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How to Use these
Appendices

This appendix is meant to extend the book Sage for Undergraduates, pub-
lished by the American Mathematical Society in 2015. That 376-page book
is available electronically for free on my webpage,

www.gregorybard.com

by clicking on “Books I’ve Written” or for purchase as a paperback at
www.ams.org as well as at www.amazon.com.

Color images and three-dimensional images are not only visually stim-
ulating, but they can help demonstrate a lot of important effects in the
multivariarate calculus, the integral calculus, and other courses. Moreover,
the sheer power of Sage in producing beautiful images (including in 3D) is
one of Sage’s most famous features.

The American Mathematical Society and I decided that Sage for Un-
dergraduates should be printed in black and white, not in color, in order to
keep the printed paperback as inexpensive as possible. This was to benefit
those readers who are in economically challenged parts of the world where
funding for education is extremely limited (e.g. Greece, Rwanda, as well
as rural areas of the USA, such as near where I teach at the University of
Wisconsin—Stout). As a consequence, 3D graphics could not be discussed
in the book itself, because such images look like large amorphous blobs
when printed in black and white. This obviously ruled out discussing color
plotting in the printed book as well.

These online electronic-only appendices cover color plotting (Appendix
G) and 3D plotting (Appendix H), and thereby render Sage for Undergrad-
uates more complete. Moreover, I somehow left the very flexible and useful
command show() out of Sage for Undergraduates, and that is discussed in
Section G.5 on Page 1030.

To help students learn, I will frequently challenge the reader with a
task to perform after discussing some particular skill. Those “homework

1001



1002 HOW TO USE THESE APPENDICES

problems” are marked with the bold-faced heading “A Challenge for You.”
While this was done in Sage for Undergraduates, the reader will find that it
is done much more frequently in these appendices.

Prerequisites

Plotting in Sage was introduced in the book Sage for Undergraduates in
Chapter 1.6, and many additional topics were presented in Chapter 3. You
certainly do not need to read all of Sage for Undergraduates to use these
appendices. However, you surely want to be familiar with Sage. I would
recommend Sections 1.1, 1.2, 1.3, 1.4, 1.6, and 1.8, but mastery of Section 1.8
is not required.

All of computer algebra, but particularly the graphics aspects, will be
best learned by tinkering. Therefore, I encourage you to “just mess around.”
As you experiment, some of the graphics that you produce will probably
be fairly cool, so you might want to share them, and that is discussed in
Section 1.13 of Sage for Undergraduates.

At many points in these appendices, I will discuss the 3D analog of a 2D
technique. In such cases, I will alert the reader to the appropriate section
of Chapter 3 in of Sage for Undergraduates where the 2D technique is ex-
plained. On the one hand, there certainly is no need to read all of Chapter 3
before starting to read these appendices. On the other hand, anyone who
finds these appendices interesting will probably also find Chapter 3 of the
main book interesting also.

Chapter 1 of of Sage for Undergraduates will get you familiar with Sage-
MathCell (once called the Sage Single-Cell Server), but almost all readers
who are interested in these appendices will want to quickly transition to
SageMathCloud. Videos are the best way to learn SageMathCloud, and
those videos can also be found on my webpage (www.gregorybard.com)
and clicking on “Sage Resources.”



Appendix G

Color 2D Plotting

G.1. Graphing in 2D with Color

Color can make ordinary 2D graphs very attractive and visually appealing.

G.1.1. Overview

An example of graphing with colors would be
plot([sin(x),cos(x)], 0, 10, color=’purple’)

producing

which looks like DNA to me. As you can see by that, you can plot multiple
functions at the same time on the same graph. To do that, the list of
functions should be separated by commas, and enclosed in brackets.

This is an example of a list in Sage. You can enclose any data with [

and ], and separate the entries with commas, to make a list. We’ve seen
many examples of this syntax throughout this book, a notation which Sage
inherited from the computer language Python.

However, it is important not to get carried away. Rarely does it make
sense for four functions to appear together in one graph. For example

plot([sin(x),cos(x),sin(2*x),cos(2*x)], 0, 10)

makes a total mess, as you can see
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1004 G. COLOR 2D PLOTTING

To do multiple functions in multiple colors, the command is actually to
add the plots:
plot(sin(x), 0, 10, color=’purple’) + plot(cos(x), 0, 10, color=’blue’)

which produces something quite readable:

Or perhaps

plot(sin(x), 0, 10, color=’purple’)

+ plot(cos(x), 0, 10, color=’blue’)

+ plot(sin(2*x), 0, 10, color=’green’)

+ plot(cos(2*x), 0, 10, color=’red’)

which is not readable but certainly is very pretty, as you can see:
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Which Plot Gets to be on Top?

Rarely but occasionally one must be concerned with which color goes on top
during a set of plots that are superimposed. The criterion in Sage is simple.
If two or more curves overlap at any point, the one given last (furthest to
the right) in the sequence of plots goes on top. The one given first (furthest
to the left) has to be on the bottom. Sometimes this is important in getting
the plot to look precisely as you’d like it to.

G.1.2. Legends for Color 2D Plots

Sometimes when you have several functions in the same graph, it is nice
to label them with a legend. An example, plotting f(x) = x3 − x and the
tangent line at x = 1 is done via

plot(x^3-x,-3,3,color=’blue’,legend_label="f") + plot(2*x-2,-3,3,

color=’green’, legend_label="tangent")

which produces
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You can also make the tangent line really short, if you like:

plot(x^3-x,-3,3,color=’blue’,legend_label="f") + plot(

2*x-2,0.25,1.75,color=’green’,legend_label="tangent")

That last bit of code requires an explanation. The idea is that we told
Sage to draw the curve x3− x using the domain x = −3 to x = 3, while the
line 2x − 2 is to be drawn from x = 0.25 to x = 1.75. Since we have given
the line a smaller domain, it appears shorter in the graph.

G.2. Plotting Systems of Inequalities in 2D

When we plot inequalities in x and y, instead of lines and curves we get
shaded regions. This plots can be visually attractive, and are important in
a diverse array of courses—ranging from Elementary Algebra up to doctoral-
level coursework in Operations Research, Industrial Engineering, or Linear
Programming.
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G.2.1. Plotting a Single Inequality

Before we can learn how to plot systems of inequalities, we should first learn
how to plot a single inequality. Mercifully, this is extremely straightforward.

There are two ways to graph an inequality in the (x, y) plane. You can
either shade the points that satisfy the inequality, or you can shade the
points that violate the inequality. Books from Elementary Algebra to Col-
lege Algebra tend to shade the points that satisfy the inequality. Those who
do research in this area or teach courses in Operations Research, Industrial
Engineering, or Linear Programming shade the points that violate the in-
equality, even in 100-level courses about that topic. Why is this the case? If
you read the next subsection, where we plot systems of linear inequalities,
you’ll find out.

To graph an inequality such as

y ≤ 1− x2

we shall instead plot the curve

y = 1− x2

and shade. Let’s restrict to −2 ≤ x ≤ 2, and −2 ≤ y ≤ 2.
Instead of the simple command to plot a parabola

plot( 1-x^2, (x, -2, 2), ymin=-2, ymax=2, gridlines=’minor’ )

We’re going to type instead

plot( 1-x^2, (x, -2, 2), ymin=-2, ymax=2, gridlines=’minor’,

fill=10, fillcolor=’yellow’, fillalpha=2/3 )

Those two lines of code produce the following images:

y = 1− x2 y ≤ 1− x2
Note: Shaded points violate the inequality.

Unshaded points satisfy the inequality.

We have three new optional parameters to explain now. The fillcolor

parameter, as you might guess, identifies the color for filling in the re-
gion. The parameter fill=10 means that we will fill from y = 10 until
the parabola. In other words, we are filling above the parabola. If you
wanted to fill below the parabola, you would write fill=-10. The param-
eter fillalpha=2/3 represents how transparent, or not, you would like the
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filling to be. This parameter must satisfy 0 ≤ α ≤ 1, where α = 0 would be
entirely transparent filling (making the filling invisible), and α = 1 would
be a filling that is solid and opaque. However, even with α = 1 the gridlines
will show through. If you select α = 0, the plot does not look shaded at all.

G.2.2. Plotting a System of Inequalities, for Linear Programming

It turns out that plotting a system of inequalities is only slightly more work
than plotting a single inequality. The process is easier to explain via an
example.

First Attempt

Suppose we want to plot the following system of linear inequalities.

y ≤ 1.5− 2x

y ≤ 1− x
y ≥ 0.5− 0.5x

x ≥ 0

y ≥ 0

Recall that in a system of inequalities, a point is only considered feasible
if it satisfies each and every inequality. If even one inequality is violated by
a point, then that point is not feasible. Students sometimes call this “the
mother-in-law” property. If your mother-in-law gives you seven things to
do, and you do six of those, then you are in trouble because of the one that
you didn’t do.

To draw this system of inequalities, what we’re going to do is draw the
lines

y = 1.5− 2x

y = 1− x
y = 0.5− 0.5x

x = 0

y = 0

and then shade the regions which violate each inequality. The reason that
we do this is that we will see a white region in the center of the graph.
This white region is the place where all the inequalities are simultaneously
satisfied—called the “feasible region” when teaching Operations Research,
Industrial Engineering, or Linear Programming.

If instead, we were to shade the “satisfied regions” which do not violate
the inequality, then finding the feasible region would be very hard for a
human. We’d have to search out the single region that is shaded in three
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different ways, distinguishing it from regions that had been shaded once
or twice. This is why we always shade the “angry regions” instead of the
“satisfied regions.”

The code that does this is below.

P1 = plot( 1.5-2*x, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=10, fillcolor=’cyan’, color=’black’, fillalpha=1/3,

gridlines=’minor’ )

P2 = plot( 1-x, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=10, fillcolor=’magenta’, color=’black’, fillalpha=1/3 )

P3 = plot( 0.5-0.5*x, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=-10, fillcolor=’yellow’, color=’black’, fillalpha=1/3 )

P = P1 + P2 + P3

P.show()

This is the image produced, which is good but not entirely right. We
will correct the flaw in Page 1010. I challenge you to identify the flaw
now, and I will reveal it on that page.

Note: Shaded points violate one or more inequalities.
Unshaded points satisfy all inequalities.

What has changed here, compared to graphing a single inequality? First,
we are adding three plots, which means that Sage will superimpose this plots.
That’s how we produce the different types of shading. Second, we’ve reduced
the fillalpha parameter, to accommodate overlaying—otherwise the re-
gions with two or three colors filling them will look too dark to the human
eye. Third, we are using a different fillcolor choice for each inequality.
This will help the reader understand which inequality or inequalities is caus-
ing a particular region to be declared infeasible. It is important to choose
pastels, otherwise the resulting image is too dark to be readable. Fourth, I
added color=’black’ to help make the boundaries stand out more to the
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human eye. Fifth, we only need the gridlines optional parameter in the
first plot, which will be on the bottom during the super-imposition.

As before, we really do have to restrict the x-coordinates and the y-
coordinates. Otherwise, each of the three plots individually will have a
different upper-bound and lower-bound for y, which makes the resulting
overlay look very silly and incorrect. Below is the plot that you get if you
remove the ymin and ymax optional parameters. In that plot, the upper-
bound is y = 10 and the lower-bound is y = −10, because of how we did the
filling.

Note: This is what happens if you remove the ymin and ymax.

Second Attempt

The flaw in our first attempt has to do with the fact that in Operations
Research, Industrial Engineering, or Linear Programming, we (almost al-
ways) restrict our variables to be positive. This means that there are two
“implied” inequalities, namely x ≥ 0 and y ≥ 0. Our lovely plot should be
corrected to accommodate that. It turns out that it will look even better
after we make that correction.

Just as we drew the line y = 0.5 − 0.5x to plot the inequality y ≥
0.5− 0.5x, we will draw the line y = 0 to plot the inequality y ≥ 0. That’s
just a line of slope zero, that is to say, a horizontal line. Intuitively, to
plot the inequality x ≥ 0, you might think that we want to draw the line
x = 0. The vertical line x = 0 is a bit problematic, because it is not in
y = mx+ b form. The slope of the line is “undefined” in mathematics, but
weak students (and some people with a PhD in physics) will say that the
slope is infinity. We could use implicit plot if we wanted to, but there is
an easier way.

Taking inspiration from the idea of the slope being infinity, we will draw
the vertical line through the origin by instead drawing the line y = 109x.
The slope being “one billion” is going to make the line appear vertical. Then
we can treat it like any other line.

We now have the following code.

P1 = plot( 1.5-2*x, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=10, fillcolor=’cyan’, color=’black’, fillalpha=1/3,

gridlines=’minor’ )
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P2 = plot( 1-x, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=10, fillcolor=’magenta’, color=’black’, fillalpha=1/3 )

P3 = plot( 0.5-0.5*x, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=-10, fillcolor=’yellow’, color=’black’, fillalpha=1/3 )

P4 = plot( 0, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=-10, fillcolor=’gray’, color=’black’, fillalpha=1/3 )

P5 = plot( (10^9)*x, (x, -0.1, 1.75), ymin=-0.25, ymax=1.75,

fill=10, fillcolor=’gray’, color=’black’, fillalpha=1/3 )

P = P1 + P2 + P3 + P4 + P5

P.show()

That code above produces the beautiful image below. Observe that I
use gray for both of the “trivial inequalities” x ≥ 0 and y ≥ 0, to show that
even collectively, they are constraints of a non-primary nature.

