/kfR9u2eIYFIQoKQj/cvj0CF377LffkMzMTROubb+DO9PBA8s233zbfDSpw8iQmXRs3Yj8DB8I63aSJZdshQl3Ili1BLI8cKfyadJIwSRQIWi2sIKasROoIMiKYZdu0Me42exySUmZkQF9jSIquXlUix+zsYEExjECrUwfkwJilLCcH0SzTpmFWt3w5yIOvb+5wfIFmzdAx+vlBh6TWfAm3nzoaUAjShV4qKQkWJdHuwYPRsdWunZsYhYUpJvzy5XMTowYN8ha037+PAWLtWnT6FSpAiD5wIDryorYeXroEkkOE8zJ9OpJ/mjNAM8PyZEiibt5EB5+Tg9fsbMWCWlDY2VlGtgqDtFnznbnX9Y8/4F5ycoKVpWNH68+VRoMUEp9/jnu3TRsM4JZaKBIS0KZt2yA6nz274C44jQZC7Rkz0I+88AIIkLoG3MOHsNKcOYPX06cVS3SlSvpBJsuWoX+4dg1E5dgxWHVWrcq97x07oI2aMAHuRIE9e1AzUWx//Hi41SzVKBoiNhYTkGXL0P7u3SHgtzRp7MWLkBB4eqIPEZOdwoAkTBJ5Qoj/TBEiw/w31atjsPX0hBhTYO1auFFKq9tMDZ0O1jG160yQo9u3lfU8PIznLAoKssz8f/IkxNlhYXCBde+OTlLdqQkMGoROvFUr8zq05OTcQnRjuVvyQuPG0DA1awZyZG5V+pQU5MRZuxYC6jJlMJMeNAiCTktnrrbCgwcgRz//jM+TJmGmXxjQ6fD8qEmUeG/su/x+L6rt2GrUcHDIn2TZ24NEP/880erV1hdmzczE/+fNQ9/17LMgB+bq7tQ4cQIuuORkuKYMw/othUYDIjhzJqzIL74IohQYqBAj8Sr6mIoVQaSaNVNef/gBZIsI2r5Nm5R9fPIJrFSnT5u21H7xBQjRoEGwIoeG6v+elGR7PahGA6vWxx+DRE2dCh2hJeQzIgK6qNu3cYzvv2/bNgpYRJimTp1K06ZN0/uuatWqFPM/M8LQoUNpzZo1er+HhobS8ePH//uclZVF48aNow0bNlBGRgZ16dKFli5dSr4WFNSRhMm2EMkJTYXgq8V/5cvDKmRMRxQQAPfK+vWYcaWkwBX34YelUxAbH2+cFF2/jnNGhA69Vi3jOYsKWnE7JQUESQzcdnbGB6pWrYj+/NN6c7ROh+t/8SJEpT/8YN7/7O0V61a/fjCxm4OICAwMmzbBItehAyxJL79sfVoFW4AZxy5KMHz5Jcq4rF2LAbIo3IGlBVpt0RK45s3xLFiTtiElBRbZhQtBhl95BeTBGs0LM/L/fPwxBMwbN6LfsxYaDe6vmTOhK3J3x2RBpwOxEak6ypfXJ0bNm6PPFecjJwdu9kOH8Fm4uVNS0PcePQpL7axZOPa82jNhAlyVanz1FVx5WVlYsrOV98Y+W7NOfLz+hLNCBbg5RZ9n6vXhQ/QpYuLepAmSmRYGLCZMmzZtoj2qOEUHBwfy8vIiIhCmBw8e0A+qHtfJyYkqqVRdo0aNou3bt9Pq1avJ09OTxo4dS/Hx8XTmzBlyMNMRLwmTZdDp4PIwRYjUwmJHR3QApkLwPTxMd1qXLsFUe+AABr9Fi2xXWLKwkJWFjspQbH31qn7Yuq+vcVIUEGA7/Qgzrsnhw+jUhKA4L+TkWKbjiIsz7k4TWjJBWES0GhFSB7z5JqJoWrVSrr9OB/fBoEHQOA0blve+b92CS3HNGmiv3n0X2iRbaD4KiogI6DEOHIDrccECEN6MDBxzRgYGMNndlB48fAhr6eLF0KUNHgyiU5C8PRMnQtM2ZgxerQ2Xj4uDFUUdji/g5gYy1ry5QpBq1VKs8zodJrHXriEwYfVq3JtqBAVBj+TtDVmEyDf1wgu4l9PS8MynpirvzY14MwUHBxA1sTg56X825zsHB2iRTpxQttunD8Yl0e/Y2em/F7Um69dHLq7CTA5sMWHasmULnTt3zujvQ4cOpcTERNqyZYvR35OSksjLy4t++ukn6t+/PxER3bt3j/z8/Gjnzp3UvXt3o//LysqiLJGIhUCY/Pz8JGFSIScHOgljpOjmTSWPDRE0MKYIkTWlPVJTofFYtAjbWLxYP6KouMEMUmiMFN28mbvsh6HounbtgvvrjUGrRYHKI0eUHEj37+uv07IlNETG0gucOYOO1RgyM0FgDcmR2L6TEzoYQ62Rj4/S2TCjQ/75Z8yk790DQezfH+Spfn1YXapWBdEw5W69fx/6jhUrCiYWLQxkZ8NFM2MG7v0VKzBTVyMiAgNXjx4giDI5ZcnG7dsgvN9+i3vyrbdAcAo6eTtyRLHSmJMMViA1FRaP06eRyuPXX/V/d3NDuR5BkGrXVvrgtDS4xdQli8yBgwO26+amTIi9vWF9Ed+7umI5fhxCekMEBIBgiWoAQ4YgjUbZsrmJjy0DD86dQ7b2ZcvwrF28qOgJix2WFJ6bMmUKlytXjr29vTkwMJD79+/PN27c+O/3IUOGcIUKFdjLy4tr167Nb775Jj948OC/3/fu3ctExPHx8XrbbdSoEX/22Wd57peIci2y+C7w99/6RUrd3FD8s1cv5tGjmb/+GgVUw8OZ09Jst1+dDkUxfX2Zy5ZFsVNThS+LEjod8+nTzB98wNykCYq9inNTpgzO1QsvoFDqypXMBw+i8KtOV7jtSk/HvmbOZH72Weby5dEmJ6fcxWwbNkQxW3Wx2MBAFA51d0eBW2alOOlvv6EI58sv4/js7fWLzL74IvOkScw//8x86RKK9FoCrRZtHzWKuXJl/Xb98ovx/zx6xPzRR7g3KlZknj0bhX8NkZHBHBWFAqWbNuF+nTCB+fvvLWujpfjnH+YGDVAsd/z4vJ+NefNwrJs2FW6bJKzH5csotFymDLOHB/OUKbgHbYGUFOaaNfGcajSm10tNZT5yBMWnX3+duV49FI41Vvx5/fq8t8WMArqG//P1Ze7cmbldO+W7ZZnrlM8AACAASURBVMvQ54WFMd+4gefp+nW0gwjFrs+cYT55kvnYMeZDh5j37WN+7z1lG66uyvuVK5U2JCUxv/suvg8NZb540SanVA8JCSiU3awZ9lOtGp7Jq1dtv6+CwCIL065duyg9PZ2Cg4PpwYMHNHPmTLpy5QqFh4eTp6cnbdy4kdzc3CggIICioqLo008/JY1GQ2fOnCFnZ2dav349DRs2TM9aRETUrVs3qlGjBq0wkadeWpiM4/ZtzJw2b8bMZ/p0MHFPz8KfBUdEQFj3998QKH71FQSKxYm7dyGcXLMG1pVq1SAUrVdPsRjVqFF0eqqEBGgHhAXp9GlYNESkoMh/VL48ShQI/QERZm2VKsE64+QEq8wbb8DiFBND9NJLyLAbHq6Y0j09c1uMQkJsX29Jo8HsXV0jqmFDWJ3690dSzIULYVXKyUESyFdfRTujo2FVEzlaYmL0o3rUGDIE7gZbIyUF53PJErg7vv3WdEizKL3x0Ue4d3bsgDVWouTg9Gm4x37/HVaUsWNhVXJzs90+Ro6E++z8eaVWYEYGPqsF2ZcuwWLt5IR7qlEjuLyFjPeZZ/Ds2tkp0ZPx8XimtFq8ikX92fC3wg7VatUKfVTbtliqVkVf9uabkDC0bg2Lkp0drHhiUX829d7wc0oKEtLm5MCKO3w4Xkui7rVAUXJpaWkUFBREH3/8MY0ZMybX7/fv36eAgAD6+eefqU+fPiYJ0zPPPENBQUG03MxEMk+6hikrCybnWbPgv50/HwNSUbgK0tMxEM6bBxfG11/bLkmbte3ZsgUkac8edFS9e0Ov8MwzRZcynwhkQLjWDh9Gh8gM4qZOENmwITqb7GyQXHW0W0AAouA2blTE9v7+cLHFxirrPfVUbnJUrVrR3AMZGRgMIiLgwtq4EXmhbAkfHwws5cuD8OX36upqXgTmtm3QTiUkQGj7/vumXQkxMdBl/fkn0inMnWtdLTwJ24NZyZG1Zw9IzPjxqGhv63xtu3ZhAH/jDbjMBEEKCwORcXQEMVILsqtXByk3Fr5PhH4pOBgTmqpV8blMGdyL4r3hZ/F+61ZMVIngLqtc2fj/hgzBhOuXX9CvmNrm++9jIkCECWd8PMjRsWOKCDsoCMSpeXNE7Yp0GDodFmbr39vbI2JxyBA89yUZBRpOXF1dqWHDhnTt2jWjv3t7e1NAQMB/v1erVo2ys7MpISGBPFThMLGxsdSmTZuCNOWJwZ9/whoRFYVK0599VnRC1G3bsM/79yFK/uSTwq32bQo6HUjJmjXQA6SkIA/H8uWIgCmKfE7MSLB4+LBCkm7exG/BwSBGY8bgVR3NIvDLL7DGqGFnB2H0ypXKd7VqgQzVqweiWqkSBvLCmH2lp+Pa3ruX96vIy0QELZI5qFoVRLZ+fXTeGRm4bufOISGmgL099G+pqTivKSlKtmDDrMRq2NnBomCKUKWl6SdOnTEDFtGDB3Ov7+qKjMTDh2NA2bkTIcsSxQ+dDtdm9mwM3E2agLD37Ws7DU12NsjQ6dMgJuK++f57lBxq0ADRW6NG4dl0dIQAOywM6771Vu5t9uqF/4klONg6wfjXXyPr/IABsL6aIofffotndd069ImmsHOnQpaIQA5//BETBCJMAo8eVQjUunUgSx4eIDmrVhWOvrOkokCEKSsriy5fvkzt2rUz+ntcXBzduXOHvL29iYioWbNm5OjoSLt376Z+/foREaxQYWFh9MUXXxSkKY89bt5EeP7WrUSdOsGqIso2FDYiI0GUduzAQ7J7t2KWLkpcvw6z+I8/4nzUqAFS8vrrlic7sxQ5OcgFoxZox8VhgG/aFGSgXTvFfK0GMzqvixdhTVK73gzXI0IHvGMHtiU6o4ULsa89eywnS2lp5hEhdfoIIpBhb2/M+sqVA6FITNQnTIYICoIb1NcXFqjz5yF4ffgQpvwWLeA+zsoCaVm5EtufOhX5o/I6tqwshUCZ+5qUBFeNGo6O5teeqlwZbVu40DxLl3hVky8pEi84cnIguJ87F26v9u0xuHfvXrDzm5OD7YkEkKdPw2WcnQ0CJiwpEyfCTZWcjPs4LAwyhIgI08lHf/wREV62IBQ6HSL8FiyAe/jzz01bVHfsAJkbNQqeh7zw/PN4vXAB52HAAEzwpkzB9n19MbETk7vUVBDVo0eRs2nAADxfRWnJL1ZYIngaO3YsHzhwgCMjI/n48ePcs2dPdnd355s3b3JKSgqPHTuWjx07xlFRUbx//35u3bo1V69enZOTk//bxsiRI9nX15f37NnDZ8+e5c6dO3Pjxo1Zk5/6TYWkpKQnRvSdkQExr4sLc/XqEO0WtjjZ2L79/Jg3by66fQskJDCvWMHcti3EgO7uzMOHQ7So1RbeflNSmHfvZv7sMwgshXC8bFnmTp2YP/0UYnvVrf3f/44fh2jy/feZO3bE+TMm+pw6lXnLFubXXoNIu2FDCJ8Ncfcujvvdd3PvKyKC+cAB5g0bmBcsgJD9tdfQxjp1FGG5eilbljkoCKLRfv2YP/yQee5c5h9/hBB16VIItN97j7lLF2Zvb+PtF4u/P47ZFB49wvno3Dn3fydPtm0gghqXLyvC2DfeYI6LU37LzGSOjYVA9t9/cT9NmaK0q04dXPvRo5nffBPn6bnncB82agQBvqcns6Nj3ufG09O40F3CPKSnMy9ezBwQgPPZsydE1dYgJweC5R9+wLMUGsrs7Izt2tszh4QwDx6MoINjxxB0IMTZzMytWuW+vjVrKkEQdnbMAwfivrMlMjOZ+/fH9r/+Ou91jx/H8927d/6C8p9+QrurVFG+mzkT33l54Z5fsQJBJcb6/T//RMDEyJFFPy4UFywiTP3792dvb292dHRkHx8f7tOnD4eHhzMzc3p6Onfr1o29vLzY0dGR/f39eciQIXz79m29bWRkZPB7773HlSpV4rJly3LPnj1zrZMfnhTCtH07HkhHR+aPPy7ajnfXLuZatRBxMn48oj+KCjk5zH/8gU7C2RmdWffu6LgKa3B98ACRZqNHMzdvjo6AiLlSJUSYzZuHqKqsLKWNly4xb9yIQb9XL1wr0ZHa2+tHqonF2Zn51i10ML/9hoiXcuWYv/iCOTsb205ORnTI/v04ZvHf554DAQsOBoEy3Ha5crhm7drh3I0eje2uXcu8dy868sRE7Pv2bXR4ixYxjxjB/PTTOFZ1NGG9esx9++L41q9nXrVKf389ejCfPWve+U1PVyLN1IuLCyL7Nm3COrZAZiaIvpMTzse+fXmvr9FgoChTBtfe0sgcQb4OHcKxiOveoAEGnCdlMLElEhNB2qtUwfl89VXm8+fN/79Gg6jgNWsQLdumDYiEIDZ16zIPGoT7//Dh3H3r3bt4Hl55Rbl+9+7hPp0+nfmll4wT5FatmIcNw73+xx+IVivIxC4+nrlDBzwnmzfnvW5EBMhbmzb5P0sREUqb9+xRvtfp0O9MnIhjEf2gnx/zkCGYVN25o6y/aBF+X7jQygMsZbCIMJUUPO6E6cYNzKSImLt2tf2MJS/cusXcpw/23bkzSEFR4fx55jFjmKtWxf5DQjDg371r2/3odDjHa9bAeqBOyeDvj1ni8uUI0dVqmaOjQSC/+AKhwk2aKDNTIlhgunVjHjsWs9Lp09HJGXamv/yCfd+8ibQGRMxNmzK/9RaIUO3aSAlhylrRvj3zgAEgQvPmgQjt24f7Iykp98Cs0WB2uHUr8+efY/bcooX+PlxccDyvvcY8YwY65UuXFPImztdffyn/efpp45YwY8jJYf7uOxBDMRsV1/PmTZzTp57Cdt3cMIjt2KEQU0tx5AiIXpky6PTzGzgiI2E1srdH2gX1cZsDjQbtffFFbKNcOQyY//wjiZI1iIlh/uQTWEadnJjffhvh8XlBq2W+cgXPw4cfYsKgDpGvXRuEa8ECWGPzGzZ0OkxOqlVjfvhQ/7f0dITq+/jgeg8cCGK0dSvznDl4xpo3199/uXIIl3/9dZDALVtAWPKzAN26hT6wUqX8rWoxMZiw1a2bfyqFjAw886J9eaWCSUrCxH30aObGjZX/BAdjfBAW1g8/zHufjwskYSpBSE+HG8DZGYx+06ai63SzsvDAlysHArBhQ9HsOyYGsxPxMFaujBnhmTO2279Gg3wm33wDy4uPj/LgN2iAQXzdOhCko0dBlt59FwTFw0NZ180Ns64RI2Aa379f6Zzi4pjnz1esTGI2S4T14+MxGH/xBQZztSWqbFnMWMeMwTbWrcO2L17EfdC6dd6z1KwstP2XX2BZ6d8fbiM1qStfHi6IYcPQhh07QBrz67SPHgWZE9uZNs2866LT4f4VZHTAAAwSpnD1KohmvXpY38MDrtfdu83LGZWYiOtIhOO8cCH/9v34Iyx1gYGwMliCW7fgwvP1xT6bNIErMzHRsu1IAFFRyC3m4oLn7KOPYNExhE6HScCGDZigdOigb22tWROupC++gFU1IcHytqxYgW3t2IHP2dnMJ04wz5oFEuXgAGtLXvezVosJwc6dIGrDh+M5rlBB39rcqBGejWnTkNMuPBwE5tw59FOBgflPmFNSQMiqVcN5zA/q3Es9