Note: Shaded points violate one or more inequalities.
Un-shaded points satisfy all inequalities.

The white region in the middle of the plot there is the feasible region of
the system of inequalities.

A Challenge for You:

At this point, try to make a plot of the following system of linear inequalities:

3x+ 5y ≥ 15

500x+ 300y ≤ 1500

40x+ 40y ≤ 160

x ≥ 0

y ≥ 0
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Theoretical Ramifications

The next three paragraphs apply to any system of linear inequalities in two
variables. There is a cool theorem that says the feasible region will always
be a convex polygon, so long as the feasible region is bounded. In this
context, bounded means that there exists some circle (regardless of where
it is centered and of what radius) which entirely contains the whole feasible
region.

Another cool theorem about two-variable system of linear inequalities,
sometimes called “The Fundamental Theorem of Linear Programming” states
that any linear “objective function,” such as 3x+ 5y, 200x−500y, or x, will
achieve a global feasible minimum and a global feasible maximum, provided
that the feasible region is bounded. While there can be infinitely many
on rare occasions, there is usually a unique global feasible maximum and a
unique global feasible minimum. Moreover, even when there are infinitely
many, at least two of those “feasible maxima” and at least two of those
“feasible minima” are guaranteed to be located on distinct corners of the
feasible region. Finding such points is the heart of linear programming and
the purpose of “The Simplex Method.” That algorithm, and its generaliza-
tions, is the driving force for much of Operations Research and Industrial
Engineering, though usually using hundreds of variables or thousands of
variables, not just two variables.

In fact, even if the feasible region is unbounded, and not a polygon, it will
be an intersection of some finite number of half-planes. Moreover, either the
global feasible maximum will not exist (meaning that the objective function
can be made arbitrarily large while still restricting to feasible points) or
alternatively, global feasible maxima exist. In the case where global feasible
maxima exist, either there is a unique global feasible maximum, and it is
a corner point of the feasible region, or alternatively, infinitely many exist
and at least two of them are guaranteed to be distinct corners of the feasible
region. The analogous statements are also true for global feasible minima.

G.2.3. Plotting Non-Linear Inequalities (2D Region Plots)

Normally inequalities deal with relatively straight-forward functions, such as
bijections, which can be handled easily with the above techniques. Once in a
while, a mathematician might be curious about a non-invertible non-linear1

function used in an inequality.
The region plot command deals with plotting the set of points (x, y)

which satisfy a two-variable inequality in x and y. Often, the relationship
between x and y cannot be represented as a function.

1The examples in this section were recommended in the “PREP Tutorial: Advanced
2D plotting.” That tutorial was developed during the Mathematical Association of Amer-
ica PREP Workshop “Sage: Using Open-Source Mathematics Software with Undergradu-
ates” (funding provided by the National Science Foundation Department of Undergraduate
Education grant # 0817071).
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For example, to plot the set of points (x, y) such that

cos
(
x2 + y2

)
≤ 0

for −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5, we would type

var("y")

region_plot(cos(x^2+y^2) <= 0, (x, -5, 5), (y, -5, 5) )

Similarly, to plot the set of points (x, y) such that

x2 + 4(y3 − y) ≤ 10

for −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5, we would type

var("y")

region_plot( x^2+4*(y^3-y) <= 10, (x, -5, 5), (y, -5, 5) )

The plots produced by those two commands are

cos
(
x2 + y2

)
≤ 0 x2 + 4(y3 − y) ≤ 10

By the way, region plot has several options, and you can read about
them by typing region plot? and reading the online help. Those options can
give the regions colors and borders (dashed, dotted, or solid).

A Challenge for You:

Trust me—this one is really worth doing. A fun inequality is the set where

(sinx)(sin y) > 1/4

on a graph where perhaps −10 < x < 10 and −10 < y < 10.

G.3. Heat Maps, Contour Plots, and Density Plots

We learned about Contour Plots in Section 3.5 of Sage for Undergraduates.
This section will greatly expand those capabilities, including some beau-
tiful color images. You might want to refresh your memory by rereading
Section 3.5, before continuing onward.

G.3.1. Contour Plots vs Density Plots in Black-and-White

I’d like to now introduce you to a distinction between contour maps and
density plots. They’re almost the same thing, so this can be better explained
by example.
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The code:

f(x,y) = cos(x) + sin(y)

contour_plot( f(x,y), (x,-pi,pi), (y,-pi,pi), axes=True)

creates this image:

Contrastingly, just changing the contour plot into density plot, re-
sults in this image:

As you can see, with the contour plot, the z-coordinate takes the values
of f(x, y) and is divided into “levels” that are discrete. That results in
sharp edges between boundaries. With the density plot, the z-coordinate is
allowed to vary continuously, and you get a blend of shades with no sharp
edges.

It is also possible to combine the two outputs, to make the clear bound-
aries significantly more visible. The following code:

f(x,y) = cos(x) + sin(y)

P1=contour_plot(f(x,y), (x,-pi,pi), (y,-pi,pi), axes=True, fill=false)

P2=density_plot(f(x,y), (x,-pi,pi), (y,-pi,pi), axes=True)
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show(P1+P2)

creates this image:

As you can see, these plots are not very impressive when done in black-
and-white. In the next section, we will plot them in color, and the visual
appeal will be very improved.

G.3.2. Color Density Plots and Contour Plots

The plots in the previous subsection will become much more visually ap-
pealing if drawn in full color. We will now re-plot those images. The code:

f(x,y) = cos(x) + sin(y)

contour_plot( f(x,y), (x,-pi,pi), (y,-pi,pi), axes=True, cmap=’jet’)

creates this image:
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The only change was to add the option cmap=’jet’ to the contour plot

command. Similarly, changing the contour plot into density plot, results
in this image:

which varies continuously. By the way, an image of this type is sometimes
called a “heat map” in the popular culture of data science. A heat map is
just a color density map of a two-variable function.

We can also make the combined plot, drawn in color. The following
code:

f(x,y) = cos(x) + sin(y)

P1=contour_plot(f(x,y), (x,-pi,pi), (y,-pi,pi), axes=True, fill=false)

P2=density_plot(f(x,y), (x,-pi,pi), (y,-pi,pi), axes=True, cmap=’jet’)

show(P1+P2)

results in this very clear image:

It is important to note that I added cmap=’jet’ only to the density plot,
and not to the contour plot. This was to force the contour plot to produce
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black-and-white boundaries. If you add cmap=’jet’ to both commands,
then you’ll see that the color boundaries between regions are almost invisible.

Alternatively, one can add cmap=’jet’ only to the contour plot but not
to the density plot. That will produce the following image, which looks cool
but which is not necessarily mathematically informative.

G.3.3. Adding a Legend or Color Bar

With contour plots, it can be very useful to add a legend, so that the reader
knows what the colors actually mean. The following code:

f(x,y) = cos(x) + sin(y)

contour_plot( f(x,y), (x,-pi,pi), (y,-pi,pi), axes=True,

cmap=’jet’, colorbar=True)

produces this image:
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G.3.4. Other Color Maps

There are a lot of built-in color maps (the cmaps). We’ve seen jet which
is the most common. There is also gray, which is the default used when
you don’t use the cmap parameter at all. I feel as though I should list all of
them.

Spectral summer coolwarm Wistia r pink r Set1
Set2 Set3 brg r Dark2 hot PuOr r

afmhot r terrain r PuBuGn r RdPu gist ncar r gist yarg r
Dark2 r YlGnBu RdYlBu hot r gist rainbow r gist stern

gnuplot r cool r cool gray copper r Greens r
GnBu gist ncar spring r gist rainbow RdYlBu r gist heat r
Wistia OrRd r CMRmap bone gist stern r RdYlGn

Pastel2 r spring terrain YlOrRd r Set2 r winter r
PuBu RdGy r spectral flag r jet r RdPu r

Purples r gist yarg BuGn Paired r hsv r bwr
cubehelix YlOrRd Greens PRGn gist heat spectral r

Paired hsv Oranges r prism r Pastel2 Pastel1 r
Pastel1 gray r PuRd r Spectral r gnuplot2 r BuPu

YlGnBu r copper gist earth r Set3 r OrRd PuBu r
ocean r brg gnuplot2 jet bone r gist earth
Oranges RdYlGn r PiYG CMRmap r YlGn binary r

gist gray r Accent BuPu r gist gray flag seismic r
RdBu r BrBG Reds BuGn r summer r GnBu r
BrBG r Reds r RdGy PuRd Accent r Blues
Greys autumn cubehelix r nipy spectral r PRGn r Greys r
pink binary winter gnuplot RdBu prism

YlOrBr coolwarm r rainbow r rainbow PiYG r YlGn r
Blues r YlOrBr r seismic Purples bwr r autumn r
ocean Set1 r PuOr PuBuGn nipy spectral afmhot
The only way to get to know the color maps (the cmaps) is to experiment,

and see which ones match well with the data that you’re trying to present.
Here are six interesting examples to whet your appetite.

terrain ocean cool
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spring summer autumn

By the way, the ending r means “reversed.” The color map terrain r

is actually the color map terrain but using 1− z in place of z.
By the way, we can also use color maps for 3D-functions. See Sec-

tion H.1.4.

G.3.5. Aspect Ratios in Contour Plots and Density Plots

We did not specify any aspect ratios in any of the code so far, through-
out Section G.3. That’s because these two commands contour plot and
density plot will compute an aspect ratio for you.

The problem is that they do it very differently. On the one hand, the
code:

f(x,y) = cos(x) + sin(y)

contour_plot( f(x,y), (x,-pi,5*pi), (y,-pi,pi), axes=True)

creates this image:

On the other hand, the code:

f(x,y) = cos(x) + sin(y)

density_plot( f(x,y), (x,-pi,5*pi), (y,-pi,pi), axes=True)

creates this image:
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Some would argue that the first image is much better. That’s because the
level set associated with the white region is actually a circle, mathematically.
Therefore, it should appear as a circle on the computer screen. However,
that image has unusual dimensions, in that it is much wider than it is
tall. The second image has much more common dimensions. Yet, the region
associated with the level set is now a blurry white ellipse, instead of a blurry
white circle.

The “correct approach” depends on the application. In any case, you
can always force Sage to use whatever aspect ratio you would like. For
example, to force that density plot above to use circles, type the code:

f(x,y) = cos(x) + sin(y)

density_plot( f(x,y), (x,-pi,5*pi), (y,-pi,pi), axes=True,

aspect_ratio=1)

It makes the image below, where the white region is now a blurry circle.

G.3.6. An Example from Mathematical Economics

Let’s say that there’s a company that sells gadgets. The gadget comes in
two models: the deluxe model and the regular model. At this time, the
demand is so high that the products are being sold immediately and are on
back-order. Production can be increased to about four times current levels.
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Naturally, the management wants to raise the prices, to take advantage of
the high demand. The key is to compute the optimal price scheme.

Here is the given information:

• The deluxe gadget currently sells for 79 dollars each, and has a
demand of 25,000 units per year.
• The regular gadget currently sells for 49 dollars each, and has a

demand of 55,000 units per year.
• The marketing department indicates that each dollar increase of

the deluxe gadget will reduce the demand of the deluxe gadget by
1100 and increase the demand of the regular gadget by 800.
• The marketing department also indicates that each dollar increase

of the regular gadget will reduce the demand of the regular gadget
by 1900 but increase the demand of the deluxe gadget by 1400.
• The deluxe gadget costs 25 dollars to manufacture, and the regular

gadget costs 20 dollars to manufacture.

First, we start by computing the demand function of each gadget.

• Let x be the price of the deluxe gadget, and y be the price of the
regular gadget.
• The demand of the regular gadget is

fR(x, y) = 55, 000− 1900(y − 49) + 800(x− 79)

because (y−49) is the number of dollars that the regular price goes
up, and (x − 79) is the number of dollars that the deluxe gadget
goes up.
• The demand of the deluxe gadget is

fD(x, y) = 25, 000 + 1400(y − 49)− 1100(x− 79)

for similar reasons.
• The revenue function can be computed by

R(x, y) = xfD(x, y) + yfR(x, y)

= x (25, 000 + 1400(y − 49)− 1100(x− 79)) +

y (55, 000− 1900(y − 49) + 800(x− 79))

• Note, there is no need to simplify that, since a computer will do
most of the work.
• The cost function can be computed by

C(x, y) = 25fD(x, y) + 20fR(x, y)

= 25 (25, 000 + 1400(y − 49)− 1100(x− 79)) +

20 (55, 000− 1900(y − 49) + 800(x− 79))
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• The profit function can be computed by

P (x, y) = R(x, y)− C(x, y)

= x (25, 000 + 1400(y − 49)− 1100(x− 79)) +

y (55, 000− 1900(y − 49) + 800(x− 79))−
25 (25, 000 + 1400(y − 49)− 1100(x− 79))−
20 (55, 000− 1900(y − 49) + 800(x− 79))

• The profit function could also have been computed by

P (x, y) = (x− 25)fD(x, y) + (y − 20)fR(x, y)

= (x− 25) (25, 000 + 1400(y − 49)− 1100(x− 79)) +

(y − 20) (55, 000− 1900(y − 49) + 800(x− 79))

because each deluxe model creates a profit of (x− 25) dollars and
each regular model creates a profit of (y − 20) dollars.
• You might want to take a moment to verify that these two profit

functions are actually the same function.

Also, as a sanity check, we should verify the current profits. On a hand
calculator, we can compute

(79)(25000) + (49)(55000)︸ ︷︷ ︸
revenue

− (25)(25000)− (20)(55000)︸ ︷︷ ︸
costs

= 2, 945, 000︸ ︷︷ ︸
profit

This is the code that I wrote to investigate this problem.

var("x y")

M = 1000*1000

P(x,y) = (x-25)*(25000+1400*(y-49)-1100*(x-79)) +

(y-20)*(55000-1900*(y-49)+800*(x-79))

print "Sanity Check: ", P(79, 49)

contour_plot( P(x,y), (x,0,240), (y,0,150),

contours = [0*M, 0.5*M, 1*M, 1.5*M, 2*M, 2.5*M, 3*M, 3.5*M,

4*M, 4.5*M, 5*M], axes=True, fill=false, labels=true,

cmap=’terrain’, label_inline=true ) + point( (79,49),

color=’red’ )

You’ll notice that I defined M to be one million dollars. Then the contours
represent iso-profit curves for break-even up to five million, with half-million
increments. I considered a range of prices from zero up to triple the current
prices. Here is the image produced by that code.
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The red dot represents the current price point, which is far from optimal.
You will also note that there is no curve for 5,000,000 nor 4,500,000. Those
profit levels are not achievable. Now that we have a nice plot, and that we
have computed these functions, a simple calculus computation will reveal
the optimal prices.

P (x, y) = (x− 25)(25000 + 1400(y − 49)− 1100(x− 79)) +

(y − 20)(55000− 1900(y − 49) + 800(x− 79))

∂P (x, y)/∂x = (1)(25000 + 1400(y − 49)− 1100(x− 79)) + (x− 25)(0 + 0− 1100) +

(0)(55000− 1900(y − 49) + 800(x− 79)) + (y − 20)(0− 0 + 800)

= 25000 + 1400(y − 49)− 1100(x− 79) + (x− 25)(−1100) + (y − 20)(800)

= 25000 + 1400y − 68600− 1100x+ 86900− 1100x+ 27500 + 800y − 16000

= 54800 + 2200y − 2200x

∂P (x, y)/∂y = (0)(25000 + 1400(y − 49)− 1100(x− 79)) + (x− 25)(0 + 1400− 0) +

(1)(55000− 1900(y − 49) + 800(x− 79)) + (y − 20)(0− 1900 + 0)

= 1400(x− 25) + 55000− 1900(y − 49) + 800(x− 79)− 1900(y − 20)

= 1400x− 35000 + 55000− 1900y + 93100 + 800x− 63200− 1900y + 38000

= 2200x+ 87900− 3800y

Of course, if I were intelligent, I’d have simply typed

P(x,y) = (x-25)*(25000+1400*(y-49)-1100*(x-79))

+ (y-20)*(55000-1900*(y-49)+800*(x-79))

P(x,y).gradient()

which gives the same answer, but much more quickly. However, I didn’t
realize that until after I had done the above work by hand. The output
from Sage is as follows:
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(-2200*x + 2200*y + 54800, 2200*x - 3800*y + 87900)

We can solve for the optimal price now, with the following code:

solve( [-2200*x + 2200*y + 54800 == 0,

2200*x - 3800*y + 87900 == 0], [x,y] )

We obtain x = 20081/176 = 114.096 · · · and y = 1427/16 = 89.1875
giving us the price points of $ 114.10 for the deluxe model, and $ 89.19 for
the regular model. The total profit is $ 4, 265, 537.21 · · · , though obviously
nine digits of precision is unwarranted.

Note, that we did not maximize revenue, nor did we maximize sales.
We certainly did not minimize costs. These are four separate objectives:
maximizing revenue, minimizing cost, maximizing profit, and maximizing
sales.

• Our plan calls for the deluxe model having a price of $ 114.10 and
the regular model having a price of $ 89.19. That would result in
6719 regular units and 42,656 deluxe units being sold. The revenue
would be $ 5,466,317, the costs would be $ 1,200,780, and a profit
of $ 4,265,537.
• It is a good exercise for the reader to optimize R(x, y) instead of
P (x, y).
• Maximizing revenue would have a price point of $ 99.81 for the

deluxe model and $ 80.13 for the regular model. This results in
selling 45,691 deluxe models and 12,501 regular models. The rev-
enue is $ 5,562,123 but the costs are $ 1,392,295, for a profit of
$ 4,169,828. As you can see, the profit is inferior to our optimiza-
tion of profit. However, the revenue is superior.
• However, both plans are better than the original plan. The original

sold 55,000 regular gadgets at $ 49 each, and 25,000 gadgets at
$ 79 each. This results in a revenue of $ 4,670,000 but a cost of
$ 1,725,000, thus a profit of $ 2,495,000.
• Minimizing costs would require producing nothing, which is not a

good plan for a business.
• The production limits were roughly 4(55, 000) = 220, 000 regular

gadgets and roughly 4(25, 000) = 100, 000 deluxe gadgets. As you
can see, that will not impact our plans.

The following code is very useful for experimentation:

var("x y")

f_R(x,y) = (55000-1900*(y-49)+800*(x-79))

f_D(x,y) = (25000+1400*(y-49)-1100*(x-79))

R(x,y) = (x)*(25000+1400*(y-49)-1100*(x-79))

+ (y)*(55000-1900*(y-49)+800*(x-79))

C(x,y) = 25*(25000+1400*(y-49)-1100*(x-79))

+ 20*(55000-1900*(y-49)+800*(x-79))

P(x,y) = (x-25)*(25000+1400*(y-49)-1100*(x-79))
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+ (y-20)*(55000-1900*(y-49)+800*(x-79))

sample_x = 79

sample_y = 49

print "Demand (regular): ", f_R(sample_x, sample_y)

print "Demand (deluxe): ", f_D(sample_x, sample_y)

print "Revenue: ", R(sample_x, sample_y)

print "Cost: ", C(sample_x, sample_y)

print "Profit: ", P(sample_x, sample_y)

A Challenge for You:

To confirm that you understood the above work, you could challenge yourself
to produce the correct contour plot for the revenue function. Then, you
should also challenge yourself to come up with the optimal x and y for
maximizing revenue, instead of profit. Those x and y values are given in the
bullet list above, so you will know if you’ve done it correctly or not.

As a further challenge, suppose that the cost of microelectronics is in-
creased slightly due to currency fluctuations. The manufacturing cost of the
deluxe unit rises from 25 to 27 dollars, and the manufacturing cost of the
regular unit rises from 20 to 21 dollars. Recompute the plan that optimizes
profits as well as the plan that optimizes revenue in light of these increased
costs.

G.3.7. Dangerous Examples: The Pitfalls of Density Plots

I’d like to share two examples with you now, that show how density plots
and heat maps can be misused.

Example One: Over-exaggerating Features

While this example might seem a bit contrived, it relates to something that
I’ve actually seen happen. I’ll give the full story after giving the Sage ex-
ample

Consider the following function f(x, y), which describes the temperature
of a 4× 4 metal plate, using the coordinates −2 < x < 2 and −2 < y < 2.

f(x, y) = 3500 + x+ 2y

Clearly, the temperature doesn’t change very much at all. The tempera-
ture ranges from 3494 to 3506 degrees. The plate can be said to be of almost
constant temperature. Here is a color density plot of the function—a heat
map.
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As you can see, the graphic makes it look as though the temperature
changes tremendously across the surface of the plate. By the way, the code
for that image is below.

f(x,y) = 3500 + x + 2*y

density_plot(f, (x,-2,2), (y,-2,2), cmap=’jet’ )

One of my professors (I have forgotten who, unfortunately) had assigned
an interesting computer project: a simulation to describe the cooling of
a metal plate. This involves some rudimentary PDEs (partial differential
equations) and a knowledge of thermodynamics, as well as some relatively
basic computer programming—so it was a good project.

A graduate student of his had the code display a heat map (a color
density plot) to display the final solution. In this case, the final solution
should have been a plate of constant temperature. That’s a boring image,
but it would help verify that the program was converging to the correct
final answer. The student was expecting a large rectangle of a constant
color. Instead, the student got a final image that looked like what we saw
above. The student was very dismayed, and lost a lot of time trying to figure
out what was wrong with the code.

After much frustration and many days of re-examining his code, he dis-
covered that absolutely nothing was wrong at all. The code was working
perfectly. The variation being displayed in the image was rounding error,
on the order of 10−12. This error was there because of the fact that the
float-point arithmetic used by the computer does not have infinite precision.

Of course, all of this stress could have been avoided if the student had
followed the advice that I gave in Section G.3.3 “Adding a Legend or Color
Bar.”
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Example Two: Under-exaggerating Features

Let’s suppose that one is investigating2 the function:

f(x, y) = −x3 + y2 − x+ 1

A simple, unadorned density plot would give the impression that the
function doesn’t change very much, and that it has very little structure.
Someone who has an extreme reliance on technology would type the following
code:

f(x,y) = -x^3 + y^2 - x + 1

density_plot(f, (x,-2,2), (y,-2,2) )

They would get the following image, which would deceive them. It would
imply that the function doesn’t vary significantly. Even worse, it reveals no
structure at all.

A more careful and thoughtful image can be produced by the following
code:

f(x,y) = -x^3 + y^2 - x + 1

P1 = density_plot(f, (x,-2,2), (y,-2,2) )

P2 = contour_plot(f, (x,-2,2),(y,-2,2), fill=False, labels=True,

label_inline=True, cmap=’jet’,

contours = [-6,-4,-2,0,2,4,6,8,10,12] )

show(P1+P2)

As you can see below, the function has a great deal of structure. The
level sets form an ensemble of elliptic curves—curves that are very important
in cryptography.

2This brilliant example was recommended in the “PREP Tutorial: Advanced 2D
plotting.” That tutorial was developed during the Mathematical Association of America
PREP Workshop “Sage: Using Open-Source Mathematics Software with Undergraduates”
(funding provided by the National Science Foundation Department of Undergraduate Ed-
ucation grant # 0817071).
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Example Three: Forgotten Aspect Ratios

When making contour plots, things can go very wrong if you do not compute
an aspect ratio. In Section 3.5.1 of Sage for Undergraduates, we saw an
example from thermodynamics where we had (almost) the following code.
The only addition is that I’ve added cmap=’jet’ to put the graph into color.

var("j")

u(x, t) = (80/pi)*sum( (1/(2*j+1))*exp(-(2*j+1)^2*pi^2*t/2500.0)

* sin((2*j+1)*pi*x/50), j, 0, 100)

contour_plot( u(x,t), (x,0,50), (t,0,300), colorbar=True, aspect_ratio=0.1,

cmap=’jet’ )

If you backspace over the aspect ratio = 0.1 option, then you’ll get
a very unsatisfying graph. See the comparison below.

With aspect ratio = 0.1 Option Without aspect ratio = 0.1 Option
(i.e. aspect ratio Set to 0.1) (i.e. default aspect ratio of 1.0)
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G.4. Saving your Image Files

There are numerous useful ways to save your images to a file in Sage, and
mercifully, they all use exactly the same syntax. You can pick from many
file formats. The extension of the filename that you specify will allow Sage
to identify what format you want.

• The format *.png is great for documents on the web, or for inser-
tion into Microsoft Word documents. This format was once rare,
but is now relatively common.
• The format *.pdf is one that you clearly are familiar with, since

you are reading a *.pdf file right now.
• The format *.pgf is similar to *.jpg, in the sense that it uses

compression methods. This format is somewhat rare at this time
(December of 2016).
• The above formats store images in a raster-graphics format. That

means that they start with a bitmap (a pixel-by-pixel storage of an
image), and then do a long and complex sequence of mathematical
operations to compress the image.
• A more powerful way of storing images is the vector-graphics for-

mat. This process does not start with a bitmap. Instead, it starts
with a geometric definition of your image. Therefore, you can zoom
in infinitely far, and still have a clear and crisp image. With raster-
graphics, once you zoom in very far, the image looks “blocky” be-
cause the pixels have become large. The following extensions are
for vector-graphics formats.
• The formats *.ps and *.eps a great for printing professionally,

such as in a textbook, a journal article, or a poster. The exten-
sions stand for “postscript,” a computer language mostly spoken
by printers and plotters, and “encapsulated postscript.”
• The format *.svg is used by expensive graphics software, such as

Adobe Illustrator, and competing products.
• Last but not least, the *.sobj file format produces a Sage object.

Such a Sage object can be loaded again later.
• If you do not specify any extension, then the empty extension will

be treated the same as the *.sobj extension.

Here is the syntax for the save feature.

P = plot( sin(x), -20, 20 )

P.show()

P.save("test1.png")

If you’re using SageMathCloud, the file will be deposited in the same
directory as the *.sagews worksheet which you are working from. You
do not have the chance to say where the file goes. Moreover, there is no
notification that the file was successfully saved. Instead, the file is created
very silently. To see it, just click on the the word “Files” with the folder
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icon. While the file is saved “in the cloud” and not on your local computer,
you can simply download the file to have a copy of it on your computer.

If you’re using SageMathCell, there will be a link. It is small and rather
hard to find. It is under the black window where your plot is actually
shown. It is at the lower-left hand corner of that black window. You should
right-click on that link, and choose “save to file. . . ” Then, depending on
how you’ve configured your web browser, either you will get to choose in
which directory (on your computer) the file will be saved, or the file will be
automatically saved to your “Downloads” directory.