eph7VoCHD9HOUaPw36+/xoTySYEkTCUAOh1mHYGBmFVNnFi0LrC9ezEzcXDATKKwT2tGBgb355/HPh0dYdXautV6y4Lh9g8fxmzuueeUTsrREZ3W6NEgh4sXI0Fiz56KRoIIbapfH8Rj5ky0KzLSOGk5dw5WqrJlsf2XX4a1ydERZOHgQax37Fhui1FoKDpnU4Ps/PkgVMLtlZYGIvnTT7hHevfGPoTZXGgP2rcHefjqKxCO6GjjJEenwzajo0HODh3CffjHH9hnjx7YprD4DR+e/7lPSIDlrkUL/Kd7d7TZXOh0IDuTJkFnJTQW776La2rsGvz2GwYXNzeQ4vxIYHw8BlUiWATMJTk5OTg/PXrguri5gQyfOiWtSdYiLAxWRQcHTJZmzMD1YcY5jYxEX/Hxx7BoVKyo3OsBAXAZz5mD+1ytUbMWN27g2gYFQWPYpYu+fnHoUBA2a6HTwcK6Zw/IxoAB+ol1DZfq1dGfvPoqNJFTp6Lf2rABx3zyJKxQDg7Q4uWFpCQkzFVbxtXuOIn8UaA8TMWFxykP07VriEDbtQsRaF9/jdT4RYF795Dk7eefEZa/dCnCZAsDzCgL8OOPCANOTETK/8GDEYHh6Wn9thMTEfIqIthOnUJElZubkiCyYkVEtBw4gHQAIkTd1zd3PqO6dfPO5ZKTg+raixdjn9WrIyIlOBjRV5GRKJ0wYQKizwwTHY4di/w+ptL9JyYS7d2LenxECGm/fFlJWyDaXa8elsBA5GCqVg2RPQkJ5i/Z2aaPMzgYtd+2bUN49dWrxq9TYiLW+eUXrJeTgyimqVMR0WktmJHvRpRmiY5WonYGDEBkzsSJeHZeeAEJJv388t7mvn3I95KaihxS/wvWzRNRUQif/v57XE9RCHbAANsnBX1ScOIEciht3YprNm4c8qZdvqxEq505oyQ19fNTchyJfEcFLW4tkJCA5/jgQUShCVSsqJ8/7amnrEsFEB+PCN/r19Hfq9/HxRn/T5UquL+yslDTMi5O/9VYio2yZfF8Vq6MV/X76Gj9otpbtiBC7omJbrMRShVhWrJkCS1ZsoS0Wi1FRESUasKUloZcIvPnI3T7yy+Rq6MoQpBzcjDYT5mCh2zePITmF8a+b95UUgFcv44B7/XXQZTq1rVum/fu6ec/unABg2vVqujYnn4ar56eGMTXrsU6lSoh/L9ZMxCjBg2UYrPmICYGYfDLl2Pg7NgR+Urat8fA/d13IGgrVmDdZ57R//+mTciK7uiI9j58iFDeS5cwOBw9ClKSFzw9QYw0GoX0mMpP5OqK4zNnOXZMP4HmqlW4RocOoYinYXHdpCR9kpSdjTQIr7yCnDi2Lrqs06GNP/8MYqTG1KnIR5bX/ZuVRTR5MgbEjh2RwysvcpWdjeP79luk0XB3Jxo4kGjECOuq3Evgnt+zB0Rp/3585+sLYn7hglLs2sdHPwlks2a5U3UUBHfvKv2HOsGswIABeJ5DQsxLhsoMIiOIkCExUmeyr1oVKVlq1cLEWLyvVQtJiM0BMwj/O++gbxs0CJNtY8RKvDo6oi8uUwYJcC3p9yRUKF4Dl3UozS45oe3w84MP+9NPCy/yyxjOnkX4ur093BzW+PjzQ3IyxM9C++LqCtfHnj2WR4zodBB0fvsttlGjhmJSrlULmpxVq6An0Olgdv7+e5jv7exwjl95xXp3n04HHc+rr8LNVq4chKgXLuC3jRvhsnJ3hzZg2DDjYu2WLU2b3fNaXF2hk2nYENvp1QtugdGjofn55huIXf/4A26/y5ehCzP3WKOj9d2RH32kiEAzMyHubNcO1y0xEbqfF16A65gIETlffqkfOVNYiI6GQF59foSAvX59nA9jEW5hYdDIOTpCLJ/XPXjtGqJCq1TBdlu3xv1UlC7yxw3R0bhnjd3fVarANT9lCvO2bYUT4HH1KgIPDPuP4GC4mVevRv/g5ARdlKntxMaiL1izBv32gAEQeKvdhETQErVrh75g1iy4FM+eta3UYfly7GvuXPPWHz8e2sl//rFdG55ESMJUhLhyhfmZZ3CjP/98/tEfhYGnnoLP2xJdiTnQaJCXaOBA+Prt7EBa1qyxLB1CTg788gsWQAjt5aWIo5s2hSD811/1BaHZ2Yjk6N8folE7O+QhWrXKehFuejr+37SpQs7GjoU4c+BAiMWtIUDqJTAQ0WmLFimk59Ah6BFq1SrcQsaxsRCZq9ujqpPNzNCTECFqSU2SWrdGmy3MBmI1Hj1CfikXF+Q1mj9fiX7LyoI4d9AghTw99RREvzdvQifi4gJCZUrjkZkJTYjIE1WxIu6zwigy+rgjJgb38bRp+noZtT5w0iRowe7csb32S6MBOfnyS+ibhP7OsP+IiVH+k5UF0X79+rhnjhxBrqZJk9CnPPVU7nxmPj6YwAwfDg3Vr79Cz1gUqV+2bsXxvP++eefvzz8tI1cSpiEJUxEgJQUM39ERURzbtxdPOyIj8eBs3Gi7bV66hGOrXl2Ztc2ahSgic6DTgSQIgaUIx3VxQQTMpEl44A0vtU4Hi8q772IQJQKJmTu3YAN5ZCSsLJUqgXg1aACSGxpqGRlycYGYfNYsDOimROOGmDcPnWF+Ak5rkZCAvErqCLq339YXSicl4Xqoj6d1a0QzFhVJYsZzM306Bis3N0SQ5vXIp6fDevvyy7mvR2Rk7vWvXAEJFvdPu3awoNkqH9TjjocP8WzOnIkABD8/08/Dxo2FI4zPyED/MWsWCJogNk5OSH8xYQJSgoiJk06HydahQ7AcTphgus2+vrCSjxiBfmXzZqQ+KU5r47FjmJD27Zt/cAMzjtXLC+emMBP9PikoVRomgdIi+mZGrbOxY+FHnjAB6e1dXIqnPQsXwjf/6FHBKnnHxaFMwY8/QmDt4QG//5AhRC1bmq+FOnYMaf6PHYPAUmiPnn4augVjwutr1+C3X7cOJQqqVyd67TX48Rs1su54dDqIrL/5BmUFCvJE/P03Udeu1unB7t6FrmvYMIj/bYnUVBzfF1/olzZZtQpFRZOTUaPrl19Qr1CIwWfMwHXNT0xtS2RlQSc2axa0Uu+8g/vWy8u8/2/dCmF4VhY0G3Z20Hz5+uK9KCiqRtu2uOfKlbNuKYmV1W2JhATo7NQlRG7dwm8VKuDcBQURHT+OEkAODngux483HdxgDZKT0V8I/dHJk7jO7u64hqL/8PUlunPHuKYoLQ3bsrPTf9bnzVP0REFBxVMnMy9cvYpjrF8f/Ux+44hWi7qMly+jRJG5z4+EaUjCVEi4dAlVoPftg5h70SLUPitOtG2LqImtWy3/b3Y2CjWuWUP0xx/oaHr0gDC4Z0/LKoRfuQLyuGULimfOmYMH25TA8uFDREmtXYvoGnd3RJANGkTUoYP1RTd1OtSmmjjR8v+uXk2UmYnjsLNDZzt0qHkiUVN49VXcL1ev2q6AcGYmROizZ2PQ69AB0YouLriWiYkg9X/+iYGnVSsczz//QPT8wgu2aYc50GgQIDB1KqJ6hg5FYIK/v3n/T00lGj0a4vtevSDY9vKC6Hb2bP0IKIGuXTGwpKcbX/Iq+KtGmTLGiZSrq/UkzHBxcSnY/WUuEhNRN1FNkCIj8Zu7O8iROmKtXDn0b8uX4xoOH46ot8DAgrclNlYhR4cOYeDX6XBda9ZEwEy1amhDVBQI0Y0buHZEuJf9/fUF1uJ9tWq43z08EHBRkiPGYmKIWrfGcR45Yp5oe8YMPD979xYsWlVCQQm+RUonUlIQiv3VV+gwSkql8/v3MTNbs8b8/zCjs/zxR1iU4uIQWjtvHgb3KlUsb8PUqbBq+PpicHztNeODQHo6Buy1azGY29nhPG7ciEHcmtlfQgL+Hx4OQrtvn/H1AgMx4IaFobMR8PREh52QQDRyJDrZIUNwPgo6e9u3DxFgq1fbhizl5GBb06cjqnDoUETwvf02CELNmohmy8pCeocZM4gaN8Y1HjcOx19UZIkZaRomTwaZfvllor/+siyK8uRJRLHduweiNHw4UUYGzsHKlSCAXl6w3r35pvmpO3JyTJMpS5akJNz/6emwcKh/y8gw/zhtRb7EotWCoF++rERsRkVhX66ueN579VIIUu3ayvN64wYslqtXg8y9/z5SpFgb0caMSC5Bjg4eBAEyhKMj+tkTJ/DZ3p4oIAAkqF07XGNBjGrUMD2Ze/99WKG2by/ZZCklBZPT7GycE3PI0qFDSvSoJEu2g7Qw2QjMIBXjxmGGNmkSXHHF5X4zxNKl6MwePEB4fV6IjobLa80adKTVqsGaM2QIQvEtRXIyOtZFi3A+Jk+Gm8WwI9NqEW68di3R5s2wGLRujX3361ewvCtnzmAgVucyEqhXD1ambt1AcL//Hp22QLlymHH7+YGALFgAwrFiBULUC4rsbFjaKlVCR1cQK4JWC+I1ZQoGtAEDcE/+3/+B4Ak4OCgz7rg4hHWLWXnduiAs5lp2rAUzwswnTgQx794dbrhmzczfhkaDyu1Tp2JwX7cOx7FyJd4nJSG9w1tvIaWDNXl0Chs6HSyB1pIxQwJmah2t1rJ2VakCi5Ihybp+XT/9haMj+jpvb/Mtay4uuP4XLxKtX49nTqQVMAYHB0xkjIXk16hh+XXdswf3xVdfEX3wgWX/LUpkZoKwHj+OPskc2cGjR+hPatXChM9aC7xEbkjCZAOEhSEfz8GDmLUvWIAZT0lC164YiP/+2/jvaWlEv/8Oa9KePSAzL70El1vXrtbNwLKzYaafMQPk58MPoWlQW1CYYbVZuxYd5/376AwHDYLFICjIuuNVb/+DD5B3SqBcOYUcPHqEzv/772F9Sk3V///o0ciz9PXXSu4YgZAQ/CYWHx/r2rhtGzrFqlWJWrQAKRVLfkk01ce5ZQsSZ4aHE3XuDD3Z4cP6REkNe3tsv2lTdLDitSBJRM3F8eNwZx44AFI8Zw7chZYgKgo5vf75B4Swdm0k5zt1CiT/jTdgaTJMHPok4P59kPx//1UWYTkiwuSjfn0s9eqhv8rORj+QkgLLS1QUlshIWFWNwd8f95411jJTaNkSVk81MQoMtJ1OLDERediCg5FjqyjcnJYiKgoTslWrMOHctQvPdH5gJurTB267c+eg8ZSwIYpPb249SkqUXGIiig46OCA67K+/irU5JvHoEdq4fLn+91otapYNHaqEZLdrh5xHBamJpdUiTLtmTUR8vfFG7jw9t24hHDckBPv18kKY7IkTBY+m0ekQZfbhh/pRL/37/z975x0WxdW28YcOIoKgIgL2XiJ2oyb2boyx99cSW+y9RqMx9pZYo0YlaiyxRWNM1NgLBkUjGltQbGChS4ed8/1xfyczu+zC7rKwi5zfdc0F26bt7Jz7PBW1XhYswOPOnZHab0j2m58f0uzXrkX2jLJxb7lyqL2yfTtaLOh7HCkpaHcybRpauSizjWxs0Lame3dkrh04gOwu3l9NkpAFVKdO1vveoAFapmzahPOcm/W/OMHBOO9EqC119Kjh37ckoXYO7yFWrRquXysrtC05fNjwJrp5FUlCeZL9+5Hx1a6dnErPSyQ0b47fwsqV+F2eOIHrbcUKlGsYMADtN2rWRA0ha+uM146zM67vpk2RSajr/KpUuK7evkUG7bp1yBblTVqVi5sbWiIdPIhjyI3vLDERbXEKFdI/kze3UKnQe65TJ1zLrq743jLrWafJvn04twcP5tx+5meEYDIC3rjT0xM3kiVLTNMDLafYtg0/wPBwPH74EKnlvGBh2bIYjENCsr+tP/+UB+9OndRr2URHQ4w1bYrXnZxQEPL48ezfLCUJPb2mT5d7kPGle3fUSDl4EP2q9CkJMHWqenfu3bt1D+zh4RiwxoxBM00rKzktuW9fCJR//jFMGMTEoEje999DSDZvrt++a1vWrdMvBTknCQlBrSQrK1xvu3YZt0+RkRnr+3h7o+RAaKjp99uSSE1FwVR/f8bGj0favK7vvGBBTOJq1MB9SpsIKlgQv5VGjSBcRo3CfWDjRvTnu3IF35u+afSRkagRNGUKCrXyJtOFC6OO1/LljAUEmEfMpqUxtnkz6ifZ2jL200+5vw+6iIjAueGNu/38cJ80tHxBRAQmnt2758x+CvKYYFq3bh2rUqUKq1ixotkE061bjDVujAu7Z8/cqXCcXTp2RD2hTZtQT4cIM6zPP0dDU1PUR/n7b3kgq19fbjqbnIwZf7duqI1ibY26Rv7+qAieHSQJN+ApU3AjNFRIjBiBDun88bhx2KfAQIg+KysMIoZWQ4+MhOWEDxy8OW6RIhiY1qxBcT19BENCAqrzbtyIKteGWsQ2bsxYkDI3CQvDObazg/ViwwbjK64vWqR+bJ98gppm3Nr2PpCejqKKV6+icGijRoZ98m2EBgAAIABJREFU3wULouhp48bqImjTJvwODRVBmfHsGSYSI0fKlmIuYPv0wXcdHGze+j+8swK3BPfpY56CwdoIDIR139ER98b+/fH9GHs/HjAA4pRPjAWmJ08JJo45LEzR0ZjpW1szVqVK3ujynJqKmRS/kVlbQ9Ts2WO64nxPn6LlgJUVYxUqoOKtSgUhNmIEfsBEqLK7cmX2Wh+kpKD1R2bF5vRZAgLkfbezg1Xo2jUUReTfcc2apmsj8O4dqqDPmYPqwLxoZKFCcCEFBuJ9b9+iA/myZbixV6mi3TKgXJYswQB48WLm7VeKFoWVauxYWK0uX86e2zUroqLgunRywjWwZIlxLsCoKMy+NYVuXpiocLgIunULbvsff8QxTZ6MQbJePf2v3aJFUWl+/nxZBF29isKcOelilST89jZvxsCsFO6VKmHy5e+P/ciJApXG8Oef8rlt1w6TFHOTmAh3Mt+vkiURmpDdSc1vv2F9O3aYZj8F2hGCKQtUKri0ihbF7G35cst2vzGG+J2JE+V+WEQYKJXtRLJLZCQsKA4O2M769XAXzJ4t30xLloS4uXNH//WmpKD306+/ov3G6NGMtWqlewApXFhuWaJ83skJYqNDB8wwr1+HOJoxQ97WoUN4b3g4hF6JEugVt2KFaa0WksTYkyeIGxkxAhYAzePw8ZH/d3aGZWHQILmVjnKpXh09z1JScGzt2kGwOjtj4AoIwDbT0nAuDx7E+enRAyKMW7yIEC/Vvj1ckP7+aJmTHTEdHw9LkJsbzuWsWYZb6CQJAnDgQPXjbt3acqxJ6em4bpQiaNkyWQS1bg13WLFiWYtezaVECbTc+Pln/M5yG0lC/7czZ/Ab7NpVvUVR7dpwCR44oN5ixFK4cUP+3dSvjzhNcxMSIncQIGKsbVu4L03hKo+Lw++4TRvLEavvKyJLLhOCgohGj0ZGT58+qLdjqVkHr14hjfrHH5EiXrQossyOHUPdjsBA02wnKQkVoxcvRo2aAQOQHfbLL0jdd3VFCYD+/VFxV1sGSlqaXGTu0SO5Cu+jR6genFn6c40ayK7q0UPO3Nu5E9l8nPLlkSE1cCC+r7Q0ZN2kpmIfedbZ4sUoXNmlC0oodO6MY8tuOn16Or6Dy5eRWXf4sO73FiumnqVWsSKy9g4