Unfortunately, when I started writing Sage for Undergraduates, I did
not know about the true importance of using vector-graphics formats over
raster-graphics formats, though I was academically aware of the technical
distinction. Therefore, I used only *.png format images. As a result, the
quality of the images in Sage for Undergraduates was not as good as it could
have been.

G.5. The Several Uses of the show() Command

I’m very surprised and embarrassed that I left this command out of Sage for
Undergraduates, because it is one of my favorite commands in all of Sage.
My usual use for it is when entering a large and complicated formula or
function.

For example, when working with mortgages, one of the formulas that is
often used is to compute PV , the “present value of a decreasing annuity.”
That’s just the cash value of a faithful promise to deliver c dollars, at m
equally-spaced intervals per year, for t years, starting (1/m)th of a year from
the present time. Using r to denote the nominal interest rate, the formula
is

PV = c ·
1− (1 + r

m)−mt

r/m

To put this in plainer language, let m = 12 and t = 30, giving the most
common mortgage in the USA: a 30-year/360-month fixed-rate mortgage.
The PV is the cash value of the customer’s faithful promise to deliver c dol-
lars each month, for 30 years, starting one month from the present moment.

On some morning, if I have not yet had sufficient coffee, then I’d be
prone to type perhaps:

var("Present_Value c n r m t")

show( Present_Value == c*(1-(1+r/m)^(m*t))/r/m )

# warning: this is not correct

Sage displays the response:



G.5. THE SEVERAL USES OF THE SHOW() COMMAND 1031

That would help me realize that I had made a mistake. The mistake is
/r/m, which should be instead /(r/m). I can see the error because (in the
denominator of the shown equation) I see r and m side-by-side, which is not
what I had wanted. Accordingly, I make the correction as follows:

var("Present_Value c n r m t")

show( Present_Value == c*(1-(1+r/m)^(m*t))/(r/m) )

# note: the bug is now fixed

Sage now displays the response:

While this is not identical to what I had in mind, it is easy to see that it
is mathematically equivalent. Therefore, I can have confidence that I have
typed the formula correctly.

The show() command is also very nice for matrices. Here’s a quick
example where you can see that the show() command gives you a prettier
output than normal, but the normal output is perfectly fine too.

It is quickly worth mentioning that you can also type latex(M) to get
the code for typesetting that matrix in the document-preparation language
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called LATEX. (See also, Section 4.15 of Sage for Undergraduates.) Remem-
ber, it is pronounced “la-tech,” like a Spanish pronunciation of the definite
article “la” and tech being the first syllable of “technology.” It is not pro-
nounced like “latex,” as in latex gloves.

If you are teaching people about Cardano’s cubic formula and exact
algebraic roots of polynomials, then the show() command is much better
than the print command. As you can see by the image below, the normal
output is not very readable at all, but the output typeset by show gets a lot
closer to being readable.

Those familiar with LATEX will be very happy to learn that latex(answers[2])
will give the LATEX code for typesetting the last answer. Determining the
LATEX code for that without Sage would have been very unpleasant for a
human.

Last but not least, if you know what continued fractions are, you might
be happy to know that show() can display them very nicely. (You can learn
more about continued fractions in Section 4.20 of Sage for Undergraduates.)
Actually, the show command makes using continued fractions in Sage much
more comprehensible, especially for beginners. Here is an example:

Again, you can get the LATEX code for that continued fraction by typing
latex(cf).

Last but not least, towards the end of Section 1.4 of Sage for Under-
graduates, we learned how to use show when superimposing several plots.



Appendix H

Plotting in 3D

One of my favorite features in all of Sage is the capability to plot in 3D.
I find this of enormous utility in teaching classes such as Calculus II and
Multivariate Calculus. There are numerous ways to plot in 3D in Sage. All
of them are fairly straightforward. It is only a matter of choosing which one
is right for what you have in mind.

H.1. Plotting z = f(x, y) in Sage

Plotting some function like

z = f(x, y) = x3 − y4

is probably the single most common 3D plot. While such plots are mur-
derously hard to draw on the board for the artistically challenged (such as
myself), Sage makes excellent plots for you.

H.1.1. Brief Historical Background

When I first wrote the section for 3D plotting, before Sage for Undergradu-
ates was finished, I found the Sage syntax to be a bit clumsy and awkward,
and I thought that a few easy-to-implement features were missing.

Yet, that’s the beauty of open-source software. When you see something
that you think is sub-optimal, or simply missing, then you can reprogram
it yourself! Therefore, I did exactly this, with the help of Harald Schilly of
SageMath Inc. I wrote some new code, got some feedback, made changes,
got more feedback, and Sage was improved by this process. That simply
wouldn’t be possible with a commercial product. How could I change one
of the expensive closed-source computer-algebra packages?!

This code was written in the middle of August 2016. It takes time for
the full peer-review to take place. Given the importance of mathematical
software in general, and Sage in particular, I’m sure that you understand
that the review process is rigorous and time-consuming.

The new code is available in several places.
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• At www.gregorybard.com under “Sage Stuff.”
• As Section H.13 on Page 1074.
• At the URL:

https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/

files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_

plot3d_syntax.sage

• Or at this URL: https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/
files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_

plot3d_syntax.sage

H.1.2. Using the New 3D Plotting Command

As I noted above, my new plotting commands are not yet part of Sage, as
of August of 2016. Therefore, you need to specifically import my code in
order to use the command new plot3d. In order to do this, it depends if
you are working in SageMathCloud, or SageMathCell.

SageMathCell: You must copy the code for new plot3d from one
of the sources listed above, and paste it into your SageMathCell.
Then, write your code below it. This is relatively inconvenient, but
not too hard.

SageMathCloud: First, get the file new plot3d syntax.sage and
place it in the same folder on SageMathCloud as your worksheet.
Second, put the following commands toward the start of your Sage-
MathCloud worksheet.

%auto

load("new_plot3d_syntax.sage")

These commands will execute automatically when the work-
sheet is opened, so they do not have to be in the first cell. Then
you can use the new plotting syntax.

This situation is temporary. By early 2017 at the latest, the new com-
mands should be a core part of Sage, and no special action will be required
to use these commands.

Let’s start with

z = f(x, y) = x3 − y4

and plot this in a window given by −2 < x < 2 and −2 < y < 2. We might
want to set −4 < z < 4, for example. Here is the required code:

var("x y")

f(x,y) = x^3 - y^4

new_plot3d( f, -2, 2, -2, 2, -4, 4 )

The image produced can be dragged around and rotated, allowing the
user to view the object from many different angles. It is often very important
to rotate the object, so that it can be seen from several viewpoints—only
then can the more complicated objects be understood.

Here are two different views:

https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_plot3d_syntax.sage
https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_plot3d_syntax.sage
https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_plot3d_syntax.sage
https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_plot3d_syntax.sage
https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_plot3d_syntax.sage
https://cloud.sagemath.com/projects/9107841b-69fe-4d5e-a16f-f3eb2468b07c/files/Newer%20Stuff/Newer%20Bits%20of%20the%20Graphical%20Appendix/new_plot3d_syntax.sage
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Warning:

The 3D plots take up a large amount of memory and processor time. There-
fore, it is best to limit yourself to two, three, or at most four of these plots
on a single worksheet, when using SageMathCloud. Otherwise your project
will consume too many resources, and your worksheet will begin to get very
slow. When using SageMathCell, you should limit yourself to one 3D plot.

H.1.3. Options for the New 3D Plot Command

The dark mesh on the green object above helps the user visualize the object
being displayed. However, sometimes it is “too much,” interfering with the
eye’s ability to process the object. Here is a paraboloid, shown from a nice
angle, both with and without the mesh.

z = f(x, y) = x2 + y2

as well as the code for producing those images.

var("x y") var("x y")

f(x,y) = xˆ2 + yˆ2 f(x,y) = xˆ2 + yˆ2
new plot3d( f, -2, 2, -2, 2, 0, 8 ) new plot3d( f, -2, 2, -2, 2, 0,

8, mesh=false )
As you might have guessed, the mesh is turned on by default, but can

easily be turned off by mesh=false.
We can also change the color of the plot, using the color optional pa-

rameter. Here’s a nice wavy surface:
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The code for that wavy surface is below.

var("x y")

new_plot3d( sin(x-y)*y*cos(x), -3, 3, -3, 3, -1, 1 )

Next, we can plot

z = f(x, y) = 4xe−x
2−y2

using the following code:

var("x y")

new_plot3d( 4*x*exp(-x^2-y^2), -2,2, -2,2, -2,2, color="yellow" )

Here is the image:

By the way, in Section H.1.7, we’ll see that function plotted again, but
as a table-cloth plot.
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Questions of Resolution Density

Let’s suppose that we wanted to see a plot of the function

z = f(x, y) = (sin(x− y))(y)(cosx)

for the interval −10 < x < 10 and −10 < y < 10 as well as −10 < z < 10.
Based on what we know so far, we would type the following code:

var("x y")

new_plot3d( sin(x-y)*y*cos(x), -10, 10, -10, 10, -10, 10,

color=’blue’)

We obtain the follow image, which isn’t completely satisfactory.

As you can see, the plot looks jagged, instead of smooth. It doesn’t really
convey the mathematical “truth” of the surface. By default, the new syntax
divides each axis into 25 sub-intervals, creating 253 = 15, 625 small cubes.
Most of the time, that’s sufficient, but in this case it was not. We’re going
to add the optinal parameter plot points=50 now. The code becomes

var("x y")

new_plot3d( sin(x-y)*y*cos(x), -10, 10, -10, 10, -10, 10,

color=’blue’, plot_points=50 )

This now results in the following, much improved plot:
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It should be noted that 503 = 125, 000 versus 253 = 15, 625 cubes are
being used to generate the plot. That’s a significant difference—8× as many
cubes. That’s why it takes so much longer.

Going above 50 will either take so long that a “time out” occurs, or
alternatively, the file will be too large for SageMathCloud to transfer. For
situations like this, you can use the old syntax. In fact, we’ll re-examine
this same function again on Page 1045, but with plot points=75, in the
old syntax.

Superimposition and Opacity

Just as the addition operator for 2D plots allowed for superimposing plots
(see Section 1.4.2), the same is true for 3D plots. This can create some
stunningly interesting images. For an example, try the following code:

var("x y")

P1 = new_plot3d(x^2 - y^2, -2,2,-2,2,-2,2, color=’blue’)

P2 = new_plot3d(x^2 + y^2 - 1, -2,2,-2,2,-2,2, color=’purple’)

P3 = new_plot3d(x + y, -2,2,-2,2,-2,2 )

P=P1+P2+P3

show(P)

Here is the image obtained, from two convenient viewpoints.
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If we add the option opacity=0.5 to each new plot3d command, then
we’ll make the objects partially translucent (or “see through.”) An opacity
of 0.3 is rather translucent, but a 0.5 somewhat less so; an opacity of 0.8 is
essentially solid, and an opacity of 1.0 is absolutely solid. Normally, when
working with 3D plots, the opacity defaults to 1.0 unless otherwise changed.

Here are the same images with opacity set to 0.5.

The Size on the Screen:

Sometimes, when I’m making a presentation, I’d really like the 3D plot to
be huge. By default (at least on my laptop), it covers about 1/3 the screen
vertically, and about 1/9 horizontally. This is so that you can still see other
parts of your SageMathCloud worksheet, and continue working.

If you want a large image, then you can do the following trick. Instead
of typing this code:

plot3d( x^4 - 5*x^2 + 4 + y^2, (x,-2.5,2.5), (y,-2.5,2.5) )

you can type the following code instead:

show( plot3d( x^4 - 5*x^2 + 4 + y^2, (x,-2.5,2.5),

(y,-2.5,2.5) ), width=1300 )

This gives you control over the width of the 3D-plot as it appears on
your screen, in contrast with the length, width, and height of the actual
mathematical object itself. By the way, the unit of measure in that case is
“pixels.” The new 3D object will be 1300 pixels wide.

Last but not least, it is worth mentioning that this trick will work with
any plot in Sage, whether it be 2D or 3D, so far as I am aware.

Aspect Ratios and 3D Plotting

The new plot3d command forces the 3D plot to appear in a cube. It does
this by setting the aspect ratio according to the following formula:[

1

xmax − xmin
,

1

ymax − ymin
,

1

zmax − zmin

]
Usually, this is a good idea—but sometimes it creates a highly distorted

image. Consider plotting f(x, y) = (sinx)(sin y) for −11 < x < 11 and
−11 < y < 11. As we all know, the output of sin varies from -1 to 1.
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We should not be surprised to see a highly distorted image, because the
x-interval and y-interval plotted are 22 units long, whereas the z-interval
plotted is only 2 units long.

If we type the code:

var("x y")

new_plot3d( sin(x)*sin(y), -11,11,-11,11,-1,1, color=’red’ )

Then we get the image:

Instead, we can over-ride the default aspect ratio. For example, if we
type the code:

var("x y")

new_plot3d( sin(x)*sin(y), -11,11,-11,11,-1,1, color=’red’,

aspect_ratio = [1, 1, 1] )

Then we get the image:

As you can see, modifying the aspect ratio produces a plot that is more
faithful to the mathematical realities of the function.
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H.1.4. Using Color Maps to make Terrain Plots

Like many ideas in this appendix, it is best to start with an example. Con-
sider the following image, where the colors are chosen to represent the z-
coordinate.