eJDpwQP2906Yh4/DJE2TP+PujsF+DBkTDhuG8u7hkvX8pKdhGcDAyPPnCSy5YWyM7UZmtV6MGzquuTKXUVNQ/+vprFIocMQKlNYoX1+uUEREyFnfuxHru3ZOf9/BAenTNmvqvyxhUKhRJff0av6fXr+VF8/Hbt5A3SgoVQqajpye+14QEZKuFhWVMmXdzw/dduzb+8u8+N+sBRUcTPXyofeFZpA4OyFr76CNkgn74IY7TEnn0CFmi+/Yh+3PRIvy2jam6bwpUKtSQ27ABWW6urrgvjRypfx0wfRg9GveCO3dMUyxUoBsLLtdlPmJjMShv2oS027NnTVNvx9QwhirN/v6om2Njg0F/4UKidu0gFDZvRqG+7KJSYTCbOxcpx4UK4Ue/eTO226kT6ul06IAaK2lpqAOkFEP8/9BQWRQ5OMjpw507Y3C5dQs3bSLUPureHUvDhuoC7PhxbJfToQPRjBkQasqb5KJFEDDXrqmn6N+/j+/a3x/p6IMGGXdu4uOxbn5z5IONJm5uKNHAxVGtWhAUiYmo/7R/P45JMzV75Urs2/Hj+PzFi6jZNGAA0uZr1DBsfx0cUM9Fs6bLu3coXKgUUVu2QCwQodZN5crqQqpKFRRE/eorfK8DBuB/favap6XhvG3fjrY0RPiebWxwjYwfD2FrbJuK9HSIlawE0KtXeJ8uEVS8OP5WqiSLIv6chwdqWd2/L6fwnz6NdHAiTCg6dlQXR6VK5c5AnpSE35w2UaQUcSVKQLDVr4/JTsWKWIypcZTbhIejPtrWrfg+tm5FzThzFaOMiECZkk2bMLmpXRv71Ls3SpqYkosXcc/57jshlnIDYWHSwsqVKPY3eTJu1pbaJ+rQIdR9atgQ1pRevdSLUh45glpKDx7g5mcMjGF2NGWK+qyfCLPO/v0hZuLiYJ355x8II01RVK6cXFOlQgV5KVYMtXgOHIAlJjISP3wuknT1pouOlo/VwwODgrYK2TdvYh0zZ+KmqsTZGWLliy+I1q/X/5yEh+Pcr1uHQVIXffrgu6lVC+LE1VV+LSEBIunnnyGEEhMxOIWG4py7uuKcN22KQpS8CGOLFhDAn32We0VRIyJQ20kppIKDsT9KGjTANcjFVPHiukXB3bsQSbt2QbBUrw4RkZaGQcDVFRWk27bN+Nn0dNkSlJkAev1auwhydZVFj6b4UT4uViyjUEtMhPhW1jcKDobVjgjXt6blyNCK+IaSng7LrDZRpOyb5+oKwcfFEF8qVMheb0lzERODgrhr1uC3MGsWrC3m6AHHGKz469fDwsUYfgujRxvWX9MQkpJgdS1aFAVvRYHKnEcIJi3ExKCAoLMzZs+mnhWYigUL8AN9/Vr76wMGwFoTHGzc+gMDiVq2hOWBU7ky1tu3L4RNYiLcWsuWYTbesGFGYeTjo24ZSk3FDPzAAYi66GgUF+zRA0vt2pnfYG7ehFDkhfgGDsTgq+n+S0nB92htjdYZyplyYiK+X/6/rpusSgVhs3YtitzpolUrCKTatWGV1DUrf/UKFpidO7Hd2rVhDXz5EoIxPR2tHUqUgCi7cQMVlAcPhjk/u4U8TcHZsxCgvDVFjx44l3fuQAhxC5m7u7o1ytsb1+Ivv+Da8vCAoLC2RvFSfh03bQprY3q6djGUlQjSJn6Uj/UVmtHR6sLo5k0IZEmC9aJqVVkU1a6NwSun3FWM4TxoE0UhIXLPOwcH/OY0RVHFiihWaS73lClJSsJ9b9EiVMKeMAHualP1XzR0X/buxf7cuAHRP2oUfqs53ex25kw0VL91C5ZeQS5gzgAqY8mNoO/btxE4PGCA5QbSDRqEYoTaSElB4bO5cw1f76NHKJmgGYzq4IAgynbtkMXFA0GJGPPyQorxhQsI8n75Uj14ODkZqfYDB2K/iJBVN2sWgtT1Pcdbt2I/atdGRg7PApwyJeN7Z89GzZVbtzK+xosnLlokP5eSgoDpoUMzD8qtWJGx775DerK+KdPx8Qi8dnZG4OfXXyPlesUKlBuwt2esbl0EYPOA9U8+QWCopQQ6BwbKwbT16iGjT5P0dJyXw4dxjN27G5/N6OqKDKyPP0bA+pgxjC1ciBo1R48is/HpU8aSkrJ3XJKE6/XXX1HU9LPP1LPAnJwYa9gQKfqbNyOBILvb1EV0NGN//YU6VXPnMta7N651XliWB16XLYvf4bhxqLN18iTqUJkzhT+nSUvD79/HB4kLI0eaNpHFEB49QoB/4cJIuGjfHiUucqve2Y0bOAcLF+bO9gRAxDDpoEYNxG/0749Ax1GjzL1HGXnyRHesyNmzcJl066b/+p4/R6A476Pm4gITvrU1Fisr/L16NaM7Jjwcn9WXli0RROruDjdeeDiC093d8bdwYfUYhKQkmLe3b0dfsG+/haWgTBlYHMaNw4xu2jS8PzAQPcbmzcsYLHzgANqREMkB8rr6WDk5oe3NyJHGtdhQqRAjNWcO3I3jxhFNnYqg7rZtEbNFBJfI9es4ntmzEbNkKQkG9+4hmPbgQcxkDx6ES1CbtcLGBlYwlQpWvatX8XzJkrDc8rgejq8vrGe+vuqWoGLFcsblKElo9XHzpnrrkDdv8HrhwrAYdesmW48qVTKtuyM5GVYhbdYivh9EsCxWrAjrVe/esqWobFn92uW8LzAG6+vs2bDw9eqF5AJTBk7rA7c2b9iAuDt3d8QQjhyZu5bftDRst1o1+X4nyB2EYMqEfv3gdhg/HjfOhg3NvUfqhIZCzGnj4EH8iLUFBKemIs6Iu1CuXcvYY87dHe6FBw/UXXKalC8P14qLCwaV5GT01NNGtWoQBFFREAobNsDtkZqq/f0uLtiPqCh5H+ztYXpfs0YWWFWqIKh2+nTEm40ciaBPPz8EgYeHywPjqlVYH2fvXvVt9u4NcdyoUfaDRk+eRBxScDDcdd98AwFRvz5iTjj29ghe//xzdBa3lN5WT58SzZ8Pwefri5ii/v11i4e4OASub98OV7abG64Pb2/EmMXFoeP9wIE4H9lppqwPaWkQe/y7DwqC+4JfS97e+F2PGGH6YGyVCvFD2kTR06eyS7FQITmuqHVrWRSVL2+52Wi5yblz+A1fu4bm2Lt2Gdac2RS8fYus1E2b8N3VrYtrvFcv88RLrViBid5ff1lufO37iohhyoLUVAxiT5/CR+3pmaOb05u0NMzAN26ExUWJSoXZ6cCBeI0LI/73wQPEh2ji4oLg4o8+Uo8HSEqCtYYHTTdujBimuDhYTSIjYZ06fTrr/S5QAAJLuTg5yVYsTWvWsWNYNxGOyccHIisqChYLSTLu/HG2bcP3a8qspdu3YUU6eRLncsUKiKTJkyHYOFWrohxA//45Lx4M4c0biLtNm3AdzJmD60ibVUOSMKht3w6RnpyM47Kzw/cTGop4rAEDsFSrljP7rBmMHRSE610ZjK0MxDZFMDZjiKl69CijKPr3X3kiYG+vO66oaNH3I67I1Ny8iRidP/5AHOKSJfo1nzUVjEGkrV+PSYCVFSZTo0djf8zF/fuYCI4fj9hRQe6SpwTT+vXraf369aRSqejhw4e5IpiIYA2pXRuWjFOnzJeuquTxY1iQTp6Eeys0VBZFGzYQvXih/n4egFutGpZHjzBbi4yEJW3hQu1pqefPw410+zYCGRct0i4ad+zA6wsXIgi4XDm47bigUi4REdqfj4zU3e2cu9+UQsvdHYMRF1hxcXDVacPXVxZev/6KIG5HRwSdm4qwMLiutm/HAL1sGSxfv/6KDuKcIUMglBo0sKzBMjYW4m71aliRpk3DjVlbBtWTJ/jO/f0xmfD2hkWEMQhyR0cc88CBuD5N6dLSJxhbKY6yG4wdF6e7XhG3VllZ4fejTRT5+ooMJn0JCcFvaM8enLtvvoF7NLd+J4mJ2Pb69biuypSBxXnwYPNPaiQJYQyvX+N+bA7rVr7HvCFUxmGO1ijnzyPIburUXNtkBiQJ/ZtOnECQIZFcUZkHhBYqJP+/ejUCc8PD5aDqS5fk/lRt2uhuF/DsGWO9euF9DRogwDYz2rZFU93skpCAoFceGN6gAaqIf/01OncPGIBjr18fPZj0CR6uWVP9vQsW4G/p0jg/QUEIHo6PNy7A/907BOgWKIAA7rVrGbt7F42AlZ3jidB+xdJITESVand3nKdp07RXmI6PR+sF3jyZd7CvUAH/E+G1bdtMc5y84vSxY5kHY3/xBQLBsxOMnZyM7+zwYcaWLkXg/0cfZfz+PD3x/NCheN/hw/hcTgWB5xfCw/E92tqi0vnmzbmb7PDwIbojuLkhiLtjRzQFt6Qg+nXrcA2eO2fuPcm/CMFkAKtW4YI9cCBntyNJuIGcPo1GrcOGoWmuUgzxpU8ftGs5cQIiR6VCFsnYserr/OcfOTOsVi3tGU6MYfBcsACDkacnBsisbhpv3kBMbtyY/WM/fx5NWr28kHHHkSRklW3ciF5apUrJ56B0adzg+OPZs+X/e/RgrEsX+XHlyoy5uOgWV46OaB76wQc4X5m1pkhLQ182T09k7o0fD3HHBYWbGzqPE6G9hKVku3FSU9GPjHdwHzkyY68/ScL3MHiwnKnl44PzX6QIHpcvj2vmyRPj90WlQubRvn1oX9O2rXprn8KFGWvRAplJu3fjejY0Iyk9Hfv4xx8QtWPHYjtlyqi3L3FxQfPlPn0YmzcP2wsMzNnee/mVmBj0WCxQAL+XpUtztieekvR0xo4cwcSRCBOGqVPRxsTSCA3F72/kSHPvSf5GCCYDkCSk2xcsiBu2KYiIwIxh/XqkLX/8sdxviKfy16wJkbBoEdKpQ0LQo83HJ+P6rl1Tn4W8fIn+YtbWEBa7d2sXQJKEnmOlS6Pn2tSp+lsJNm2CYHrzxvjzIEkQfjY2EBzh4ehTtXMnenPxmb6tLVLaJ07E/vLO3BcuYGa4YgUev3mD9P8yZZCu7+Ehi4GbN7GuP/5AaYLAQMZ+/x3n5rvvUOrAzg4DtrZBUpIw+6xaFevh4srNDY+bNcO6AgIgclu0sCwLhEqFcgzly+Oc9e0LsaLk2TNY9cqVk1P8ixfHwh8PH44mvsZY5Z4+xTkaNw4WG6WI9fZmrFMnxr78Ehac0FD9tyFJaGR68SJjP/wAK99nnzFWrZrc9JgI32+VKox9+imu9S1bINaV1lhBzpGUhGbcHh6YpEyfjkbLucHr17iXliyJa6F+fUwMTdWQ3NRIEkpI+PhYpoU6PyEEk4G8e4eBsnJlND00lAMHMEi0bKlu7re1xU29Z0/M1g8eRONUXVaJvn0Za9Ik4/PTpqE+UmQkBn4nJ9yUVq+G20Ebd+5gf4jg7nrwwLBjatYMszRjiYnBoEYEcTNxIkQiPzd+fjiuU6fgFtIkPh4De+PG6laH0FB5Hbt3y8/v3YvndN2gJ02CcDt/PuNrQUHyueI1cbirZsYMmPYZQy0iT09YKoy5TnICSUKtIX5uO3Vi7O+/5dcTE3GeWreGkLK3h3gvUgQCw8YGlrx9+wwTgOnpEKlr16KukLLRcPnyuOYXL4aA1bdre1wcatHs2YP6Vv36QUhzVy4RjqFUKRzP6NGMffstLLEhIZZn7csvpKfDZevri+tp+HC4XXMaSYK479cP17WjI6ymgYE5v+3s8uOPuJ5//dXceyIQgskI7t/HjLh7d8NmoyoV3B98gJ0zB4P3nTsommgIjRohnkeJJMmzJg8PiKWZM3W7EqKiIN5sbDBwGfODfPkSA9O2bYZ/VpLkwpOacSIDBqB4nz7d0MeMwbFyscIJCpLX+fHH8gzyq69gPdLGnj14/5o16s8/e4Z9Uu6ntTUExJEjcG9xwsJg2apYMXtWN1Ny4QIEJT8Xly7heUli7OpVxkaMkMVGwYKwjDk5yTFgK1fK1rysiI9n7M8/IfzbtJGtR3Z2cC1PmYJzltW5SUlh7N49FO9cvhyu6aZN4a5Vfg9Fi+LYBg+G8Dp4EO5bS7UY5EckCd85t8r26IH7aE4TH494KO4aL1cOVuiIiJzftil49QqTln79zL0nAsaEYDKaQ4fwA+QuIH0JD5erH3/6acaYEX3x8lKv4q1SQRzxQWToUN0zt/R03ESKFMHguHSpbutTVqxZg4FQX3N6RARE4pAh6oNe2bIYFP/+2zAReuYMPv/tt+rPv3sHweLnx9jZsxj8P/0UloXevSEaNLl9G7EUffvK+xAbi1mwcl99fOCuev484zqiohirUQNupadP9T+OnCIoSE4QqFULFhZe2XrpUriluIXT0VEWSZ6esLRpq5KuSXg4LKcTJsDKY2Mjx3B16AD3x/nzugWMSgWrz5EjEFk9eqDCN18PDzCvVQuJCF9+CVfttWu558YRGM/58xDKRLDO/vVXzm/zwQPEFLq6YkLXqROufUsK4taHHj1wn3771tx7ImBMCKZsMX06bupnzxr+2YMHMSi5uiJ+whCRkJiImw+36pw+jfYJfHC5eVP3Zy9dwsBDBIuJsYKN8+GHaOGhi5QU3DBnz4a7zcoqo/jILLA6M+LiEHP18ccZb4SDB2OQ5bPY48chCoYMgcVk+HD190dHY/b5wQeYlaakIFBbua/t2qEFha6bbkICLB3u7sicMicPH8pZjhUrMrZ/P9xoP/8MEcNdidbWsjBxcIB77Phx3S4rlQrxe5s3o80Nj3Hiwff9+yMwPzhY+3mKjER83dq1sBg1bKje9sPdHVaksWMRG3f2LK5REVeU97h1SxbrderoTjQxBampcK999x1jrVrJVvbp07OXjGBO+KR8zx5z74mAIwRTNkhLQ0Bv0aLarQ1ZERWFgZ0I6/n3X/0+d/++7DZq2xb/N2yIv/37a//Mixcw6/Kb15Urhu+vJk+eZIwPkiQM1uvWIRCaD4YeHrDszJ0LoejoiKDc7DBiBESRZlYLd/Nt367+/M6d8sC8apX8vEoF15qbG1xX9eurC6WJE7N2H6WmQog4OyPY21w8fw4hYmMDMbplCywxY8aoJxMol0aNkO2nzVqTnAyRvWQJhDFfh7U1RPq4cYhp0rRmJidjwNy5E/Fn7drB6sa3aW8P4dq/P0oanDghhNH7QkgI7jVWVig5sW+f6S074eEQFFOnIpaTlw2xt0cSwY8/WlaihaFERSHB4pNPxG/CkhCCKZu8fo2BqWFDw+OQOCdPYnbu5IRYkazSpTdtkgeeihXlAHEi3ESUJCXBJeLsDGH3ww+mu3ktXYp9fv4c+zBihFwnx9YWloJvvkF9HJUK9XTc3OB+y8wKpg9//IHtbNig/nxICGJmlG41JRMmyK4Bzpw52oXE+vX63axUKgz8dnbYL3Pw9i1caA4OEKczZuB7r1FD+7GVKgXXlmZ2XEQEMjGnT4e1zN5edom1aoU0+1On5EB2SYLr8dgxbK9PHyQv2Nqqb6tTJ7iM9+xBzJ4y5kvwfvDqFYS5nR1CBjZtMs33nJoKN96332LSpazF5e2NEIeVKzEJzMsiScnQoYgjNGYiLsg5hGAyAdeuYWAZPdr4dbx7h9m6lRUsHMHBGd8TEYFBkd8s1q2Tb0iLFyP+htcwkSQEy5Yrh8Fr4kS4nUxBWhpuTnw/uEunYkXcMI8eVc8MkyS5NlLnztnfj5gYZNm0bKku/lJTce7KltWdfvv77/J+z52rXVDs2WNYGvv48fje9u3L3nEZQ1wcgthdXDDLrlUL1kqlYOFLwYKwaJ47h/MmSbBq+vvDKsUDcokw4PXogUHqxg185zExsDZt2IASGE2aqGelFSqE50aNwnsuXRK1i/IDsbH4LTk743pYvDh7tZTCwjAB02Y9atgQ97L9+99fMXH6NI73++/NvScCTfKUYFq3bh2rUqUKq1ixokUJJsZkq8+PP2ZvPZcvo2SBnR0GwpQUxCwtWYKbEXdxaWZ51avHWLdu+P/ePdlV16aNaWpGhYbiB9ytm1xviC/ff595nEB0NAbwFi1MY90aOhQCITRU/flp07CdzKqS8+Kj2hZjqgsvXKjd0pXTJCXhWHjxSO4m0zwmKytcA7t2YWALDESJiW7d5JpKRIxVrw4L4c6dcKneuQPhOHMmrEM8+5JbD6tVgzVp0SJYl54+Fa6D/EZyMq6lIkUgaqZONTweMSVF3XqkLEjr4wPRvmoVMjmNTUzJS8THI8O2WbO8F6CeH8hTgoljaRYmxjBYDBqEG0d23U3JyXATKQOkbW1hwXr1CjeRFi3k9z99ivds3AgLlK0trCxHjhg/iL17h4FwzBhYjviA3KgRhFz79nDH6Zu6vWgRjufPP43bH87x49iXLVvUn+cuumXLtH9Okhj77TftQqlePRyvoWzciM9//bXhnzWWtDTGtm6VW5HoWqpWhVVv2za43lq0kFvoODggzmPGDIjEn37CeevfH3FF3A3HXR7t2kGM7tyJuKT8MHAJdJOejkKPJUvinvD55/pbe7j1aMoUuHyV1qMPP8T96322HukiMhKTrtq1cU40XeUCy0AIJhOSmIg09rJls5fuzAsMKgfAzp1lM3fdurCycNaswXscHTEofvON4b58lQqxRt98g9gjOzuss3RpWB4OHlR3pVWtalhtkPR0xpo3Rx0qY1Nko6Lw+bZt1YXgq1cIJG/TRvusLCBAbleibXFzQ0kBQ9i/HwJw3LjcsayoVHKNqMyWokXhtvDzky1OHh5wX3brBpfc8OE4H8ogcGdnfG7YMGSwnTtnfPai4P1EkuBur14d10zXrrBm6yIlBdbeNWuQsam0Uvr65j/rkSbJyYg57dJFLgzbvj1ccgLLRAgmE/P4MfpedexonEn12jV5cG/aFC66ZcsghsqWRd2hIkVkq4YkyTehLl0Mm5m9eAELRO/eGFR5nEvnzoiPevRIuxgIDsZ7jx0z7NhevMAg3bmzcSJj4EC4JZXHqFLJfcc0Cyvevw+RwF1O5curi4v9++GmqlULMTuPH+u3HydP4gbXr1/Om80lCe6KrISStnglb2/UWSpTRt1tV6kSBqsFC2CFDAkR5n9B5ly8KBc+bd5cu9v75UvU48rMevTzz7lT2dtS4RXHR47EOEEEq9Lq1foV6RWYFyGYcoDffoP1Yf58/T8jSXKBxOrVYWFSiooHD1BvSBnwnZICSxN/LqtBLyEBQc8TJyIGhce41KsH98358/pltcyeDauMMVmBR45gu+vXG/a5q1fxOc1SAcuX4/nff5efe/EC7TD4eVG6mPgyfbr8/levIKZKl8YNP7PzeO0arDEdOuRspldMDFy8hgol5eLpicy2SZNw3q5fF9WvBYZx+zZi2IgwsfjjD9yXsrIe9ewJERAQkD+tR5r8+y9CGXjdMh8fuMTNXa9NYBhCMOUQ8+dDjPz2m37vT0iQB3JdZQVUKjnbTHPRVrmac/o0Bk7efNTbGwUc9+413D0mSfjRK12ChjJqFGaf2jIBdfHVV5iRKcXMhQs4npIl8Xq7dhnPi7JaNF927cpo4XryRC54V7Om9vivf/6Bhaxx45zpqK5SIWVfVykAXYujI9y0gwdjkDp9Wv+ebAKBNv79F4Vtrazwe1+5EtahyZMRx8jvJQ4OeDx5srAeaRIZiTjHRo1kq++gQYjjFBbdvIkQTDmESgUrROHC+rl6Xr/Gj+qXX7J+L49Z0lz8/BCkvW+fXARwxQq4YRo2xGB69272Ym4CA7GtkyeNX0diIixc1avrZ/GIjJTN+5Mn47wqs8M0F2dnnIOnT+VilZMmIX2eKPMA7wsX4HLgpvJjx+RaQz4+EDOmbsfx6BFcZPqIozJl0Kh47lxYwx48yLpul0CgD6GhsNjyvmt8UWZTliwJi5KwHmknJYW8novnAAAgAElEQVSxw4cR32Vvj3tvu3ZIrMiJSZYgdzFIMM2bN48Rkdri6en53+uSJLF58+YxLy8v5ujoyJo2bcru3Lmjto7k5GQ2ZswY5uHhwQoUKMA++eQT9tzAlIi8IJgYw8BatixM2VkJg5AQ3JCyyiK7eBHxRhUqwKqiDNxt1069VQVfPDxgzTFFcPKUKQgszm6399u3MTvltatUKtywf/8dN+Phw2E1K1pU/VjKlUN8GH/cqhVmbrzzubLVy6+/4vnBg3Hss2ZB9OjDmTPIJOMihf/NbisZxnBTPXlSve6RrmXwYLlad3x89rctECh58gQuel3XH7ceHThgmmv/fUSSUJdu1Cj5flyrFgLa9W1YLcgbGCyYqlWrxsLDw/9b3ih6RixZsoS5uLiwgwcPsuDgYNarVy/m5eXF4hRVDEeOHMm8vb3ZqVOnWFBQEGvevDmrWbMmSzdgmpxXBBNjSMN2dIQpNjPB8vff+KFlVkNo507MWpo1kzOY3rxhrEED+QZ34QLqmihvespsqU8/xSzy6lXDY5BUKsQnfPGFYZ9TkpwM8fbzz+ozV57yzl1MNWsiGP2rr+Qb+vnzWMeOHerH161bxs7nFy5gPV26yOKua1cILH2RJLmfExECy0+dMlx4RkWhHMLMmdprJWkuHTrg+xF1jQSmJjkZ2ZYlSui+9taswX3I2M4F+YWQEIRe8GQSb2+U3zAk1ECQtzBYMNWsWVPra5IkseLFi7MlS5b891xycjJzdXVlmzZtYowxFhMTw+zs7NjevXv/e8/Lly+ZtbU1+10ZtZsFeUkwMSa7gv7/NGjl8mW8R1sQoCTBBUME4aV5I1NmyimXGzfwelwcLBpz58LdxDvSOzlBfM2ZA8tOVqfz0iVZlGVFdDQG/W3bcBP55BNYxZQxRUrr2KRJEBWPH2f07y9dCjdbaioKg/LPNG2KbWgSFISq0y1aqJdXqFoVLkt9SU7GOgoVQuFQ3mPuo490N1yWJBzDzp0ox8BTsPVZDh0SLg6BaXnxApMTzUbSfPHxwQREWI/0IyoKhXp5xmDBgoz973+IGxSu8fcfgwVTgQIFmJeXFytdujTr1asXC/n/zqchISGMiFhQUJDaZzp37swGDhzIGGPszz//ZETEojSCQD744AM2d+5cndtNTk5msbGx/y3Pnz/PU4KJMVhl7Ox0N2blhRefPlV/PikJFZWJ0HJAl9WBx90ol+rVMXBrZnOlpmIGuXIl4mG428vaGqbksWORch8Wpv65MWMwi+KCRpKQ4n/yJLqEjxqF/VBajoiQfdauHSxF338PwcUNk2/fYrbbooXuG06nTrBsKV1x+/drPxcPHuB46tVTb8+Slobzv26d9m1okp6OQcbRUbZs8fpYdepgH5o1w7FERkIM9+ypPnOvWjVjI19ti8iUEZiC5GRMIFatyjwmbtIkUWPLEFJSkATSrZscl9S2LZJHhJs8f2GQYPrtt9/YgQMH2O3bt9mpU6dY06ZNmaenJ4uIiGCXL19mRMReakxVhg0bxtq0acMYY2z37t3M3t4+w3pbt27Nhg8frnO72mKn8ppgSklB4LWPD9pOaHLwIG5myhvZmzeIIXB0hEDIbN38Zjh6NATRhQswrxOh3cDatbqDDiUJLq2tWzFbUsZBlS2L+kfKhr8DBiAri7dpUS4ffIB92LULlh59Ah3//BPZOIsXZ3zt2bOM2wgM1L6e588RlFqlSsbsv4cP8Vl9isJJEgo42tigUJ+21w8cyLhfjRsjy/HYMQxcnTtnLpRWrxbZMgLjef4c94WJE3Fv0VY+gwg1kPbuNa6afX5FkjC5HT1arlHn54dJpuZEUpB/MEgwaRIfH888PT3ZypUr/xNMYRpX0+eff87atm3LGNMtmFq1asVGjBihczvvg4WJMdzgeKftjh3h1uFWEu624+62u3cRZOzpqdsqxRhqCDVpIt8cNTO4bt1irG9fzIqKFkXvM32yvMLCYMofNw7ZYpo34MGD0XTWx0f7TZpvr0oVuLA++wwiZOZM3HT8/eGCu3YN52XGDPU+cNHReI6vjw8Gq1dr39+3b7GtkiW1F+88ehSf1yfteeZMvNffP+Nrt25hgCpWLOMxt22LAaxu3YyvVayI1iOOjugVqGGIFQgyJTkZgcXceqTrd0cEod+tmxBJxvD4MQq68nZQJUqgR56hnQAE7yfZEkyMQeyMHDkyR11ymuS1GCYlKSkYiHmtnTp1EIT57bdwGTGGwGJXV7jUNBvMKgkMxI3T05OxH37A+nRl2YWEwC3o4ADL0JQphsUtjByJ9atUECeTJ2Pwd3dHEPmLFxB558/DWvb992izMnEiLFLt28NNVrq0dsvUlSt43dubsXnzUI7ByQnngccKdOyo3Q0XF4fPFi0Kl5w2li3DOrIKpF65EttbuVJ+7vVrCDWebl20KGMTJsg9A1UqlG/QNngtWYLzzGNIhg8XZnxB1uiyHjk6YoLUrRuSPby88LyTE2Pdu6OchhBJhhEdjZ6KPCvW2RlW9VOnRFySQJ1sCabk5GTm7e3N5s+f/1/Q99KlS/97PSUlRWvQ9759+/57T1hY2Hsf9K0NSUKgNS+WyJdVqzBDbNcu8yDsXbtw86xXD2IlPR2ZZitWZL7dV69gQSlUCDfhYcPgrsqKkyexfxUqQHi4uEDYGPsVJCVhv0+cwHpPnEDwOT8PI0fCysWFhpeXHPekuR4emJ2Z1WboUIjTzOBWvpkzIWwPHoRbzdYWYrZrV1iqlDFh2lyGfOncGULL2xsC8OBB486V4P2GW49WroTo8fZWj//r0wcTqj17YP3gFl+lSBIi3DBSUlDzrnt3TCKtrdGLcudOcS4FujFIME2ePJmdO3eOPX78mAUEBLBOnToxFxcXFvr/ZpAlS5YwV1dXdujQIRYcHMz69OmjtayAj48PO336NAsKCmItWrR4r8sK6ENQUMbB9tkz7e9NT4d1iAjxRsossEaN4H7Th5gYZJ95eiJ+qEcPOatOG8eOqYsZYxvoavLkiXaxwatx88ealjNu9alWDcIxq8y9xo0zbxZ89CiEaq1aiFvgGXx16yJQPCJC/f3PnkGkKfd58GB8P+npyA5UvqZvxXfB+8+zZxA5EyZotx5NnYqMybAwFDVdtAjXpVIk7d8vBnZDkSS4/MeMkeOSPvgAk0yRJSjQB4MEE6+rZGdnx0qUKMG6du3K7ipSfHjhyuLFizMHBwf28ccfs2CNohRJSUlszJgxzN3dnTk5ObFOnTqxZ7rUgQ7eN8EUHy8PrHZ2sN7Y22MAVgaIR0VhFmRjA7Gg6V4aMwbxMYaQlISA7rJlsf02bVC0UXPdy5bJ+zhtmnHHqcnly+qig8cv9esnW7CIMKNmTK6i++mnstWnWzfMzrPCw0NuWKzJvn3q4sbLC8eoLXvt5s2M4u7rr5EZWKoUYh3+/VfOjqtYEc8TIYtOZMTlL5KScJ2vWKHbevTdd3Cvc8ulpkgqUAATGiGSjOPJE/xGeVySlxcmnX//be49E+Q1sh3DZA7eJ8H08qV6UDVjsP4sWybfXDt0gIiZPx/m41OntK9r2zZYi4yJYUhLQ5BozZrYZv36ECc8iys6WhY3dnaM3btn3PEyhp5sXbqoiw5lp+7YWPUaTX/+iQBz3g6lTh1k/WlafXTx9i0+9/PP8nNJSTheHgNChMD0EycyVjGXJHULG1+U2XrPnqm3lChbVg7WT01FBmKpUvh++vTJ3vkTWCa8hQ63HjVoIFuPnJwQIzNtGn5XmhWgHz5EzB+/hgoUgMD++WchkowhJgYV8nnD8gIFkHRx8qSISxIYjxBMZuTmTYgiHx/U7GneXP11zQBxvugqbsitH5cvG79PkgTR0LQp1lW5Mjrdp6SgtYiNDQKxW7c2vBL18+eIJVIeS6dOGd17kqRe+ZsIrsPJk43LVrl4Eeu4fRvWqOHD5WByvmjLrEtIQPNMTaGkrZJvTIy6CJw7N+P5SUmBNc/HBzETAwboL/oElofSetStm3oNrjJl4B5fu1bdeqQkM5Ek+o4ZTmoqJjY9e2JiaWWF+9SPP4pAeIFpEILJTBw9imyMOnVgZfrkEyzakCS5sCVfVq9WL8zIGAZke3vcpE3BlStyLSFfX8Zmz8b/3FVw6JB+64mKQn0i3kCXL5UqoQ3Dtm2oa3TyJAYLTYEyaZL2AUdfvvwS6ylZUj6WIUPkfdAMJudlDpT74OqKkgK6zlOZMrDA7doFYcljmrS1l0hORlyUhwfcMqLEgOUjScg03bMH1s769WFp1cd6pOTBA5T24JZcZ2c0sz1wQIgkY5AktIIaO1YuwFujBiz0+pQQEQgMQQimXEaSIHasrGCR4Ob25s3hqskMHiBdpAhieNzcMLArAxbr1MFAbUru3EGara2tLCCqVoWLKbObfGIiblyFC2P2/OWXuLnVr4/imMWKZRRR2hZvb8MtMfHxmFm2bCmvZ8AAuPeSkuAu8fZWr6weEID+dcptlymjvf0KYzDtf/01rG4ffogaLpwff4R4bdgQGU6XLmWc5YaG4vtydNRe80lgPiIiEKj/1VdwiXN3sKb16Pr1rMW8LpF08KAQScYSGgrrXOXKOKfFi8MCrWtSIxCYAiGYcpG0NNRC4oHTyirP9eohxT8zVCoMrmvWIGZmyhQER9vZocfcnTtYh452f9kmNBSuB6WgGDIk4/skCTNxX1+IrFGjMp91p6aiwnloKI7JxgYZfERwM/KmwVm5AFUqxs6dg2DktZ64a/Gjj+T3TZqEc3btGra9dy+EjfK4qlXTXdOKMQitjz6Ca23u3IxxT4zBXaOMY7GyQnHNfv2QQn7uHLL9Bg/G66NHi4an5iAxEVbC1asxaVFWund3R4mPuXNRaFVbaQtt3L8PMf3BB7JI6t1biKTsEBODWED+my5QAL+l33/X/vsTCExNnhJM69atY1WqVGEVK1bMc4IpJgaVoG1tUSRNkypVUKQuK2rUgABRrnf5cvXsGyL1cgOmRrORZ9OmcFcwhhk3b0zZpYt+NZ44KhUyWXr0QOmCKlXw/JEjWN+GDdo/FxKCjLoyZeSA6/nzZYtP+fIQScp1zZ2LopKaFZOrV4e7NDNxtn8/rHu+vvo1Ik5NhfD74QeIooYN5QbIRNg/Z2f836iRSHHOSVQqZCpu345rrHZt2XLq4ABL4fjxjO3ejWxHQ+L0dImkQ4cgygSGk5qK/o29emGyaGWF2nX+/hlDEgSCnCZPCSZOXrMwPXkCi4Wrq+5eZr6+cFllRbduKNSoSUoK3EDKwf+nn7IX+6OLkBBYgXisDncTDhmCG1q1aroz+TKDF7G8eBEuP2V7wS++wA2TB1zHxUGA8CwYFxcElF+4oD7IJSfDCrR5s3rNJ6VgIUJBzj17Mu/t9u6dHPvUo4d+LWZ0kZaGY/H3xwDdpIksmrp1M369AnVevIBgmTEDvxsXF9naV7UqLLMbNkDoG2Pdu3cPxSR5YkbBgrBSCZFkPJKEQPlx4+S4pOrVYXXWlpwhEOQWQjDlMCoVBuOyZZFOr4vChXFDyIpZs2BN0kVCgroQKFkS1cNNPRvr2hUB07t2qW9v/XrjzeMdOiCgnJcB2LVLfi0xERYnLiicnOQsmF27dLs57t/HZ0aN0h4f5esLM39W+3z9Oqxfzs4IUjc0Q1Af0tMxAGfmvhToJjYWbtTFi1EiQml19fKCxXPxYrwnJsb47egSSYcPC5GUHZ4+Rf0p/jv39IRl+ObNnPm9CQSGIgRTDsOtJlkVV7Szg9jICt6+I7M02SpVIBBu3UKgs60trFvTp5vG3fP0Kdbn4qIe76GPhUwXDx9iHdu3Y+AhkqudP3igbs0igusjq9lmQgLivbQJpWLFEIytq0QDR6WCy9PODgHaunrVCXKX1FRUpt+4EVaiqlUhoLmAad4c1/uhQ6bJlvrnH7h5q1eXt9G3rxBJ2SU2FhOQZs3w/Tk54bxqq4cmEJgbIZhymC5dENOQ2QwpJQU3YX0ypf76C+/dulX768+eYXBfvlx+7vnzjAHi2moJ6YNKBbHBhUebNkiJ5o+NZdw4uPWSkhDLVaoUgmwbNcJ63dwQczJ1KtyBffvqLkDHywK4u8MdpxRKbm6YxepTDDAsTO71N3WqCMg2F5KEeKKffkJByA8/lLMrbW0RhzRyJAbeu3dNV5hQUyS5uCDI+MiRnI0RfN9JS8Nvu3dvOS6pRQvGduwQcUkCy0YIphzk5UsM7llZjiIjcUPWpzmrSoUUfyK48DSFGO+Dpu3GExODIns80LldO7gn9DV38/3ky7Fj8mf5c48e6bcuJXFxGIxmzVLvH0eE2J79+9UHqP37cV779VMfHHlZABsb1EQaNgw3YuX6MnOLKjl6FALOy8u4eCyB8bx9iwF13jzG2reX+37xgP4+fZDRdvmy6a07d++ilEC1akIkmRJJgkVwwgS42ngm6pIlIi5JkHcQgikHWbAAqa9ZxUs8fYobyB9/6LdeSWJszhw5NoeLhrAwZPosXJj551NT0ZWb14WpVQtZQboCxNPSUHNGKTw0XVmXL+P5woX1OwYla9dC5OzeLQdxE6GQpS4xt28fPtO7Nz7HywKUKwch+dVX6n3qrl6FZax798z3JTERopMIhUT1TSMXGEdiIq6dVavwXfKehkQQSu3b47v87TfTNXzWhIukqlWx3UKF0Ebjl1+ESMouz54hboyf22LFIJqCgkRckiDvIQRTDpGejoDioUOzfu/du7iZGNrSZPNmiIbOnRGvM3EiXE76BrRKEqwnbdroDhA/eVKebRMha0XbIKK0DGVWv0gTlUpdiPEq4vPnZ/65yEj5vUQobXDwIDKevL1xXvhrf/2Fz+zdi8eHD2tf5+3bOFZHR1gFxQ3dtKSno1bYtm2MjRiB749/T46OcL9OmIBsxZCQnD3/d+7AgqUpko4ezTquTZA5cXGIRWzeXI5L6tMHolfEJQnyMkIw5RC8WSsfrDPj2jW815ju2cePI3Orbl3cmObONXwdjGHbvJq3qyuy4OrUkd1izZujAGNmlXR5n7iqVfUrZ3D9uhyoS4QAXUmCG2zBAu2fiYhARV8nJ1jTlD3nihfH+vr2RQwXEQK7OZKE3nUlSqiLSkmClcvBAfEqxsZ3CdR5/hwidvp0BPXyYqK89MTgwQjaDgrKmfIXmnCRxLOwChVCUoQQScbDGw4fOYJz+8kncgZr8+YQThZ8mxYIDEIIphyiUyfMoPWZJf/5J27gvPijoVy/jriAggVheckO//yjbvGxtkaQOBHanGTGwYPy51at0v2+v/9G5W7ldpT1j7QJpnfvkBlXqBDiSj79FAKNF6vky61bKFjp5obUcs3z/+wZztOIEXj85g2+KyL0oxIuGOOIiUGNsUWLkOigbETr7Q0BvmQJY2fO5F5gryRB/M6dm1EkHTuWf0RSejoqygcH416zZw9qmN28aViAfFoarOG7dmHS0qIF4iWV1uc2beCC4xmuAsH7hC0JTM7z50S//Ua0cSORlVXW74+Px9+CBY3bXp06RDdvEr19S+Tubtw6JIloxw6iWbOInJyIvviCyM2NaOtWPE+E/589I2rViqhZMyJXV/V1VK4s/794MdHEieqv//MP0VdfEf38M1G5ckRffkn09ddE27cTWVtr36/UVKLNm/G+N2/wnIcH0S+/4Fi7dSPq3Zvo5UuiQYOIli8nun+fqHBhom3bMp5/X1+iJUuIxowhKloUx5SeTvTrr0QdOxp16vIdqalEwcFE164R/fUXlvv3MWy6uBDVq0f0v/8R1a+P/729c2/fGCO6e5do/35cZ/fv4zr99FOiZcuIWrcmcnDIvf3JCRgjio3F70G5vH2r/bmICHxGG4UKETVqRNSkCZb69fH7T0rCd3zzprwEB+N5IqIyZYhq1cJv3M8P/5cood/9TiDIq+QpwbR+/Xpav349qVQqc+9KpmzdSlSgAFGfPvq9P7uCiYjIywuLMahURB9/THTlClHfvhAUvr547d49oqdPMdg8ekR0/DjRunV4zd4eN1cnJ6KUFKLoaHmdGzbI/z96RDR/PtFPPxGVLInzM3Ag0ZQpREWKQPBoIklEu3cT9e+v/nyhQhA2vXtDuNnZya9ZW8vvv3YNgk8bQ4dCMC1ciOPeu9f4c/e+wxhRSAhEERdIN2/i+7a1JapZE+J5+nQMtpUq6Ra/ObmPd+5AIGmKpBUrcJ1YukhKTNRPAPHn09LUP29tjQlAsWJYvLyIPvhAfqxcihbF7yYwkOjSJUw+5szRvW81akAQ9ekDceTnp/u3JRC8z+QpwTR69GgaPXo0xcXFkaumecNCSE+HIOjXD7NtfYiPx8zMySln900X1tZEYWEYYHbvlp///XeIHH9/vBYQgBvxrl1Ejx/D0pCaitmukjNnIESePIFl6McfiYoXJ1q/HmLF3p4oLg6WpXHjiBwd5c8yRhQeDkuUkt69iXr1ImrXTv39SgoUkP/fvJmobt2Mg/eDBxCFnMaNhVhS8vatbDXiS1QUXitfHqKod2+iBg0wcOr6LnIaLpK4JenBA4ikLl0sQySlpWUUPJkJoISEjOsoXFhd6JQtq1sAubtnLVQZg/X73Dl1y9GzZ5l/Lj0d59LdHRMeC731CgQ5Tp4STHmB48chPkaM0P8zhQvjZvb6NYRFbmNlRTR2LNGMGRArxYtD7Jw5g9f/9z+8hzFYhBo1Iho+HDfwn34iOnIE7ytRgigmhqhFC/X1jxkDV5lycPX3x6x61Cg8fv2aaNIkrI9TvDjRmjVEnToROTtnfgxPnhANHkzUtSvE3aBB2Ofvv8dAwhhcdOPGwXoWFER09CisTL17Yzae30hMxHlQiqMnT/BakSIQRePHy641Dw/z7i9jcAtxS9KDB7B0fPop0apVEEn29jmzbUmCcNRXACmtrRxnZ3WhU6OGulVIKYCKFMnesahUOD+3bsnC6NYtoshIvF6kCKxGvXvjr58fUYUKRDY2eJ0xCKlLl+Rlyxa85uUlu/CaNMFvx1aMJIJ8gBVjurzblgu3MMXGxlKhQoXMvTtqdOiAmIG//tL/My9eYBA/dIjos89ybt8yIzaWyMcHsQlv3xK9eqX++ldfwSRfoQJuxuvWEc2dCxG0bBlcbK9fw/X2/fcZ11+yJAa0li2JmjcnatqUqFQpWI3mzMFnlUyeDEuBPqSm4sYdEQEB4OYGq9agQUSff454qpEjiQ4cIBo2jGj1agxeKSlEtWvj/6tX5cHifUSlgntVGXcUHIznHR0RB9egAcRR/fpEpUtbTjzKP/8Q7dkDa9LDh/h+u3Qh6tHDeJHEGNG7d/oLoLdvIZqU2NlpFzu6rEBKC6gp4fFGSnF0+7Ycb1S6NEQRX/z8EFdm6PcbFQW3PRdQgYH47bm4EH34oXocVFYTHIEgLyIEkwkJDYXVZcsWuJ4MoVQpDAD6ioScYMUKWMg+/BCuqoYNMShUqQILw5EjuFF+8QXcIaNGwUKTnk60dClcbo6OiE0aNw430rg4ogsXiE6fJvrzT3xOF2vXYt0+Plj3l1/qt98TJiBm6soVuOE4/v4QTURwI/zwA4LElVy9imNdtQrreR9gDCKcC6Nr14iuX4fbx8qKqFo1DGpcIFWrph4LZgm8e0e0bx++s4AAiKTPPsNvpGVL7SIpOVl/AfTmDQSzEisrWF70FUCurrkvKqOj1S1GN28iZkulguCvUkVdGPn5wYKdEyQn47riAuryZViYbW0xEeECqnFjnDOBIK8jBJMJmTMHg35YmOEzrD59EFx95UrO7Ft22L8flqA2bYhOnsQgu2EDrFErVhB99x3cXhMnYtEMCE1IQBbavn1Ehw+rv2ZlhXM2bJg8CJYoob9gOnwYbrjvvoNbkZOWRrRgAQQdEQLFjx7VHucxdizcdXfvYjae14iJwcClFEjcQujrK1uNGjTAQKZvbF1uwxgE7A8/4FpJSMCA37kz9l1bZphSAL17l3Gdrq76WYGKFoXL0VKsjFz0aoqjp0/xeoECcIUpxVH16uaLgySCBe6ff4guXpRFFI+PqlRJ3Y1XrpzlWDAFAn0RgslEpKXB7dS1KywthrJ2LSwzsbHmC6TVBWOIIwoIQAbdkCEIqp4xA9alceOw78oYl+RkBI3v2wehkpiIQbtWLbjsduyAG48o441TX8H0+DEEQKtWiGnh63n8GEH3gYFwEXp6IuZq5Eh8N5rbe/eOqGpVWFpOnLDsGzljGDivXlVP6SdCBiEXR3yx5ID25GRcU0eOEH37rX6fcXTE96mPFahIEcvPjiOCdejhw4ziiMcbeXhkdKlVrGg54i4znj2D5YkLqOBgXMOenuoCys9PxEEJLB9xiZqIY8cwqzck2FtJ48aIBwgKQlC1JWFlBUtOejqET7duSEUeMQJWnGLF8Pzff2PwPnEC74+LQ9r5nDmwUJUtC3FVpAgeZ0eYpKRgHR4esEjwdV29StS2LbZx6RLcikSwLHE3qaZocnEh2rQJolBbKQNL4OVLxGXt2IHB1c4O57ZlS6KZMyGOKlbM/ZR+Q0hNhcA7exYu2gsXMr7H0xPfa/Hi2q1Azs6WLWizIjlZvb7RrVuIN0pMxOulSkEUjRsnCyRj4o0shZIlsfASKzEx+I1yK9SMGfgtOzvjt/rRRxBQDRpkr8yKQJATCMFkIjZvhtm5enXjPv/BBzCzX75seYKJCO6yCxdQ+I8IA7WNDSw5Dx4gXZlTuTIy3nr1Ui9mGReHAV+zlIAxTJuGgebKFfU056VLcYO+cgUWF86QIXAZDBsGUbF2rfog1LEjbuoTJkBwFS2avf0zBSkpsM5t3070xx+wlnTrBsHXpInlWSI1SU+Hq/DsWSyXL8vCQMnq1UQDBpg/C8/UREdnzFK7d0+ON6pcGYKoRw/ZcpRT8UaWgpsbUfv2WIhwjd+4IVugvv0WCSY2NjgnSiuUp6dZd10gED7aiJYAACAASURBVILJVJQpg0GtTh1kZbVta9is0NYWsypLiGGKjIQIevgQf+/ehQVNyaVLsKhVqgSLTMWK+L9iRd0Dn2YpAV1YWRH9+y9M95rn8PVrlBr47juInjp15NfevEHQ+qpV6mKJ8/nnWOfw4Vjvd9+pr3/NGgTNTpigXo8qt7l5EyJp925kJjVsCAtYz56WXQNHpcK+c4F08SJqjNnaQjxxnJ1xzQwdiiD9vGo94TAGC6CytpEy3sjJCROiJk0QL1erlvnjjSwFBwdMEBs1wiRIkmClvnQJ18+RI/hdEqEOGLdANWmCjN28fu0I8hjm68piPJbaS+7SJTSqJUKz0WvXDPv87NmMFSuWs13alYSFof/bokXoF/fhh4x5eKj3ZlMu3t7oOP74sWE9qBhDr7gKFRjr1Svr9y5Zgu317MlYfDyeu3ePsWHD0CDX2ZmxWbMynqdVq9AgOCIi8/V//z3WP3t2xtf8/fHa8eP6HZepePsWjYJr1pQbCU+bht5+lopKhX5kq1ah6aqrK/a9QAHGWrdmrHdvxurXR+8/IsY++gjnNyHB3HtuPOnpuBZ/+omxqVMZa9WKsSJF5N+IuztjLVsyNmUKY7t34/sz9LciUOf5c8b27mVszBjG/Pzkht1Fi6Jf5MqVuNfmRgNnQf4mTwV9K1ujPHz40KKCvjmMISNs5kxYZrp1I/rmG1hfsuLECdRxevQIs6mcpnFj2aJVuzaCnrmVqFIlxBpMmQJT+J49KC1gLPzYLl3CdrPi4EEUzExIwH7dvYu4lnHjEDul2TOPMcT0VKqEAPDMSEpCNlz79nKfPOV62rbFLPfu3ZzNKEtPh1Vy+3a43hhDRtjgwahobmlBsLxPG7cgnT8PCxi3EjRvjusoJIRo50644zw98T0OGaLfb8CSSE5GGQyl1Ugz3oj3UeOLj4+weuQ0sbFIFuBuvIAAfFcFCsBK36QJLFENG1puRqggj2JuxWYMlmphUpKeztiOHYyVLMmYjQ2sIy9eZP6ZqCjMnPz9c2cfHz9mrG9fbLNyZcZCQvB8bCxj/frh+YEDTdNdvn17xmrX1s96lpbG2L59jDk5yTP3vn0z7y5//br+lqGlSxmztWXs33+1v/74Mawk48ZlvS5juH+fsenTGfPywj7XqMHY6tWMvXmTM9szFkmCNWXDBsZ69MCMnogxOztYi+bOZezsWcYSExk7fx7XipMTY9bWjHXqxNiRI3ln1h8VhWNZtYqxAQMYq14dv1siHE+1avhNrFjB2J9/MhYZae49FnBSUhi7epWx5csZ+/RT2UpubY17zrhxjO3fD4u6QJAdhGDKYZKScBP28GDM0REDZVSU7vdXrcrYiBG5t3+MMRYUxFiJEhjwrl5lrEwZxgoVgkvBFDx4gBvYjh2Zv+/dO7ilSpfG+1u0wD60aYOb3/LlugXX6NEQIGlpmW8jKooxNzfGvvgi8/etXAnT/9Wrmb9PX2JjGduyhbFGjXBshQtjn69fzz0XbFZIEmOPHjG2eTNjffrIgs7WFu7aWbMYO3VKdqmFhTG2eDFcrUSMlSsH9+7Ll+Y9jsyQJLh4jh1jbMECuHT49UYEwdegAX6DmzbB1ZOYaO69FhgCF/pbtjD2v//huuTfb9myuM9t2YL3WMpvT5A3EIIpl4iJYWzOHFguCheGlUPbjfjzzzG7zW1WrJBvKg0bwspiKsaOhXUiKUn762FhjM2cCSFjYwNr0o0b8uvp6RCaRBjINWNgkpNxTqdNy3pfpk/HdxAenvn70tIYq1sXloWUlKzXqw2VClaLgQOxTSsrxtq2RTyGrnOR2zx5wti2bbCq+PjIM/N69XA+T5yAkOWkpTH2yy+Mde6M78