The key to this process is that one needs a function T (x, y, z) that will
map every point in the three-dimensional space being plotted into the in-
terval 0 < T (x, y, z) < 1. Next, a color map is chosen. These are the same
color maps as listed in Section G.3.4. That color map will provide a color
for each point (x, y, z), based on the number that T (x, y, z) provides.

You can choose any color map that you want. However, I chose terrain
because it looks like the type of terrain you might see in a video game.
The highest points are white and then gray (representing mountains), and
then brownish-yellows and greens (representing hills and plains), followed by
various blues (representing seas). The resulting image can be very attractive.
It is important to turn the mesh off with mesh=False, to avoid ruining the
image.

Here is the code for making the above image.

var("x y z")

T(x,y,z) = (z + 2) / 4

f(x,y) = x^2 + y^2 - sin(10*y)^2 - cos(3*x)^2

new_plot3d( f, -2, 2, -2, 2, -2, 2,

color = (T(x,y,z), colormaps.terrain),

mesh=False ).show( viewer=’tachyon’ )

Since I expect that −2 < z < 2 in my plot, then 0 < z + 2 < 4, so that

0 <
z + 2

4
< 1
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gives me the best choice for T (x, y, z), if I want the color to represent z
alone. However, there are many other ways to choose T (x, y, z).

For another example, I chose T (x, y, z) = cos y. Here is the code:

var("x y z")

T(x,y,z) = cos(y)

f(x,y) = sqrt(4 - x^2 - y^2)

new_plot3d( f, -2, 2, -2, 2, -2, 2, plot_points=50,

color = (T(x,y,z), colormaps.terrain),

mesh=false ).show( viewer=’tachyon’ )

The image produced is fairly attractive:

H.1.5. Comparing the Old and New Commands

Most readers will want to skip to Section H.1.7 on Page 1046 at this time.
What follows is a comparison of the old plot3d command and the new
command, new plot3d. This is for you to have an idea of why the changes
were made. Here are the reasons:

No Control over the z-window: While one could control the in-
terval of x and the interval of y in the 3D plot with the old com-
mand, it was impossible to control the z-interval. You simply had to
accept the fact that the graph plot would show all z-values achieved
by the function over the plotted portion of the xy-plane.

Default Aspect Ratio is 1,1,1: At first, it might not seem to be
such a problem that the default aspect ratio was set to [1,1,1]. After
all, one can override this with an optional parameter. However, that
requires some knowledge of the function being plotted. The formula
that I gave on Page 1039, to rapidly compute aspect ratios, requires
zmax and zmin. Often, students will want to see plots when first
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learning about functions of the form z = f(x, y). They aren’t ready,
at that instant, to find all the global minima and maxima, and then
find the true minimum and maximum on the plotted interval. In
some cases, that’s a lot of work.

Consider z = f(x, y) = x2 + y3. The following code plots it
under the old syntax, and the new syntax.

The Old Syntax The New Syntax

var("x y") var("x y")

plot3d( xˆ2 + yˆ3, (x,-3,3), new plot3d( xˆ2 + yˆ3, -3,3,

(y,-3,3), color=’orange’) -3,3,-8,8, color=’orange’)

Vertical Asymptotes are Impossible: One of the most frequently
analyzed functions, either in complex analysis or in multivariate cal-
culus, is a rational function. Any rational function with a vertical
asymptote (in the portion of the xy-plane being plotted) would re-
sult in an unreadable plot. The z-values would take on an enormous
interval, and then because the plot3d command uses an aspect ra-
tio of [1,1,1], the x and y dimensions would be very tiny. This
makes the plot look like a pen or pencil held vertically, and one can
see nothing.

Rational functions work perfectly fine under the new syntax.
For example, the following code:

f(x,y) = 1/((x+2)^2 + (y+1)^2) - 1/((x-1)^2 + (y-2)^2)

new_plot3d( f(x,y), -4,4,-4,4,-4,4, color=’cyan’)

generates the following image:
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Undefined Values are Plotted as Zero: Sometimes there will be
values that are undefined inside of the plotting range. The con-
vention in mathematics is to leave such regions blank—completely
unplotted. The old command does not do this, but the new com-
mand does. Instead, the old command plots z = 0 for those points.

For example, the graph of f(x, y) =
√
x+ y shows the value 0

if x+ y < 0, which is not correct. The function takes on imaginary
values when x + y < 0. Consider f(−2,−2) = 2i 6= 0. To see the
effect visually, consider the following two 3D plots.

The Old Syntax The New Syntax

var("x y") var("x y")

plot3d( sqrt(x + y), (x,-2,2), (y,-2,2), new plot3d( sqrt(x + y), -2,2,-2,2,-2,2 )

color=’seagreen’, mesh=True )

Default Precision Too High: The default value for plot points

was set to 50, not 25. While this is useful in some cases, as we have
already seen on Page 1037, it is usually unneeded. Moreover, this
“wasted” precision can make the plot much slower to generate.

Mesh Off by Default: While this is far from a major issue, a 3D
plot looks much better with the mesh than without, in the vast
majority of cases. In the old syntax, the default was mesh=False.
While some graphs look better that way, most do not. In the
new syntax, the default is mesh=True. As an additional example,
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consider

z = f(x, y) = x2 − y2

for −3 < x < 3 and −3 < y < 3.

Old Syntax Old Syntax New Syntax
Mesh False by Default Mesh set to True Mesh True by Default

The old command had three advantages over the new command. First,
it was much faster. This has to do with the internals, and it would be
tedious to explain at this time. It can be summarized by saying that instead
of dividing three-dimensional space into n3 small cubes, it divides the xy-
plane into n2 small squares. Second, because it is so much faster, for very
wobbly plots with a lot features, you can do plot points=75 or even =100.
The third advantage is that the old command had the ability to do what I
call “tablecloth” plots, which will be explained in Section H.1.7.

H.1.6. Using the old plot3d Command

The examples of the previous subsection give you an idea of how the syn-
tax of the old command worked. The options mesh, color, opacity, and
aspect ratio work identically for both the old and new syntax. You can
superimpose 3D plots, using the addition symbol, identically in both the old
and new syntax.

Remember, you do not provide z-coordinates in the old syntax—Sage
will compute those for you, regardless if they are convenient or inconvenient.
If you need to compute an aspect ratio to make your plot fit in a cube, then
the formula from 1039 will work. You can also multiply or divide one of the
entries by two or three to get some nice rectangular boxes. (You can even
use the golden ratio, if you are so inclined.)

Sometimes, when a graph varies a lot or is extremely wobbly, it is better
to use the old syntax. For example, since the old syntax is so much faster,
using plot points=75 or even =100 should not be a problem. The following
is the same plot we saw on Page 1037, except in pink instead of dark blue,
using the old syntax, and with plot points=75. As you can see, it looks
really smooth now.
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The code to produce that is below.

var("x y")

plot3d( sin(x-y)*y*cos(x), (x,-10,10), (y,-10,10), color=’pink’,

mesh=True, plot_points=75 )

Note, I really do have to say mesh=True, because by default it is False

in the old syntax. You might be wondering why the old syntax can handle
plot points=75 when the new syntax has difficulty with plot points=50.
Instead of dividing three dimensional space into 753 = 421, 875 small cubes,
the old syntax will divide the xy-plane into 752 = 5625 small squares. That’s
why the old syntax is so much faster.

Last but not least, there is an option adaptive=True, which calls some
extra code to make certain plots appear nicer. This also slows down the
plotting. It rarely seems to be necessary, though it is necessary for the
table-cloth plots which I am about to describe below.

H.1.7. Table-Cloth Plots

This concept is best explained by example. The following image:
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shows the function

f(x, y) = 4xe−x
2−y2

in what I call a table-cloth plot. (We saw this function before, on Page 1036.)
The plot above was generated by the following code.

plot3d( 4*x*exp(-x^2-y^2), (x,-2,2), (y,-2,2),

adaptive=True, color=[’yellow’, ’blue’] )

In general, you’ll get a table-cloth plot when producing a 3D plot using
plot3d (the old syntax), if you set adaptive=True, and provide a list of
exactly two colors. Here is another view of f(x, y) = x2 − y2 from the
previous subsection, but this time, it is a table-cloth plot.

H.2. Plotting Implicit 3D Surfaces

Sometimes, a multivariable function is defined implicitly, instead of explic-
itly. What I mean is that instead of z = f(x, y) one could have some
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polynomial, for instance, in x, y, and z equal to zero. An example might be

4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0

This should not be too surprising. After all, while most functions in the
univariate calculus are defined as y = f(x), on the other hand, we write a
circle like x2 + y2 = 4, or alternatively x2 + y2 − 4 = 0 as a polynomial in x
and y, set equal to zero.

In any case, here’s what you would do in Sage. First, we define the
function that we wish to draw:

f(x,y,z) = 4*x^2 *(x^2+y^2+z^2+z) + y^2*(y^2+z^2-1)

Now the following command will plot the set of points where f(x, y, z) =
0, and the variables range over the values −1/2 < x < 1/2 and −1 < y < 1
as well as −1 < z < 1.

implicit_plot3d(f, (x,-0.5,0.5), (y,-1,1), (z,-1,1), color=’red’)

That produces this:

Before we wrap up our discussion of 3D plots, it is important to point out
that if you were to use plot points=100 in the above command, then the
x-interval would be divided into 100 parts, as well as the y and z intervals,
for a total of

100× 100× 100 = 1, 000, 000

plotting points. This is extremely unwise, and can crash your web browser.
Generally, I would not recommend going above 50. This point is discussed
in more detail on Page 1038.

H.3. Plotting 3D Polyhedra

Before we move onto 3D plotting in general, it is nice to warm up a bit with
a simple case, that of polyhedra. A polyhedron is like a polygon, except
that it is in 3D instead of in 2D.
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H.3.1. Built-In Polyhedra, the Platonic Solids

The following single commands, typed along either into a SageMathCell
or into SageMathCloud will produce a nice pleasing figure. This can be
useful for three reasons. First, it is a quick way to verify if 3D graphics
are functioning on your particular setup and configuration. Second, it will
help you get accommodated to the finger movements on your trackpad (or
mouse) for rotations and scaling. Third, if you just want to demonstrate
Sage’s 3D graphics capabilities, then this is a nice way to do it. These are
sorted in order from “most cool” to “least cool,” in my humble opinion.

• dodecahedron()

• icosahedron()

• octahedron()

• tetrahedron()

• cube()

• sphere()

You can also make a multicolored cube, which looks very nice:

cube(color=["red", "black", "yellow", "green", "blue", "purple"])

Historical Context (Ancient Greece)

The first five of those are the Platonic solids. While Plato of Athens was
known more for his philosophical, political, and legal writings, it seems that
he did have respect for geometry. He identified these platonic solids with
the five elements of atomic theory, as it was known at that time. The
icosahedron, or d20, was associated with water; the dodecahedron, or d12,
was associated with aether; the octahedron, or d8, was associated with air;
the cube (hexahedron) or d6 was associated with earth; the tetrahedron, or
d4, was associated with fire.

You can find a discussion of this in Plato’s dialog called Tιµαιoς (Timae-
us), but be sure to get a modern translation. Even slightly older translations
are nearly impossible to read because the translators sought to beautify the
writing by using archaic English. This is the same dialog where the legend
of “the lost city of Atlantis” entered (so far as we are aware) into Western
culture. These five polyhedra are the only polyhedra in three-dimensional
geometry where each face is an identical, equiangular, and equilateral poly-
gon.

H.3.2. An Example: A Skeleton of an Octahedron

The code in Figure 1 on Page 1051 will provide an extended example for
us. In the classroom, this is an excellent way to introduce three-dimensional
coordinates, and how they work. It will draw the skeleton (the edges) of an
octahedron in blue, and then the positive x, y, and z axes in red. You get
the following image:
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On a printed page, or as a static image on the screen, the image is
not perfectly comprehensible. However, if students are allowed to rotate
the figure, and see it from many different angles, then it becomes entirely
comprehensible. This really shows how the ability to rotate and scale an
image aids student comprehension.

The code shows you how we define a 3D coordinate (an ordered triple)
in Sage. The line command will connect a list of points with line segments,
constructing a polygon. (This might annoy some geometry professors, as
line does not draw a line, nor a line segment, but a set of line segments.) If
you’d like the enclosed area to be a closed polygon, you must list the start
pointing both at the start of the list and at the end. Here, our polygons
that represent the faces of the octahedron are triangles, so we have to list 4
points.

As in other types of Sage plotting, the addition operator + represents
superimposition.

One trick that I like to do is replace

my_image = skeleton + axes

with instead

my_image=skeleton + axes + sphere(P_east, radius=0.1, color=’green’)

to break the symmetry, and identify the x-axis.
This circumstance is another opportunity to discuss Euler’s equation

for the relationship between the number of vertices, edges, and faces of a
polyhedron. It is important to note that it works for all polyhedra without
cavities, not just the five Platonic solids. With minor modification, you can
even consider polyehdra with cavities.

A Challenge for You:

If you want to see if you have understood this material, then perhaps you
should try to modify the above code to produce a cube.
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P_up = (0, 0, 1)

P_down = (0, 0, -1)

P_north = (0, 1, 0)

P_south = (0, -1, 0)

P_east = (1, 0, 0)

P_west = (-1, 0, 0)

P_origin = (0, 0, 0)

face_1 = line( [P_up, P_north, P_east, P_up ] )

face_2 = line( [P_up, P_east, P_south, P_up ] )

face_3 = line( [P_up, P_south, P_west, P_up ] )

face_4 = line( [P_up, P_west, P_north, P_up ] )

face_5 = line( [P_down, P_north, P_east, P_down ] )

face_6 = line( [P_down, P_east, P_south, P_down ] )

face_7 = line( [P_down, P_south, P_west, P_down ] )

face_8 = line( [P_down, P_west, P_north, P_down ] )

pos_x_axis = line( [P_origin, P_east], color=’red’ )

pos_y_axis = line( [P_origin, P_north], color=’red’ )

pos_z_axis = line( [P_origin, P_up], color=’red’ )

skeleton=face_1+face_2+face_3+face_4+face_5+face_6+face_7+face_8

axes = pos_x_axis + pos_y_axis + pos_z_axis

my_image = skeleton + axes

my_image

Figure 1. An Extended Example, Drawing the Skeleton of
an Octahedron. (For use with Section H.3.2 on Page 1049.)

H.3.3. The Polyhedron of a Linear Program

We saw earlier, on Page 1011 of Section G.2.2 of this appendix, that the
feasible region of a particular system of inequalities in two variables was a
convex polygon. We also stated that this will be true for all systems of linear
inequalities in two variables, provided that the feasible region is bounded.

As you might guess, the analogous statement is true for systems of linear
inequalities in three variables. The feasible region will be a convex polyhe-
dron, provided that the feasible region is bounded. In this context, bounded
means that there exists some sphere (regardless of where it is centered and
of what radius) which entirely contains the whole feasible region.
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Sage can easily draw such a polyhedron, given a linear system of in-
equalities. Consider the following,

2x1 + x2 + 3x3 ≤ 1

3x1 + 2x2 + x3 ≤ 1

x1 + 3x2 + 2x3 ≤ 1

x1, x2, x3 ≥ 0

Using the syntax that we learned in Section 4.21, for solving linear pro-
grams, we can write the following code. Note that we are talking about a
region in 3-space that contains all the points which satisfy all the inequali-
ties simultaneously. With that in mind, it is not surprising that we do not
need to set an objective function, nor do we need to actually solve for the
global feasible minimum or global feasible maximum.

p = MixedIntegerLinearProgram()

x = p.new_variable(real=True)

p.add_constraint(2*x[1] + x[2] + 3*x[3] <= 1)

p.add_constraint(3*x[1] + 2*x[2] + x[3] <= 1)

p.add_constraint(x[1] + 3*x[2] + 2*x[3] <= 1)

# these next two lines (and this comment) are not necessary.

# p.set_objective(x[1]+x[2]+x[3])

# p.solve()

my_polyhedron = p.polyhedron()

my_polyhedron.plot()

The above code produces the following polyhedron, displayed from two
different camera angles.

H.4. The Best-Fit Plane

The Best-Fit Line shows up in high school science and mathematics classes,
and therefore linear regression is familiar to college students when they
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see it. Then multivariate linear regression is presented, often with much
trauma to the student. This can particularly be exacerbated by the fact that
the students who are learning multivariate linear regression might be from
social sciences like political science, nutrition, or management science—i.e.
students who have no exposure to multivariate functions.

As a stepping stone between linear regression and multivariate linear
regression, I suggest that the best-fit plane be presented. Because there
are two explanatory variables and one output variable, the object can be
graphed in 3-dimensional space. Consider the following comparison:

• For a best-fit line, we have dots (small circles) in a coordinate plane,
and find a line that (1) goes through the average x and average y,
(2) has the sum, over all data points, of the vertical distances to
that line being zero, and (3) which minimizes the sum of the squares
of the vertical distances to that line. This gives a useful function

f(x) = β0 + β1x

• For a best-fit plane, we have dots (small spheres) in three-space,
and a plane that (1) goes through the average x, y, and z, (2) has
the sum, over all data points, of the vertical distances to that plane
being zero, and (3) which minimizes the sum of the squares of the
vertical distances to that plane. This gives a useful function

f(x, y) = β0 + β1x+ β2y

• For multivariate regression, we have

f(x1, x2, x3, . . . , xn) = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βnxn

I think it is extremely difficult for a mathematically inexperienced stu-
dent to pass directly from the first to the third. I know a solid professor,
with a PhD in management science, who struggled with multivariate regres-
sion, presumably because of bad teaching—even though it is a favorite tool
in graduate-level economics courses.

In the code given in Figure 2 on Page 1054, I show you my program
and a sample (artificial) data set. The images below show the best-fit plane
from different points of view.

Two Views of the Best-Fit Plane
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var("x y z")

our_data = [ (1, 1, 0), (2, 1, 2/5), (3, 1, 9/5), (4, 1, 2),

(5, 1, 18/5), (1, 2, 4/5), (2, 2, 1/5), (3, 2, 9/5),

(4, 2, 12/5), (5, 2, 14/5), (1, 3, -2/5), (2, 3, 1),

(3, 3, 2), (4, 3, 12/5), (5, 3, 18/5), (1, 4, -6/5),

(2, 4, -3/5), (3, 4, 2/5), (4, 4, 11/5), (5, 4, 11/5) ]

dots = [ ]

for datum in our_data:

dots.append( sphere(datum, color=’blue’, size=0.1) )

z_hat = 0.85*datum[0] - 0.276*datum[1] - 0.5

estimate = (datum[0], datum[1], z_hat)

shadow = sphere( estimate, color=’black’, size=0.03 )

tiny_line = line( [estimate, datum], color=’black’ )

dots.append( shadow )

dots.append( tiny_line )

display = sum( dots )

plane = implicit_plot3d( z == 0.85*x - 0.276*y - 0.5, (x,0,6),

(y,0,5), (z,-3/2,4), color=’pink’ )

display+plane

Figure 2. My Program for Drawing a Best-Fit Plane

You might be wondering how I found the best-fit plane in the first place.
Using the techniques of Section 4.9 and Section 4.10, I typed the following:

var("beta_0 beta_1 beta_2")

our_data = [ (1, 1, 0), (2, 1, 2/5), (3, 1, 9/5), (4, 1, 2),

(5, 1, 18/5), (1, 2, 4/5), (2, 2, 1/5), (3, 2, 9/5),

(4, 2, 12/5), (5, 2, 14/5), (1, 3, -2/5), (2, 3, 1),

(3, 3, 2), (4, 3, 12/5), (5, 3, 18/5), (1, 4, -6/5),

(2, 4, -3/5), (3, 4, 2/5), (4, 4, 11/5), (5, 4, 11/5) ]

f(x,y) = beta_0 + beta_1*x + beta_2*y

find_fit( our_data, f )
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The model that Sage gave me was

z = −0.5 + 0.85x− 0.276y

so therefore β0 = −0.5, β1 = 0.85 and β2 = −0.276.

H.5. Matrix Algebra and Intersecting Three Planes

When we have three linear equations in three unknowns, we can represent
each equation as a plane floating in three-dimensional space. Much of the
time, there is a unique solution. Students familiar with linear algebra (ma-
trix algebra) will know that this will occur so long as the determinant is not
zero.

However, other things can occur. There can be problems for which there
is no solution. There can also be problems for which there are infinitely many
solutions. This further splits into two cases—one degree of freedom, and two
degrees of freedom.

To help students visualize this, I have many interactive webpage that
deals with this topic. Just go to

www.gregorybard.com

and click on “interactive webpages for teaching math.” Then click on “Vi-
sualizing Infinitely Many Solutions in a Linear System of 3 Equations and
3 Unknowns.” You can learn to make your own interactive webpages (or
“apps” as they are often called) by reading Chapter 6 of Sage for Under-
graduates.

The code for drawing a 3D-image of that type is given below. Here we
are going to see a linear system with three equations, three variables, and
one degree of freedom. The three planes will intersect not in a point, but
in a line. Every point on that line is a solution to the linear system of
equations. The line is drawn in red, whereas each of the planes is drawn in
bright colors (yellow, green, and blue).

var("x y z")

# This is matrix C_2 in both Appendix D and Section 1.5

plane_1=implicit_plot3d(x + 2*y + 3*z==7, (x,-3,3), (y,-3,3),

(z,-3,3), color=’yellow’)

plane_2=implicit_plot3d(4*x + 5*y + 6*z==16, (x,-3,3), (y,-3,3),

(z,-3,3), color=’blue’)

plane_3=implicit_plot3d(7*x + 8*y + 9*z==25, (x,-3,3), (y,-3,3),

(z,-3,3), color=’green’)

spine=line([ (-0.5,3,0.5), (2,-2,3) ], color=’red’, thickness=5)

show( plane_1 + plane_2 + plane_3 + spine )

That code produces the following image:
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A Challenge for You:

The following linear system has no solutions. By modifying the above code,
draw the image that represents the three planes and their lack of intersection.

5x− 10y + z = 115

2x− 4y + 3z = 96

9x− 18y − 8z = −38

The final image should vaguely look like this, but it depends upon what
ranges of x, y, and z you choose to plot.

H.6. Plotting in Cylindrical Coordinates

Cylindrical coordinates are very important, particularly in Electrical Engi-
neering. After all, wires (especially if you zoom in a lot) are cylinders. The
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workings of cylindrical coordinates are a minor extension of polar coordi-
nates. For this reason, it might be useful to review Section 3.3, which dealt
with polar plotting.

Basically, a cylindrical coordinate system can be thought of as someone
who puts a piece of polar-coordinate graph paper, on a table. Points not
on the table have a z-coordinate, that says how much above the table (if
positive) or below the table (if negative) they are. Points on the table have
z = 0. The point obtained by moving vertically until the table is contacted
is on the graph paper, and has a polar coordinate given by (r, θ), just like
any polar coordinate. In this way, any point in the universe can be described
by three numbers in the format (r, θ, z). Just like in polar coordinates, θ
should respect 0 ≤ θ ≤ 2π, but r can be any real number. Likewise, z can
be any real number as well.

Just as curves in 2D are usually described as f(x) = y and surfaces in
3D are often described as f(x, y) = z, surfaces in cylindrical coordinates are
defined by a radius function, r(θ, z). This function will output a radius for
any given z-coordinate and θ-coordinate.

A particularly boring example might be r(θ, z) = 4, which ignores both
z and θ. This is going to generate a part of a cylinder, that looks to me
like a soup can’s label. That’s not very exciting. The code for this is very
simple, but note that z and θ have to be declared as variables with var, as
do all variables except for x.

var("z theta")

# Cylindrical Example 1

cylindrical_plot3d( 4, (theta,0,2*pi), (z,-2,2),

plot_points=[80,80])

You might be wondering what the plot points=[80, 80] is about. The
normal density of points (see Section H.1.3 on Page 1037) is insufficient for
this figure. As before, as you increase the density, the rendering of the image
takes longer, but the quality is higher.

Contrastingly, r(θ, z) = 2 + sin(4z) will ignore θ, but not z. Such func-
tions are symmetric about the z-axis and they happen to come up in calculus
classes very often. This figure would have a radius varying sinusoidally with
1 ≤ r ≤ 5, because

−1 ≤ sin (anything whatsoever) ≤ 1

and inequality that we should all keep in mind. The code to produce this
image is below.

var("z theta")

# Cylindrical Example 2

cylindrical_plot3d( 2 + sin(4*z), (theta,0,2*pi),

(z,-2,2), plot_points=[80,80])

A much more interesting example is

r(θ, z) = e−z
2

(cos(4θ) + 2) + 1
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for 0 ≤ θ ≤ 2π and −2 ≤ z ≤ 2. The code for that is below.

var("z theta")

# Cylindrical Example 3

cylindrical_plot3d( e^(-z^2)*(cos(4*theta)+2)+1, (theta,0,2*pi),

(z,-2,2), plot_points=[80,80] )

A crazy example, but one that looks like a cool bit of exotic flora, can
be given by

r(θ, z) = (sin 6z) (cos 5θ) + 1

again for 0 ≤ θ ≤ 2π and −2 ≤ z ≤ 2. The code for this is below. You’ll
notice we went from 802 points to 2002 points, because this figure is more
complicated, and those extra points are needed to draw the figure properly.

var("z theta")

# Cylindrical Example 4

cylindrical_plot3d( sin(6*z)*cos(5*theta)+1, (theta,0,2*pi),

(z, -2, 2), plot_points=[200,200] )

Example 1 Example 2

Example 3 Example 4
We stated earlier that when r(θ, z) ignores θ, then we have a figure

which is symmetric around the z-axis, like a volume of revolution in Calculus
II. You might be curious what happens if r(θ, z) ignores z. Then we’re
essentially back to polar coordinates, and we get what Plastics Engineering
people call an extrusion. We can take an examples from Section 3.3, and
see what happens if we extrude it.

For r(θ, z) = 2
√
| sin(2θ)| we would type
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var("z theta")

cylindrical_plot3d( sqrt(abs(sin(2*theta))), (theta,0,2*pi),

(z, -2, 2), plot_points=[80,80] )

Polar Version Cylindrical Version
As you can see, it is as if we forced a bunch of liquid plastic through a

form or filter that was shaped like the polar plot. This technique is frequently
used in manufacturing.

Last but not least, I have been using sloppy language when I say “r(θ, z)
ignores z” or “r(θ, z) ignores θ.” What I really mean is that ∂r/∂z = 0 or
∂r/∂θ = 0 as partial derivatives. However, what it really comes down to is
that z or θ is simply missing from the simplified form of r(θ, z).