rRkbH+/XGcKpW5jkI7PN5ozx4cS+vW2uONJk9mbNcuxu7ezVpwC/ImYWGwMo0bB6uTtTWuAQ8PWKWWL8fkyNjfuiB/IARTLhMeDuuGrS2CqLduVb9Jb9+OgTU6Ovf26flzOTCXyLRulNhYxgoWhFjU5M4dxgYPRqB2wYKMTZrE2NOnute1dy+Eh58fY6Gh8vP792O/793LfF9evMAAr21ftHHrFkTBggX6vZ/z9Ck+U6YM9qt8ecYWLmTs2TPD1pMTPH/O2I8/4rxzy4qVFWO1auH8HzsGca/Jw4eMzZghW51q12Zs/frcvU4zIymJscBAWA6++AIWMWdn+ZouWRID47x5cBU+fSqsC/mZuDjGTp6EW7lFC9xXiHB/aNoUCSG//477l0DAEYLJTDx6hIwxHj906BBu4Nx99fvvOb8PCQmYXSsz4bZtM+021q6FOOTxW5LE2JkzjHXoIGfeLVum/8B76xYG+iJFsB7GEB/VsGHWnx0+HDNKQy6bmTMh6LLKVktMROZUq1YQIM7OECUXLph3YA4Px34NGwbhxr/nGjUw2z58WHc8TkICxFXTpviMmxvciEFBuXoIGYiOhkVr9WpY72rUwDXGrWNVqyLeaPlyxk6fzjprUiBITYX7deVKuGl5vJ61NSZoY8ZgwpZVHKrg/UYIJjNz/TpcBdwVdvYsxMDcuTm3zaAgzMJ5Gjhf6tbFTcGUFqbWrRlr1w7r/OknWCb4gO3vb5wJPCICwsTGBqnd1tYoFZAZ9+/j/atWGbatxETE6DRunNHlJEmM/fUXYyNHyueySROITqUbKzd58wYWt1GjIMT5d1ulCr7zn3/OPLhcknBNjholH1Pz5nBZ5XYsjyRhgDp2jLGvv2asa1fZasetAfXrI95o40bGAgLydskCgeXAJ68//ICJD4/TI8KE7X//E0I8PyIEk4Vw+jQEC/9RFi1q2vXHxGBQ4YLFywtBvP/+C5fggQOyJaFECbiUXr3K3jaTkrA+Hx+4RIggoP74I/tWl7Q01Lrh5yurmKTu3Rnz9TUudujcOWxjwwY8fvUKMV/VqslWslmz4LbKbSIjYZ0cOxaxb/x8VKgAi9qePVmfG8YQDL92rVwHqkQJ+frIDVQqiNo9exBn1qaNPMvnQfItWsAiunMn3Lki3kiQm7x6hbp1ffrgmrxyxdx7JMhthGCyICRJjschQuG/S5eyN2u+dQtFKQsUgCXmk08QtKtrsLl9GwOtkxNcUf37Y+ZuKC9eIHCYH8uAAdgXUyJJ8vrr1NFtOfnrL7xn+3bjtzVokLwdW1ucm549ERSdm4UJY2IYO3qUsYkT1Yv4lS3L2JAhEBP6ug1UKqTI9+mDgqC2tnBH/PprzoqR5GRYsbZsgYuvUSP1eCNfXwSVz5sHl2FoqIg3ElgOGzbgtyKyJ/MfeapwJScuLo5cXV0tsnClKTh/nqhZM/mxtTVR1apoA1K3Lv7WrIlCbZmRnIxij4ULoy3IoEFo5KkP0dFE27ahb9mTJyhaOXYs2nNo6wAvSWgP8fAhmsT+9JPcDuPZMyJfX/22awhXr6Jg4rJlRCtWoGjgmTPq7UMYI2rVCi1V/v7b8A7vd++isOS6deh7RYSWLH37ZiyemRO8e4fifLxYZFAQzrWvLwpFtmiBa6VUKf3X+eIFCnZu24bvtlIltCkZOND0/bpiY+V+avzvP//g2rC2xrZ50Uc/PyxFiph2HwQCU/K//+EaDgw0954IchshmCwQxtC49uhRDGoJCaiafOMGKg2npWHg1yailP2pfvsNTWXv3sV7jUGlQpXutWuJTp7EczVrErVpA0EWEkL0+DEGXi4ofH3Rj23rVvTQ2rs3e+dDFyNGEP3+O7Z95w5R06aoCn78OM7VL7/gHIaG4u8nn+i33vh4ol27IJT++gu98fr3hxBbsIBo3z4Ix5wgNhYC6cIFCOfr1/EdlCgBgcSXMmUMqyidmooK9D/8gHPm6IhjGDoUldezU506ORl900JD5eXRI4ijx4/xHkdHoho11MURbzgtEOQlKlZEN4C1a829J4LcJk8JprzQGsVUvHuHMv+MYdDmJf5TUiAObtyQRVRwsCyiqlWTRdT338NS9PSpfgMiY2i8y0VQSIi8PH4MC5ImhQqh2/oHHxCVK4elfHmIPHd3NI0dNsy054YI7Sm8vIjGj4eIiYkhmj9fbtRJBItT585E3btDZOjDmTNoTfLiBVqnDBlC1KkTkb09Xu/alejyZXSdN4WFKSICTUa5QPr7b1iQvLwgAJs2hRXJ2Eaj9+9DJPn7E719S1S/PkRS797aGxRrIyUFVkKlIHryRP4/PFx+r40NBHPZsnLbED8/osqVLa/Vi0BgKJGRsIDu3g0rsyB/kacEE+d9tzBxHjyAK6xNG/RH0zVgpqRANN24IQspPvASwSLERZSfH1x0L15oF0VxcfJ6ixSBACpbVhZDZcsSFStGdOoU3HUPHuC9trZEbm5Yt5ubbK5u3Rr9xQoXll/T/OvmZvhguns3rD7jxsGCdv687AIkQq+4hw+J7Oz0W19CAtH06TimZs0gMsqWzfi+sDBY67p2hfXPUF69wr5ygXT3rry/H38MgfTxxzjXxlp94uNxvWzdil6B7u5EAwZAKNWokfH9aWmZC6KwMIhpIrjRfHywv2XK4C9fypSBy1cII8H7Crfah4Rovz8I3m+EYLJwDh/G4Lx8ORrhKomNhaXj7l341F++hHhKTSU6fRp/9cHNjahLF6IqVdSFUVanVpIQR/T8OSxZMTHy3y1b8J46deTnYmJkEaeJi4t2MaX8W7gw3nfjBtHChficnR0sMJ07w+Xm6wvX02efwYri749BPjMuXUJ8V1gY0dKlRKNHZ/6ZLVuIhg8n2rw5a+vZs2eyOLpwASKOCGZ9pUAqWTLz9WQFt0T+8AMaJSckIHbr889xg3/zRrcgevlS/l6srCB6dAkiHx/9RahA8L7x5Zew3L9+LZos50eEYMoDzJyJwObTpxGjtHAhAmi5i8zKCgKnVCnEitjbw1J05kzGdTk4wC1jY4NB9OFDWGbs7IiqV1ePiapRQ3uAtz5Uq4aAbC6ciDAov3unLqyiozOKLV3PJSerb6NjRwSXa7sE9u2DyXzECFiNtN3ckpKI5swhWr2a6MMPEQhdoULWxyZJCIDfsIFoxgyib76BwGIMM0+lQAoNlc8Hd7F99BFcbqYgIgL7vWABzi2nWTPsT2gorIkqlfxaiRLqIkgpikqWlN2PAoFAndatEXf3yy/m3hOBORCCKQ+gUkHkBAXhsZ8fUYcOcA1Vq4ZMI2Wwt5L0dKKAAARunziBQFwrK7j62rdHbI+9PZ7nLr07d7BNe3u48+rVw/br1UMsSlYWm/BwDMp79sDKYyqSk2FVO3YMlp1q1XAe2rYlatIko7jbtg1uqEmTEIReooScJXftGrJdQkMheCZMMCyDjjGiVatkq1+XLrDwhIXh/Pr5ydajjz7KXuaXSoX1cotQSAjcbdpiyoiQGZmZIHJ0NH5fBIL8ikoFK/fMmVgE+Q8hmCwcxmBBGDJEfs7LCxlbBQsSOTur/83q/3fvELR84QLcaUQYzFu1wmBaqBCsTY8fIz7p/n3E3XBcXGB94gKqXj18TmnB2bULMTOvXyPeydSkphIdOED0xx/I3Hv1CrO+5s0hntq2lYOk16whmjgRn7O1Rdq8UmjMnAnhWLq0uqDShiQhS1FpQYqIkF8fPJioWzdknbm56X88kgSRqc1dFhoKt15amvbP2tvDSlavHo6hVCnd4lkgEBjPnTuwup85o38SieD9QggmC+f33zGgEyHGyNYWg6ObG+JU4uPlRfmY/5+UlPP7WKwYLC1Tp+Lx4MGwhv39d85vmzGImD/+wHLxIsRF6dKyeCpdGoLk0CHE+HAKF4arj2NrC/GntMiUKgXX5fnziHWKiYFIadBAtiDZ2sKSVrAggkIrVVLfR0mCeNQliJ4+VY83K1JE3SJ04wa2TwTr3pAhsJw1aCDiKASC3GLrVrj4Y2PxWxfkP7IlmBYvXkyzZs2i8ePH05r/z+ceNGgQ+fv7q72vQYMGFBAQ8N/jlJQUmjJlCu3Zs4eSkpKoZcuWtGHDBvLx8dFru/lJMKlUqCF05gzRuXOY5RAhdb9ZMyzNm8M6ouvziYkZhdTLlwgU58u9e3ImlCFMnQqrVfPmqOvDGERG9+5wWeU28fE4T1xAPXoEq1GdOhBxNWogEJxniyUkZKwhpFzevoXFplEjWSA1aKDu1uIB1w0b4nH79hA6SkGkjL9yd9ftMitdWv1mPHEirGSNGkEk9ewpbtYCgTn4/HNkIN+6Ze49EZgLowVTYGAg9ezZkwoVKkTNmzdXE0yvX7+m7du3//dee3t7clcUrRk1ahQdO3aMduzYQR4eHjR58mSKioqiGzdukI0egST5STBp8vYtrA3nzmHhaekVKmAg9/VFJpOPD6xQYWEYsJ89U/+rLB9gZ4f3e3tDeHl5yX+V/7u5ZW3RePgQFpbjxxFfZG6ePIFwOnMGtaKmTTMsqDkhAecnNla3hSg0VLslr0sX7YJI30v22DFk/61ejRgrgUBgPqpVQzzipk3m3hOBuTBKMMXHx1Pt2rVpw4YNtHDhQvLz81MTTDExMXTkyBGtn42NjaWiRYvSzp07qVevXkREFBYWRr6+vvTbb79R27Zts9x+fhZMmnB30dmzcuZcWJh6TSJXV1g8SpXCwv/nf4sXzzqQW182bkRtpOjovGMJYYwoKipzQZSQIL/fxUUWQpqCyNsb9Zy2byeaNw+LMW6zFy8QON6oETJyhOtNIDAfMTFw4e/YgWQRQf7EqBJzo0ePpo4dO1KrVq1oIS+Io+DcuXNUrFgxcnNzo6ZNm9I333xDxf4/+vfGjRuUlpZGbdq0+e/9JUqUoOrVq9OVK1e0CqaUlBRK4X03CIJJAIoVQ6XtHj3k51QqCKnoaAzgyt5qOc2ZM3BhTZqE7RYqpL5oPufqioDtnBQEjOGGl5kgUqbkOzvLQqhFi4y1iLKytP3wA1yms2cjeH7LFsPKM6hURP36we23fbsQSwKBueGFeLnbXZA/MVgw7d27l4KCgihQR+fB9u3bU48ePahUqVL05MkT+vLLL6lFixZ048YNcnBwoFevXpG9vT0VLlxY7XOenp70SpmOpWDx4sU0f/58Q3c132JjI7vTcptWrWCtuXkTbj++JCbq/oy1deaiSpfQUj52cIBVRpsgevJE3QVZoIAsgD7+GE1nlYLI3T17IsXKimjWLKxr0CC4QQ8d0r+VysKFcsNdDw/j90MgEJiGq1dhYdKnTpvg/cUgwfT8+XMaP348nTx5khx1FHPhbjYiourVq1PdunWpVKlSdPz4ceratavOdTPGyErHKDVz5kyaNGnSf4/j4uLI19fXkF0X5BIjRmDRJC0NVhyliIqNzfxxRARqDukrvDiOjrIAatQIBSyVgqhIkdyx2vTpg5iyLl2wH8ePo4p6Zpw/jyKU8+ZBzAkEAvMTEADrkqlCFwR5E4ME040bN+jNmzdUp06d/55TqVR04cIFWrduHaWkpGQI2vby8qJSpUrRo0ePiIioePHilJqaStHR0WpWpjdv3lCjRo20btfBwYEcjC05LbAI7OxgYcluw9r0dHUBxYVWcjLcj2XKwE1pKW6sJk0wO+3YETfco0dRVVwbEREQdx9/DHeeQCAwP4xBMInEC4FBgqlly5YUHBys9tzgwYOpcuXKNH36dK0ZbpGRkfT8+XPy+n//UJ06dcjOzo5OnTpFPXv2JCKi8PBwunPnDi1btszY4xDkE2xtTSO8cpMKFSCaunRB+YWdO9VjzohwUx40CPWYdu82rOq4QCDIOR4+RDyoiF8SGCSYXFxcqHr16mrPOTs7k4eHB1WvXp3i4+Ppq6++om7dupGXlxeFhobSrFmzqEiRIvTZZ58REZGrqysNHTqUJk+eTB4eHuTu7k5TpkyhGjVqUKtWrUx3ZAKBBeHhgV6AQ4agltKSJShxwC1h334Ll92vv+quqSUQCHKfgAD8Ths0MPeeCMyNUVlyurCxsaHg4GD68ccfKSYmhry8vKh58+a0b98+cnFx+e99q1evJltbW+rZs+d/hSt37NihVw0mgSCv4uCAtjHlyqFpb0gIGgPfvg3xNGkSXHcCgcByCAhAl4XczDYWWCaiNYpAYAZ27EAD4bp1IZxKlUKPP0OKagoEgpynVi2i2rXV2yoJ8icmtTAJBAL9GDQIhUNbtsTjffuEWBIILI34eFiAR482954ILAGRJCkQmImnT+X/x483334IBALtXL+O5tki4FtAJCxMAoFZePuWaMwY/F+vnigjIBBYIgEBaIVUpYq590RgCQjBJBCYAWdnopkzidq2hWASCASWx9WryI4T+UgCojzmklu/fj1VrVqV6okRRpDHKVCAaM4cIZYEAkuFF6wU7jgBR2TJCQQCgUCgwZMnRGXLojaaKPchIMpjFiaBQCAQCHKDq1fxV1iYBBwhmAQCgUAg0CAgAG2NPDzMvScCS0EIJoFAIBAINBDxSwJNhGASCAQCgUBBUhLRzZtEH35o7j0RWBJCMAkEAoFAoCAoiCg9XViYBOoIwSQQCAQCgYKAAJT+qFHD3HsisCSEYBIIBAKBQMHVq6iRZitKOwsUCMEkEAgEAoECEfAt0EaeEkyi0rdAIBAIcpIXL4hevhSCSZARUelbIBAIBIL/5+efiXr2JAoPJype3Nx7I7Ak8pSFSSAQCASCnCQggKh0aSGWBBkRgkkgEAgEgv9HxC8JdCEEk0AgEAgERJSaSnTjhihYKdCOEEwCgUAgEBDRrVtEKSnCwiTQjhBMAoFAIBAQ3HEODkR+fubeE4ElIgSTQCAQCASEgpV16hDZ25t7TwSWiBBMAoFAIBCQCPgWZI4QTAKBQCDI97x6RRQaKgSTQDdCMAkEAoEg3xMQgL8iQ06gizwlmERrFIFAIBDkBAEBRN7eRD4+5t4TgaUiWqMIBAKBIN/TrBlRkSJEBw6Ye08ElkqesjAJBAKBQGBq0tOJAgOFO06QOUIwCQQCgSBfExxMlJgoAr4FmSMEk0AgEAjyNQEBRLa2RLVrm3tPBJaMEEwCgUAgyNdcvUpUqxaRk5O590RgyQjBJBAIBIJ8jShYKdAHIZgEAoFAkG+JjCR69EgIJkHWCMEkEAgEgnyLKFgp0BchmAQCgUCQbwkIICpWjOj/2rv3sKjqNA7gX+QO4ayIMiA06eYNUSo0xbU0RMQVJbHESwWb2kW0UNt9UnNj69lkc6Uk8JqmYYaVgm4qqRuQ5laIaGimpKaIg5RxVQSE3/7xexgab8NNzly+n+eZ54kzZ5iXtxFff+ec77nvPqUrIWNno3QBRERE7U2rBdauBVauBB55BLCyUroiMnYmtcLEW6MQEVFLCQF8/TUwZQpw773Av/4FPPEEkJCgdGVkCnhrFCIiMmtXrwKbNwOJicDRo0DPnkB0NBAZCfzhD0pXR6aCh+SIiMgsnT4tD7mtWweUlQFjx8pVpVGjgA4mdXyFjAEHJiIiMhv19cAXX8jVpN275QrSzJnAiy8C3bsrXR2ZMg5MRERk8kpKgA0bgKQkubL04IPA++8DkycDTk5KV0fmgAMTERGZrKNH5ZC0aRNw/Trw5JNAcrIMouSVb9SWODAREZFJqa0Ftm2Th90OHAC6dQMWLpSH3tzdla6OzBUHJiIiMglaLbBmDbB6tfzvESOATz8FwsIAW1ulqyNz16rrBJYsWQIrKyvExMTotgkhEBsbC09PTzg6OmLEiBE4fvy43uuqq6sxZ84cuLm5wdnZGePHj8eFCxdaUwoREZkhIeQq0uTJMjtp6VI5IOXlARkZMkeJwxK1hxYPTNnZ2VizZg0GDBigt/3tt99GfHw8EhMTkZ2dDbVajVGjRqGiokK3T0xMDFJTU5GSkoIDBw6gsrISoaGhqKura/lPQkREZuPKFZnE/cADMon78GFg2TKgsFBGBfj6Kl0hWZoWDUyVlZWYNm0a1q5di06dOum2CyHw7rvvYtGiRQgPD4evry82btyIq1evYvPmzQCAsrIyrFu3DsuWLUNQUBAefPBBbNq0CXl5edi3b98t36+6uhrl5eV6DyIiMj8//QTMnw94eQHPPw9oNDIm4McfgZdeAlQqpSskS9WigSk6Ohpjx45FUFCQ3vazZ8+iqKgIwcHBum329vYYPnw4Dh48CADIyclBbW2t3j6enp7w9fXV7XOjJUuWQKVS6R7e3t4tKZuIiIxQfT2waxfw5z8DvXrJeIDnnpPxADt2AMHBDJok5TX7pO+UlBQcPnwY2dnZNz1XVFQEAHC/4TIFd3d3nDt3TrePnZ2d3spUwz4Nr7/RggULMG/ePN3X5eXlHJqIiEzcb78BH3wgD7GdPg089BCwfj0QEQE4OipdHZG+Zg1MBQUFePnll7Fnzx44ODjcdj+rG8IvhBA3bbvRnfaxt7eHvb19c0olIiIjdeSIzE766COZnTRpksxRGjyY2UlkvJq1yJmTk4Pi4mL4+/vDxsYGNjY2yMrKQkJCAmxsbHQrSzeuFBUXF+ueU6vVqKmpQUlJyW33ISIi81JTA6SkAMOGyRTu3buBRYuAggI5LDFokoxdswamkSNHIi8vD0eOHNE9Bg4ciGnTpuHIkSPo0aMH1Go19u7dq3tNTU0NsrKyMHToUACAv78/bG1t9fbRarU4duyYbh8iIjIPFy8CsbHy5O0pUwA7O+Czz4Cff5YDE/+dTKaiWYfkXFxc4HvDtZzOzs7o3LmzbntMTAzeeust9OzZEz179sRbb70FJycnTJ06FQCgUqkwffp0zJ8/H507d4arqyteeeUV9O/f/6aTyImIyPQ0ZCclJspEbnt74JlngOhooF8/pasjapk2T/r+29/+hqqqKsyaNQslJSUYPHgw9uzZAxcXF90+77zzDmxsbDBp0iRUVVVh5MiR2LBhA6ytrdu6HCIiaidXrsjzkpKSgO+/l1e8xcfLYYlxAGTqrIQQQukimqu8vBwqlQplZWXo2LGj0uUQEVm0n34CVqyQV7hVVADjxsnVQ3A7egAAFKRJREFUpJEjGQdA5oP3kiMiomarqwPS0+Vht/R0oHNn4IUX5OO++5SujqjtcWAiIqIm++03uZK0ciVw5gzg7y+zlJidROaOAxMRERmUm9uYnVRfL7OTNm8GHn6YcQBkGUxqYEpKSkJSUhJv0ktE1A5qaoCtW+Wg9PXX8v5uixcDM2YAXbsqXR1R++JJ30REpKewEFizBli9Grh0CXjsMWD2bGD8eMDGpP6ZTdR2+NEnIiIIAezf35id5Ogo4wBmzWJ2EhHAgYmIyKI1ZCclJgJ5eUDv3sC778phiQv4RI04MBERWaD8fJmd9MEHjdlJ8fEyO4kncRPdjAMTEZGFqKuTN71NTAS++EJmJ734osxO0miUro7IuHFgIiIycw3ZSStWAGfPAgMHAhs3ymgABwelqyMyDRyYiIjMVG6uXE3avFlmJ0VEACkpMjuJiJqHAxMRkRmpqQE++0xmJx08CHh7A3//OzB9OrOTiFqDAxMRkRkoLJS5SWvWyOykkSNlPMC4ccxOImoL/GNERGSihAC++koedktNldlJkZEyO8nHR+nqiMyLSQ1MvDUKERFQWdmYnXTsGNCnD7B8OfD008xOIrpbeGsUIiITcepUY3ZSZaW8Vcns2UBgILOTiO42k1phIiKyNHV1wK5dcjVpzx7AzQ2IjpbZSffeq3R1RJaDAxMRkRG6fLkxO+nnn2UUALOTiJTDgYmIyIgcPixXkz7+WGYnTZ4MbNnC7CQipXFgIiJSWHV1Y3bS//4nD7W9/rrMTurSRenqiAjgwEREpJgLFxqzk4qLgaAgGQ8QGsrsJCJjwz+SRETtSAggK0sedktLk9lJUVEyO6lvX6WrI6Lb4cBERNQOKiuB5GR52O34cTkcJSTI7CQXF6WrIyJDODAREd1FJ0/KK902bJBDU1iYHJQee4zZSUSmhAMTEVEbq6sDdu6Uq0kN2UmzZwPPP8/sJCJTZVIDE2+NQkTG7PJlYN06uaJ07hwweDDw4YfAk08yO4nI1PHWKERErZSTI0/iTkmRJ3VPnizTuAcNUroyImorJrXCRERkLKqrgU8/lYfdvvlGHmqLjZXZSW5uSldHRG2NAxMRUTMUFDRmJ/3yi8xOSkuT2UnW1kpXR0R3CwcmIiIDhAAyM+VqUloa4OTUmJ3Up4/S1RFRe+DARER0GxUVwKZN8vykH34AfHyA994DnnqK2UlEloYDExHRDU6elKtJGzYAV6/K7KTERGDECGYnEVkqDkxERGjMTkpMBPbulTe9feklmZ3k7a10dUSkNA5MRGTRfv1VZietXCmzk4YMkYfhnngCsLdXujoiMhYcmIjIIh061JidBABTpsjspIEDla2LiIwTByYishgN2UmJicC33wIaDfDGG8CzzzI7iYjuzKQGJt4ahYhaoqAAWLUKWLtWZicFBwPbtwNjxzI7iYiahrdGISKzJASQkdGYnXTPPY3ZSb17K10dEZkak1phIiIypKICSE6Wh91OnAD69ZND01NPyaGJiKglODARkVn48Uc5GG3cKLOTHn8cWLECGD6c2UlE1HocmIjIZNXVAZ9/LleT9u0DunYFXn5ZZid5eSldHRGZEw5MRGRyfvmlMTvp/HkgIIDZSUR0d3FgIiKTkZ0tV5O2bJGH2Rqyk/z9la6MiMxdh+bsvHLlSgwYMAAdO3ZEx44dERAQgN27d+uej4qKgpWVld5jyJAhet+juroac+bMgZubG5ydnTF+/HhcuHChbX4aIjI7167Jk7gHDwYefhj46ivgzTeBCxeA9es5LBFR+2jWwOTl5YW4uDgcOnQIhw4dQmBgIMLCwnD8+HHdPiEhIdBqtbrHrl279L5HTEwMUlNTkZKSggMHDqCyshKhoaHMViIiPefPAwsXyvu4PfMM0KkTsGMH8NNPwF//CnTurHSFRGRJWp3D5OrqiqVLl2L69OmIiopCaWkp0tLSbrlvWVkZunTpguTkZERERAAALl68CG9vb+zatQujR49u0nsyh4nIPAkBfPmlvNpt+3YZA/CXv8jspF69lK6OiCxZs1aYfq+urg4pKSm4cuUKAgICdNszMzPRtWtX9OrVCzNnzkRxcbHuuZycHNTW1iI4OFi3zdPTE76+vjh48OBt36u6uhrl5eV6DyIyHxUVckjq1w8ICgLy8+XXhYXAu+9yWCIi5TX7pO+8vDwEBATg2rVruOeee5CamgofHx8AwJgxY/Dkk09Co9Hg7NmzWLx4MQIDA5GTkwN7e3sUFRXBzs4OnTp10vue7u7uKCoquu17LlmyBP/4xz+aWyoRGbkTJ+Rg9OGHMjtpwgR55dujjzI7iYiMS7MHpt69e+PIkSMoLS3F1q1bERkZiaysLPj4+OgOswGAr68vBg4cCI1Gg507dyI8PPy231MIAas7/HZcsGAB5s2bp/u6vLwc3t7ezS2diIzA9evAf/4jB6X//ldmJ8XEAM89x+wkIjJezR6Y7OzscP/99wMABg4ciOzsbCxfvhyrV6++aV8PDw9oNBrk5+cDANRqNWpqalBSUqK3ylRcXIyhQ4fe9j3t7e1hz3AVIpP2yy/A++/LFaSCAmDoUOCjj4CJE5mdRETGr8XnMDUQQqC6uvqWz12+fBkFBQXw8PAAAPj7+8PW1hZ79+7V7aPVanHs2LE7DkxEZLq++w6IjJSrR2+8AYwaBeTkAF9/DUydymGJiExDs1aYFi5ciDFjxsDb2xsVFRVISUlBZmYm0tPTUVlZidjYWEycOBEeHh74+eefsXDhQri5uWHChAkAAJVKhenTp2P+/Pno3LkzXF1d8corr6B///4ICgq6Kz8gEbW/a9eATz6RIZPZ2UD37sA//ymveGMcABGZomYNTJcuXcLTTz8NrVYLlUqFAQMGID09HaNGjUJVVRXy8vLw4YcforS0FB4eHnjsscewZcsWuLi46L7HO++8AxsbG0yaNAlVVVUYOXIkNmzYAGtr6zb/4YiofZ07B6xaJQ+9/forMHq0PF9pzBiAf8SJyJS1OodJCcxhIjIeQsiTt5OSZLCki4tcSXrxRcYBEJH54L3kiKhFystlHEBSEvDjj0D//vKE7mnTAGdnpasjImpbHJiIqFl++KExO6mqCggPB1avBh55hNlJRGS+ODARkUEN2UmJifLWJe7uwLx5MjupWzelqyMiuvs4MBHRbRUXyxO4V62S2Ul/+hPw8cdyVcnOTunqiIjaj0kNTElJSUhKSkJdXZ3SpRCZte++k6tJW7YAHTrI85Kio4EHH1S6MiIiZfAqOSICILOTtmyRg9KhQ0CPHsCsWfKKN1dXpasjIlKWSa0wEVHbO3dOXt32/vvA5csyM+nzz4GQEGYnERE14MBEZIEaspMSE+XJ3C4uwLPPyuyknj2Vro6IyPhwYCKyIOXlwMaNMhbg5ElmJxERNRUHJiILcPy4HJKSk+W5SuHhwNq1wLBhzE4iImoKDkxEZur6dXmrksREICMDUKuB+fNldpKnp9LVERGZFg5MRGamuFiuHq1aBVy4IFeRmJ1ERNQ6HJiIzERhIfDqq8Ann8ir2xqykx54QOnKiIhMHwcmIjNxzz3A998DS5bI7KROnZSuiIjIfHBgIjITKhVw9KjSVRARmacOShfQHElJSfDx8cGgQYOULoWIiIgsCG+NQkRERGSASa0wERERESmBAxMRERGRARyYiIiIiAwwyXOYhBCoqKiAi4sLrHhfByIiIrrLTHJgIiIiImpPPCRHREREZAAHJiIiIiIDODARERERGcCBiYiIiMgADkxEREREBnBgIiIiIjKAAxMRERGRARyYiIiIiAzgwERERERkAAcmIiIiIgNslC6gPTXcg46IiIgsW3PvR2tRA1NFRQVUKpXSZRAREZHCysrK0LFjxybvb1E3323NCtOgQYOQnZ3d7q9V8vXl5eXw9vZGQUFBsz5UbfHebfF69s20+ga0vnfsm+n1rbWvZ99Mr2+tff+26htXmO7Aysqqxf9zra2tFXmtMby+Y8eOJvmzs2+m994NWto79s30+tba17Nvpte31r6/Un3jSd9NFB0drchrjeH1Sr63Kfddyfdm39r/9eybMq9n35R579YyxT9rFnVIjpqnvLwcKpWq2cd5LR371nLsXcuwby3DvrWMpfbNOjY2NlbpIsh4WVtbY8SIEbCxsaijt63GvrUce9cy7FvLsG8tY4l94woTERERkQE8h4mIiIjIAA5MRERERAZwYCIiIiIygAMTERERkQEcmIiIiIgM4MBEqKioQExMDDQaDRwdHTF06FC92PmoqChYWVnpPYYMGaJgxcbBUN8A4MSJExg/fjxUKhVcXFwwZMgQnD9/XqGKjYeh3t34eWt4LF26VMGqlWeob5WVlZg9eza8vLzg6OiIvn37YuXKlQpWbBwM9e3SpUuIioqCp6cnnJycEBISgvz8fAUrbn9fffUVxo0bB09PT1hZWSEtLU3veSEEYmNj4enpCUdHR4wYMQLHjx/X26e6uhpz5syBm5sbnJ2dMX78eFy4cKE9f4y7igMTYcaMGdi7dy+Sk5ORl5eH4OBgBAUFobCwULdPSEgItFqt7rFr1y4FKzYOhvp2+vRpDBs2DH369EFmZiaOHj2KxYsXw8HBQeHKlWeod7//rGm1Wqxfvx5WVlaYOHGiwpUry1Df5s6di/T0dGzatAknTpzA3LlzMWfOHGzfvl3hypV1p74JIfD444/jzJkz2L59O3Jzc6HRaBAUFIQrV64oXXq7uXLlCvz8/JCYmHjL599++23Ex8cjMTER2dnZUKvVGDVqlN79WWNiYpCamoqUlBQcOHAAlZWVCA0NRV1dXXv9GHeXIIt29epVYW1tLT7//HO97X5+fmLRokVCCCEiIyNFWFiYEuUZrab0LSIiQjz11FNKlGfUmtK7G4WFhYnAwMD2KM9oNaVv/fr1E2+88Ybe8w899JB47bXX2q1OY2OobydPnhQAxLFjx3TPXb9+Xbi6uoq1a9e2d7lGAYBITU3VfV1fXy/UarWIi4vTbbt27ZpQqVRi1apVQgghSktLha2trUhJSdHtU1hYKDp06CDS09Pbr/i7iCtMFu769euoq6u7adXD0dERBw4c0H2dmZmJrl27olevXpg5cyaKi4vbu1SjYqhv9fX12LlzJ3r16oXRo0eja9euGDx48E3L3JaoqZ+5BpcuXcLOnTsxffr09irRKDWlb8OGDcOOHTt0KycZGRk4deoURo8erUTJRsFQ36qrqwFA73lra2vY2dnd8vNoic6ePYuioiIEBwfrttnb22P48OE4ePAgACAnJwe1tbV6+3h6esLX11e3j6njwGThXFxcEBAQgDfffBMXL15EXV0dNm3ahG+//RZarRYAMGbMGHz00Uf48ssvsWzZMmRnZyMwMFD3i8YSGepbcXExKisrERcXh5CQEOzZswcTJkxAeHg4srKylC5fUU35zP3exo0b4eLigvDwcAWqNR5N6VtCQgJ8fHzg5eUFOzs7hISEYMWKFRg2bJjC1SvHUN/69OkDjUaDBQsWoKSkBDU1NYiLi0NRUdEtP4+WqKioCADg7u6ut93d3V33XFFREezs7NCpU6fb7mPqODARkpOTIYRAt27dYG9vj4SEBEydOhXW1tYAgIiICIwdOxa+vr4YN24cdu/ejVOnTmHnzp0KV66sO/Wtvr4eABAWFoa5c+figQcewKuvvorQ0FCsWrVK4cqVZ+gz93vr16/HtGnTeO4XDPctISEB33zzDXbs2IGcnBwsW7YMs2bNwr59+xSuXFl36putrS22bt2KU6dOwdXVFU5OTsjMzMSYMWNu+Xm0ZFZWVnpfCyFu2najpuxjKjgwEf74xz8iKysLlZWVKCgowHfffYfa2lp07979lvt7eHhAo9FY3FUkN7pT39zc3GBjYwMfHx+91/Tt25dXyaHpn7n9+/fj5MmTmDFjhkKVGpc79a2qqgoLFy5EfHw8xo0bhwEDBmD27NmIiIjAv//9b6VLV5Shz5u/vz+OHDmC0tJSaLVapKen4/Lly7f9HWhp1Go1ANy0UlRcXKxbdVKr1aipqUFJSclt9zF1HJhIx9nZGR4eHigpKcEXX3yBsLCwW+53+fJlFBQUwMPDo50rNE636pudnR0GDRqEkydP6u176tQpaDQahSo1PoY+c+vWrYO/vz/8/PwUqtA43apvtbW1qK2tRYcO+r/Wf7/iaekMfd5UKhW6dOmC/Px8HDp06La/Ay1N9+7doVarsXfvXt22mpoaZGVlYejQoQDk0Glra6u3j1arxbFjx3T7mDzlzjcnY5Geni52794tzpw5I/bs2SP8/PzEww8/LGpqakRFRYWYP3++OHjwoDh79qzIyMgQAQEBolu3bqK8vFzp0hV1p74JIcS2bduEra2tWLNmjcjPzxfvvfeesLa2Fvv371e4cuUZ6p0QQpSVlQknJyexcuVKBSs1Lob6Nnz4cNGvXz+RkZEhzpw5Iz744APh4OAgVqxYoXDlyjLUt08++URkZGSI06dPi7S0NKHRaER4eLjCVbeviooKkZubK3JzcwUAER8fL3Jzc8W5c+eEEELExcUJlUoltm3bJvLy8sSUKVOEh4eH3t8DL7zwgvDy8hL79u0Thw8fFoGBgcLPz09cv35dqR+rTXFgIrFlyxbRo0cPYWdnJ9RqtYiOjhalpaVCCHlJbnBwsOjSpYuwtbUV9957r4iMjBTnz59XuGrl3alvDdatWyfuv/9+4eDgIPz8/ERaWppC1RqXpvRu9erVwtHR8abtlsxQ37RarYiKihKenp7CwcFB9O7dWyxbtkzU19crWLXyDPVt+fLlwsvLS/c77rXXXhPV1dUKVtz+MjIyBICbHpGRkUIIGS3w+uuvC7VaLezt7cWjjz4q8vLy9L5HVVWVmD17tnB1dRWOjo4iNDTUrP6usBJCCCVXuIiIiIiMHc9hIiIiIjKAAxMRERGRARyYiIiIiAzgwERERERkAAcmIiIiIgM4MBEREREZwIGJiIiIyAAOTEREREQGcGAiIiIiMoADExEREZEBHJiIiIiIDPg/4IKiZ9cVnNoAAAAASUVORK5CYII=",