A Note about Aspect Ratio

There is another optional parameter, like plot points, that can help your
images. It is aspect ratio=[1,1,1] and has to do with “drawing to scale.”
If the x-values vary from, perhaps, 1 < x < 4 in your object, and the y-
values vary from, perhaps, 1 < y < 1000, then it is important that Sage not
draw your graph to scale. Otherwise your graph would be almost invisible.
However, when working with objects from geometry, it can be very impor-
tant to “draw to scale,” otherwise important characteristics, such as angles,
will be distorted—sometimes distorted beyond recognition.

A Challenge for You:

Plot the function

r(θ, z) =
(
0.1 + (sin 5z)2(sin 6θ)2

)
ez

for 0 < θ < 2π, but −7 < z < π/5. This example is due to by Prof. Gilbert
Labelle of the Université du Québec à Montréal.

H.7. Plotting Volumes of Revolution in Calculus II

Finding the volumes (and surface areas) of surfaces of revolution is a de-
lightful topic in Calculus II, because we see the unity of geometry, ordinary
algebra, and the integral calculus. It also helps us learn how to visualize
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in three dimensions—because sadly many of us only see two-dimensional
geometry in high school. That’s most unfortunate because we live in a
three-dimensional world! Moreover, it is often hard to sketch in 3D, and it
can really help both faculty and students to see 3D graphics representing
the objects whose volume or surface area they are trying to compute.

Cylindrical coordinates are the natural environment for producing these
3D images, because of how they are produced. The axis of symmetry will
become the z-axis, and “the other axis” will become the r-axis. These
figures are symmetric about the z-axis, and therefore θ will play no role in
the radius function.

• If you’re rotating around the x-axis, then x takes the role of z and
y takes the role of r. This means that the equation to produce your
radius function should start with y =.
• If you’re rotating around the y-axis, then y takes the role of z and
x takes the role of r. This means that the equation to produce your
radius function should start with x =.
• Please, do not just memorize this. Honestly, try to understand why

these two facts above (and the one below) is true.
• Another option is to do “off-axis” rotations. That means you are

rotating around y = 2 or x = 4. For these, you follow the rules for
which ever axis your line of rotation happens to be parallel to.

By the way, since we are talking about visualizing an actual geometric
object, as compared to analyzing the relationships between variables, we
really do need the aspect ratio to be controlled in these problems. Therefore,
we will always use the optional parameter aspect ratio=[1,1,1].

Example One:

Let’s consider, as our first example, rotating the curve y = ex−1 about the
x-axis for 0 ≤ x ≤ 3. Because we are rotating around the x-axis, the role of r
will be taken by y and the role of z will be taken by x. As mentioned before, θ
does not play a role here because these sorts of figures are symmetric about
the axis of rotation. There we should change the Cartesian-coordinates
function

f(x) = y = ex−1

into the cylindrical-coordinates function

r(θ, z) = ez−1

for 0 ≤ z ≤ 3.
We should type

var("z theta")

cylindrical_plot3d( e^(z-1), (theta,0,2*pi), (z, 0, 3),

aspect_ratio=[1,1,1] )
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The plot is shown below. On the left, we have 0 ≤ θ ≤ 2π, which is the
figure itself. On the right we have 0 ≤ θ ≤ (3/2)π, where only 75% of the
figure is being drawn. This helps show how the figure is constructed.

Example 1 Example 1
0 ≤ θ ≤ 2π 0 ≤ θ ≤ 3

2π

Example Two:

We’re going to take the same curve as Example 1, namely y = ex−1 for
0 ≤ x ≤ 3, but now rotate it around the y-axis. Because we are rotating
around the y-axis, the role of r will be taken by x and the role of z will be
taken by y. As always, θ does not play a role here because these sorts of
figures are symmetric about the axis of rotation. There we should change
the Cartesian-coordinates function

y = ex−1

loge y = x− 1

1 + loge y = x

1 + loge z = r

into the cylindrical-coordinates function

r(θ, z) = 1 + loge z

for 0 ≤ z ≤ 3. However, loge 0 is undefined, in the sense that

lim
x→0+

loge x = −∞

so we should use 1/10 ≤ z ≤ 3. Alternatively, we could have chosen 1/100
or 1/5 for the lower-bound of z.

It is a good idea to note that loge x is written lnx in most calculus
textbooks, while it is log(x) in Sage, as discussed in Section 1.2, under the
heading “Logarithms.”

In any case, we should type

var("z theta")

cylindrical_plot3d( 1 + log(z), (theta,0,2*pi),

(z, 1/10, 3), aspect_ratio=[1,1,1] )
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Example 2 Example 2
0 ≤ θ ≤ 2π 0 ≤ θ ≤ 3

2π

Example Three:

Now we’re going to draw the area between y = x2 and y = x3, for positive x
and positive y, rotated around the y-axis. This will require two cylindrical
plots, one for the “inside surface” and one for the “outside surface.” While
we will not compute the volume here, we would be required to use the
method that some books call “The Method of Washers” and which other
books call “The Method of Annuli.” This is in contrast with our previous
two examples, which would require that some books call the “The Method
of Pancakes” and which other books call “The Method of Discs.”

First, we have to find out where the two curves cross each other. Surely
at the crossing point, the y-coordinates of the curves are equal.

y = y

x2 = x3

0 = x3 − x2

0 = x(x2 − 1)

0 = x(x− 1)(x+ 1)

We get x = 0, x = 1, and x = −1. Since we have restricted to positive
x, we know that we should use 0 < x < 1. Coincidentally, the y-coordinates
are also 0 < y < 1. Now we’re ready to plot. We’re actually going to use
10−6 instead of 0, which might be a surprise. To see why, try the code below,
and then try it again, but replacing the 10−6s with 0s.

var("z theta")

inside = cylindrical_plot3d( z^(1/2), (theta,0,(3/2)*pi),

(z, 10^-6, 1), color=’yellow’, aspect_ratio=[1,1,1] )

outside = cylindrical_plot3d( z^(1/3), (theta,0,(3/2)*pi),

(z, 10^-6, 1), color=’green’, aspect_ratio=[1,1,1] )

inside + outside
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Notice that we carried out the superimposing of the images, to see the
inside surface and the outside surface simultaneously, through “adding” the
two outputs from the cylindrical plot3d commands.

Example 3 Example 3
0 ≤ θ ≤ 2π 0 ≤ θ ≤ 3

2π

A Challenge for You:

My challenge for you is to plot the volume
of revolution formed by taking the area
between y = 9x and y = x3, and rotating
it around the y-axis. The image obtained
is shown on either side of this paragraph.

H.8. Plotting in Spherical Coordinates

Many students find spherical coordinates confusing, but there is a trick to
learning this useful tool. We’ll start by exploring the coordinate system
itself.

H.8.1. Introduction to Spherical Coordinates

For any point, the coordinates are (r, θ, ϕ), where r is the radius, and θ is
the same as theta from polar coordinates. You can imagine a horizontal
plane, representing ϕ = 0 as a straight-forward polar-coordinate plane. The
trick is to fix some specific radius r, and then you get a sphere. That polar-
coordinate plane will contain that sphere’s equator.
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You are probably familiar with longitude and latitude from geography.
The θ is exactly the same as longitude. Just as on the earth, where longitude
measures how far east or west you are compared to Greenwich in the United
Kingdom, in this coordinate system, the θ represents moving in a horizontal1

direction.
Since θ is longitude it is reasonable to presume that ϕ is latitude. Un-

fortunately, the ϕ is not latitude. Regrettably, many students think that it
is latitude. Let’s now explore what ϕ and latitude have in common and how
they differ.

• In geography, the north pole is 90◦N latitude. The equator is 0◦

latitude. The south pole is 90◦S latitude. A short jog around the
north pole is 89◦N latitude, and a short jog around the south pole
is 89◦S latitude.
• The “north pole” in spherical coordinates is ϕ = 0◦ or ϕ = 0

radians. The equator is ϕ = 90◦ or ϕ = π/2 radians. The south
pole is ϕ = 180◦ or ϕ = π radians. A short jog around the north
pole is ϕ = 1◦ or ϕ = (1/180)π radians. Contrastingly, a short jog
around the south pole is ϕ = 179◦ or ϕ = (179/180)π radians.

As you can see, φ and latitude are different, but they are highly related.
With this in mind, it is not surprising that φ is called “the co-latitude.”
Interpreting north latitudes as positive, and south latitudes as negative,
then it is always true that the latitude plus the co-latitude will equal 90◦

or π/2 radians. They are complementary angles, hence the use of the “co-”
prefix.

It should be noted that some textbook authors write (r, θ, ϕ) and some
write (r, ϕ, θ). While the ordering is non-standard, and that surely is an
annoying ambiguity, the symbols are consistent.

The following diagrams show a large blue planet, perhaps Neptune. The
yellow dot at the top is the north pole. The yellow circle about the middle
is the equator. On the left, the red circle is 80◦N latitude but ϕ = 10◦ or
ϕ = 1

18π radians. On the right, the red circle is 10◦N latitude but ϕ = 80◦

or ϕ = 4
9π radians.

1To be precise, if you change only θ, then you are moving in such a way as to leave
the distance to the north pole a constant, the distance to the south pole a constant, and
the distance to the equator, a constant.
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This is 80◦N for latitude This is 10◦N for latitude
This is ϕ = 10◦ or ϕ = 1

18π This is ϕ = 80◦ or ϕ = 4
9π

H.8.2. Examples of Plotting with Spherical Coordinates

Of course, if you’d like to see a portrait of a sphere, then you can choose

r(θ, φ) = 1

but usually we want something more complicated. Here are some sugges-
tions:

(1) r(θ, φ) = sin(2θ + 3φ)
(2) r(θ, φ) = (sin 5θ)(cos 6φ)
(3) r(θ, φ) = (cos 4θ)(cos 3φ)
(4) r(θ, φ) = 1 + 1

3(sin 6θ)(cos 5φ)

For example, to plot the first example, use the following code:

r(theta, phi) = sin( 2*theta + 3*phi )

spherical_plot3d(r, (theta,0,2*pi), (phi,0,pi), plot_points=[200,200])

The four examples produce the following images.
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Example 1 Example 2

Example 3 Example 4

H.9. 3D-Parametric Space Curves and Derivatives

Both curves and surfaces in 3D space can be represented by writing three
functions—one for the x-coordinate, one for the y-coordinate, and one for
the z-coordinate. When we wish to model a curve, there is only one input
to each function, usually denoted t. Therefore, the functions x(t), y(t), and
z(t), jointly define the curve. Historically, t was used because space curves
were often used to represent the motion of a particle in three dimensional
space. Contrastingly, 3D surfaces are represented parametricly by three
functions of two variables: x(u, v), y(u, v), and z(u, v).

Let’s suppose, that at all times t, the position of a particle in 3-space is
given by

x(t) = t3 y(t) = t2 z(t) = t

or alternatively
~x(t) =< t3, t2, t >

This can also be written a different way, commonly used in physics
classes:

~x(t) = t3~i+ t2~j + t~k

This is a classic space-curve, and is called “the twisted cubic.” Here is
the way that we would plot it in Sage, for the values −2 ≤ t ≤ 2.

x(t) = t^3

y(t) = t^2
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z(t) = t

parametric_plot3d( [x(t), y(t), z(t)], (t,-2,2) )

Here is what the curve, the path of the particle, looks like. As you can
see, it does “something interesting” at the origin.

Next, we might want to know the particles’s velocity and acceleration.
We can take the derivatives individually, and we would obtain the following:

x′(t) = 3t2 y′(t) = 2t z′(t) = 1

as well as

x′′(t) = 6t y′′(t) = 2 z′′(t) = 0

Velocity (being a vector) describes the direction of motion, and how fast
the particle is moving in each coordinate axis. However, speed is often what
we want—an indication of how fast the particle is moving in general, like the
speedometer on a car. For speed, we would take magnitude of the vector,
much like using the distance formula. We would the square root the sums
of the squares of the entries of the vector. In our case, that comes to

||~v(t)|| =
√

9t4 + 4t2 + 1

and you can see that the speed is normally very high, but gets slow at the
origin. The magnitude of the acceleration is also important at times, such as
to measure the “g-forces” on a pilot or on the passengers of a roller-coaster.
We will take the magnitude of the acceleration vector.

||~a(t)|| =
√

36t2 + 4

Another classic example is “the helix.” This is what it looks like
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The functions are written below.

x(t) = sin t y(t) = t z(t) = cos t

That suggests the following code, for the values 0 ≤ t ≤ 6π.

x(t) = sin(t)

y(t) = t

z(t) = cos(t)

parametric_plot3d( [x(t), y(t), z(t)], (t,0,6*pi) )

Again, we can compute the velocity and acceleration. We must take the
derivatives individually, and we would obtain the following:

x′(t) = cos t y′(t) = 1 z′(t) = − sin t

as well as

x′′(t) = − sin t y′′(t) = 0 z′′(t) = − cos t

Then we can find the speed

||~v(t)|| =
√

(cos t)2 + 12 + (− sin t)2 =
√

1 + 1 =
√

2

which is pretty neat. The acceleration function is also interesting

||~a(t)|| =
√

(− sin t)2 + 02 + (− cos t)2 =
√

1 + 0 = 1

This exposes an important misconception. While the derivative of the
velocity function is the acceleration function, it is not true that the derivative
of the magnitude of the velocity function is the magnitude of the acceleration
function. Clearly,

d

dt

√
2 = 0 6= 1

and less obviously,

d

dt

√
9t4 + 4t2 + 1 =

36t3 + 8t

2
√

9t4 + 4t2 + 1
6=
√

36t2 + 4

I’m pretty sure that you will agree with me when I say that it is easier to
take the derivative with your pencil, for these sorts of problems, than it is to
even type these functions into Sage. However, for the sake of completeness,
I should give the commands for computing the above work.
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var("t", domain=RR)

position = vector( [ sin(t), t, cos(t) ] )

velocity = diff( position, t )

acceleration = diff( velocity, t )

distance_to_origin = norm( position )

speed = norm( velocity )

norm_of_accel = norm( acceleration )

print "Position:", position

print "Distance to Origin:", distance_to_origin

print "Distance to Origin:", distance_to_origin.simplify_trig()

print

print "Velocity:", velocity

print "Speed:", speed

print "Speed:", speed.simplify_trig()

print

print "Acceleration:", acceleration

print "Magnitude of Acceleration:", norm_of_accel

print "Magnitude of Acceleration:", norm_of_accel.simplify_trig()

show( parametric_plot3d( position, (t,0,6*pi) ), width=1400 )

The code produces the following output:

t

Position: (sin(t), t, cos(t))

Distance to Origin: sqrt(t^2 + cos(t)^2 + sin(t)^2)

Distance to Origin: sqrt(t^2 + 1)

Velocity: (cos(t), 1, -sin(t))

Speed: sqrt(cos(t)^2 + sin(t)^2 + 1)

Speed: sqrt(2)

Acceleration: (-sin(t), 0, -cos(t))

Magnitude of Acceleration: sqrt(cos(t)^2 + sin(t)^2)

Magnitude of Acceleration: 1

There is also a plot that is shown after this output, but I’ve already
included that plot above.