"text/plain": [
"Graphics object consisting of 1 graphics primitive"
]
},
"execution_count": 40,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"trajectory=list(zip(cel,wt5_heartrate))\n",
"list_plot(trajectory, plotjoined=true)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"deletable": false,
"editable": false
},
"source": [
"## Animations\n",
"\n",
"When investigating functions and models, it can be useful to animate their\n",
"response to changes in parameters. Sage’s animate function allows us to easily\n",
"produce such animations.\n",
"\n",
"Animations are created by showing a series of still images one after the other,\n",
"fast enough to create the illusion of motion. The animate function takes a list\n",
"of plots as input and animates it.\n",
"\n",
"**Example 7.** The following code shows how a change in the slope of a line\n",
"affects the line’s appearance.\n",
"```\n",
"plots = [] #Set up empty list to hold plots\n",
"slopes = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] #Make a list of slopes\n",
"for m in slopes: #For each m in slope, create plot, add to list\n",
" p=plot(m*x, (x,-10,10))\n",
" plots.append(p)\n",
"a=animate(plots) #Create the animation\n",
"show(a) #Necessary to display the animation\n",
"```\n",
"Try this code now. The show command is necessary to view the animation;\n",
"it can also be used with other graphics.\n",
"\n",
"Oops! The code produces an animation all right, but the animation is useless\n",
"because it’s the axes, not the line, that move. To stop this from happening, we\n",
"can specify maximum and minimum values for $y$, fixing the $y$-axis in place.\n",
"\n",
"**Example 8.** Fixing the y-axis in an animation\n",
"```\n",
"plots = [] #Set up empty list to hold plots\n",
"slopes = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5] #Make a list of slopes\n",
"for m in slopes: #For each m in slope, create plot, add to list\n",
" p=plot(m*x, (x,-10,10), ymin=-50, ymax=50)\n",
" plots.append(p)\n",
"a=animate(plots) #Create the animation\n",
"show(a) #Necessary to display the animation\n",
"```\n",
"This code produces a useful animated plot.\n",
"
\n",
"Exercise 29. Change the animation in Example 8 to make the line green rather\n",
"than blue.\n",
"\n",
"Exercise 30. Change the previous animation to make the slope range from -3\n",
"to 3 in steps of 0.5.\n",
" \n",
"Exercise 31. Rewrite the animation in Exercise 29 so that the slope of the line\n",
"plotted is always 1 but the $y$-intercept ranges between -5 and 5.\n",
"
"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "TypeError",
"evalue": "'list' object is not callable",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m
\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mslopes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mm\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mslopes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymax\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"green\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mplots\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0manimate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplots\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: 'list' object is not callable"
]
}
],
"source": [
"plots = []\n",
"slopes = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]\n",
"for m in slopes:\n",
" p=plot(m*x, (x,-10,10), ymin=-50, ymax=50,color=\"green\")\n",
" plots.append(p)\n",
"a=animate(plots)\n",
"show(a)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "TypeError",
"evalue": "'list' object is not callable",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mslopes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mRealNumber\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'2.5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mRealNumber\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'1.5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mRealNumber\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'0.5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mRealNumber\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'0.5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mRealNumber\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'1.5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mRealNumber\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'2.5'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mm\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mslopes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymax\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"green\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mplots\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0manimate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplots\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: 'list' object is not callable"
]
}
],
"source": [
"plots = []\n",
"slopes = [-3,-2.5,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,2.5,3]\n",
"for m in slopes:\n",
" p=plot(m*x, (x,-3,3), ymin=-50, ymax=50, color=\"green\")\n",
" plots.append(p)\n",
"a=animate(plots)\n",
"show(a)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [
{
"ename": "TypeError",
"evalue": "'list' object is not callable",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0myint\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mm\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mslopes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mp\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymax\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mInteger\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mplots\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0manimate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mplots\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: 'list' object is not callable"
]
}
],
"source": [
"plots = []\n",
"yint = [-5,-4,-3,-2,-1,0,1,2,3,4,5]\n",
"for m in slopes:\n",
" p=plot(1*x+b, (x,-10,10), ymin=-50, ymax=50)\n",
" plots.append(p)\n",
"a=animate(plots)\n",
"show(a)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
"display_name": "SageMath 9.1",
"language": "sagemath",
"metadata": {
"cocalc": {
"description": "Open-source mathematical software system",
"priority": 10,
"url": "https://www.sagemath.org/"
}
},
"name": "sage-9.1"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}