Challenge:

Modify the above code to draw this curve.

x(t) = sin et y(t) = t z(t) = cos et

for the values −3 < t < 4.
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Here’s a hint: you’ll want to use a very high value for plot points. For
myself, I used 1000.

H.10. Plotting 3D Parametric Surfaces in Space

In a space curve, you have three functions. Each one is given a t, and
responds back with either the x, y, or z coordinate. With a parametric
surface, you again have three functions. This time, each one is given a u
and a v, and as before, responds back with either the x, y, or z coordinate.

This can be made clear with an example.

# The Devil’s Mask

devil_x(u, v) = cos(2*u) + cos(v) + sin(u) + sin(2*v)

devil_y(u, v) = sin(2*u) + sin(v) + cos(u) + cos(2*v)

devil_z(u, v) = sin(2*u) + cos(3*v) + sin(2*v) + cos(3*u)

parametric_plot3d( [devil_x, devil_y, devil_z], (u,0,2*pi),

(v,0,2*pi), plot_points=[200,200] )

Here’s another example. The plots for both will be given further below.

# The Tic-Tac-Toe Stamp

my_x(u,v) = cos(2*u)

my_y(u,v) = cos(v)

my_z(u,v) = cos(u+v)

parametric_plot3d( [my_x, my_y, my_z], (u,0,2*pi),

(v,0,2*pi), plot_points=[200,200] )
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The Devil’s Mask The Tick Tac Toe Stamp
These particular cases were recommended to me by Prof. Josef Böhm, of

The Austrian Center for Didactics of Computer Algebra, at the conference
“Applications of Computer Algebra,” held in Kalamata, Greece, in July of
2015. They come from an online collection of graphics by Prof. Gilbert
Labelle of the Université du Québec à Montréal, which you can find at the
following URL. Many other graphics in this appendix are from that source
as well.

http://www.lacim.uqam.ca/∼gilbert

A Challenge for You:

Use the above code to plot the parametric surface

x(u, v) = sin 2u y(u, v) = sin 2v z(u, v) = (sinu)(sin v)

for the values −π < u < π and −π < v < π.

H.11. 3D Vector Field Plots

A vector field plot is meant to represent a vector-valued function. The two-
dimensional version will take two inputs, x and y representing a point on
the Cartesian (ordinary) x, y-plane. For each such point, a two-dimensional
vector is returned. Visually, this is represented by drawing an arrow at that
point. The length of the arrow and size of the arrow head represents the
magnitude of the vector, while the direction of the vector is usually more
important, and is indicated by which way the arrow head is pointing. The
two-dimensional version of this was covered in Section 3.7.

In three dimensions, for each point in space (x, y, z), we wish to draw
a vector in three-dimensional space. Just like in the 2D case, the usual
applications of the 3D case are to explore gravitational and electromagnetic
fields. However, you can use these for any force field. Since our 2D example
was electromagnetic, I thought it might be interesting for our 3D example
to be about gravitation.

 http://www.lacim.uqam.ca/~gilbert 
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H.11.1. Example One: A Single Planet

Of course, we’ve all seen Newton’s Law of Gravity in high school, or even
middle school:

F =
GM⊕m

r2

where M⊕ is the mass of the earth, or some other planet; m is the mass of
the satellite or other object that you are analyzing; r is the distance between
the centers of the two objects; F is the (magnitude of the) force of gravity,
and

G = 6.77× 10−11m3/(kgsec2)

is the universal gravitational constant. Actually, we’re using slightly sloppy
language here. Usually we want to find how the gravity of a planet affects a
satellite. However, you can use the same formula to discuss how two planets
affect each other, or how a star affects a planet, or how to stars affect each
other, and so forth.

That formula above gives us the magnitude of the force. The direction
of the force is going to be the vector that starts at the satellite (has a tail at
the satellite) and ends at the planet (has its head at the planet). However,
because it is a direction-vector, we convert that vector into a unit vector—a
vector of length one. The way that is done is that you divide the vector by
its magnitude.

Therefore, we have a four step process.

• First, we find the vector which connects the object to the planet.
Now we have to very careful about sign convention and direction
here. Gravity always attracts and never repels. Thus we want the
vector to point away from the satellite and toward the planet.
• Once that’s done, we divide this “displacement” vector by its norm,

and we get the direction, from the satellite’s point of view, toward
the planet.
• The magnitude is given by Newton’s formula, but we’ve been sloppy

here. We’ve decided that GM⊕m is just 4. There exists a fictional
set of units for which this is true. The magnitude of the displace-
ment vector, normally called the distance, is r, so we divide by that
magnitude squared to get the 1/r2 part of the formula.
• Finally, the final vector is the magnitude (a number or “scalar”)

times the direction vector. It is a scalar product (not a dot product,
a cross product, nor what some textbooks call a box product and
some textbooks call a triple product).

That force that we get from that four step process is the force to con-
struct our force fields.

We use the plot vector field3d to make the vector field plot. We
superimpose a sphere on the plot to show the location of the planet. That’s
done by adding the output of the sphere command to the output of the
plot vector field3d command.
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The code is below. The position of the planet is < px, py, pz >=<
1, 2, 3 >, and that’s isolated at the top of the program to allow it to be
changed.

px = 1

py = 2

pz = 3

k = 4

displacement = vector( [px-x, py-y, pz-z] )

direction = displacement / norm( displacement )

magnitude = k / norm(displacement)^2

force = direction*magnitude

planet = sphere( (px, py, pz), color=’green’, size=0.2 )

plot_vector_field3d( force, (x,0,5), (y,0,5), (z,0,5),

center_arrows=True, plot_points=[10,10,10],

colors=’black’, radius=0.02 ) + planet

That code produces this image.

Here’s a funny story. As it turns out, len(displacement) doesn’t do
what you think it does. While the magnitude of the displacement vector
is the length of that vector, i.e. the distance between the two objects,
that’s not what the len command does. The len command comes from
the computer language Python, upon which Sage is based. In Python, and
therefore in Sage, the len command will return the number of entries in
the list/vector. Here, that’s just 3, because the vector consists of three
quantities. Mathematicians call this “the dimension of the vector.” The
norm command gives us what we want, namely the magnitude of the vector.
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H.11.2. Example Two: Three Planets

Now we’ve got three planets. An amazing fact from mathematical physics,
of taken so much for granted, comes to our aid. If you have a bunch of
forces acting on an object, and you want to find the net force, all you have
to do is add them up. That’s it. So this program will compute the force for
three planets separately, each identical to our previous example—and then
it adds them up.

Of course, we have to draw three spheres, and not just one. It helps
to make them different colors and radii. Other than that, it an analogous
program. The code is given in Figure 3 on Page 1075.

Here is the image that it produces.

H.12. Functions of a Complex Variable

Coming soon!

H.13. The New Plotting Code

# Wrappers for 3d Plotting, especially for complex valued functions

# License: GPLv3

# Copyright: 2016

# Authors:

# * Gregory Bard <gregory.bard@sagemath.com>

# * Harald Schilly <hsy@sagemath.com>

# accurate as of December 26, 2016.

def new_plot3d( f, xmin, xmax, ymin, ymax, zmin, zmax, **kwargs ):

r"""

This function provides a 3D plot of a function z=f(x,y) but in

a restricted domain given by xmin < x < xmax, ymin < y < ymax, and

zmin < z < zmax. It also computes the correct aspect ratio to make
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p1x = 1

p1y = 2

p1z = 3

k1 = 4

p2x = 3

p2y = 2

p2z = 1

k2 = 3

p3x = 3

p3y = 3

p3z = 3

k3 = 10

displacement1 = vector( [p1x-x, p1y-y, p1z-z] )

displacement2 = vector( [p2x-x, p2y-y, p2z-z] )

displacement3 = vector( [p3x-x, p3y-y, p3z-z] )

direction1 = displacement1 / norm( displacement1 )

direction2 = displacement2 / norm( displacement2 )

direction3 = displacement3 / norm( displacement3 )

magnitude1 = k1 / norm(displacement1)^2

magnitude2 = k2 / norm(displacement2)^2

magnitude3 = k3 / norm(displacement3)^2

force1 = direction1*magnitude1

force2 = direction2*magnitude2

force3 = direction3*magnitude3

net_force = force1 + force2 + force3

planet1 = sphere( (p1x, p1y, p1z), color=’green’, size=0.1 )

planet2 = sphere( (p2x, p2y, p2z), color=’red’, size=0.05 )

planet3 = sphere( (p3x, p3y, p3z), color=’orange’, size=0.2 )

planets = planet1 + planet2 + planet3

plot_vector_field3d( net_force, (x,0,5), (y,0,5), (z,0,5),

center_arrows=True, plot_points=[10,10,10],

colors=’black’, radius=0.01 ) + planets

Figure 3. The Code that Solves the Example in Section H.11.2.
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the 3D plot appear in a cube. Note, if the widths of the intervals

on x, y and z, are not the same length, then this will distort

angles and some distances. Yet, this usually produces a very visually

appealling 3D graph.

Example:

var("x y z")

new_plot3d( x^3-y^4, -2,2,-2,2,-4,4 )

The options color, plot_points, mesh, opacity, and aspect_ratio

are available from implicit_plot3d(). Moreover, the options viewer,

width, and possibly others are available from show().

"""

assert xmin < xmax

assert ymin < ymax

assert zmin < zmax

xwide = xmax - xmin

ywide = ymax - ymin

zwide = zmax - zmin

# This line of code will see if mesh has been specified by the calling

# code. If it has *not* been specified, it will be set to True.

kwargs[’mesh’] = kwargs.get(’mesh’, True )

# This line of code will see if plot_points has been specified by the

# calling code. If it has *not* been specified, it will be set to 25.

kwargs[’plot_points’] = kwargs.get(’plot_points’, 25)

# This line of code will see if color has been specified by the

# calling code. If it has *not* been specified, it will be set to seagreen.

kwargs[’color’] = kwargs.get(’color’, ’seagreen’)

# This line of code will see if the aspect_ratio has been specified by

# the calling code. If it has *not* been specified, it will be set

# to [1/xwide, 1/ywide, 1/zwide ]

kwargs[’aspect_ratio’] = kwargs.get(’aspect_ratio’, [1/xwide, 1/ywide, 1/zwide] )

var("x y z")

P = implicit_plot3d( z == f(x,y), (x,xmin,xmax), (y,ymin,ymax), (z,zmin,zmax), **kwargs )

return P

def new_complex_plot3d( f, xmin, xmax, ymin, ymax, zmin, zmax, style, **kwargs ):

"""This plots a function whose sole input is a complex number, and whose sole
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output is a complex number. There are many ways to plot such a function, and

they are chosen with the parameter style.

The options for style are ’magnitude’, ’real’, ’imaginary’, ’argument’, or ’mixed’.

Also ’phase’ is a synonym for ’argument’.

Consider the function to be plotted as f(s) = f(x+iy). To be clear, the input to

the complex-function f is s=x+iy. The 3D plot has an x-axis, a y-axis, and a z-axis.

The x-axis is always the real part of the input, and the y-axis is always the

imaginary part of the input. The z-axis is determined by the choice of style.

For ’magnitude’ it is the magnitude or norm of the output of f(s) = f(x+iy).

For ’real’ it is the real part of the output of f(s) = f(x+iy).

For ’imaginary’ it is the imaginary part of the output of f(s) = f(x+iy).

For ’argument’ or ’phase’ it is the argument/phase of the output of f(s) = f(x+iy).

(In other words, if you think of the complex number in polar coordinates, it is the

theta of the output, in the sense of x+iy = rho*(cos(theta) + i*sin(theta)). The

rho is the magnitude.

"""

g(x,y) = f( x + i*y )

if ( (style==’magnitude’) or (style==’Magnitude’) or (style==’MAGNITUDE’) ):

real_g(x,y) = real_part( g(x,y) )

imag_g(x,y) = imag_part( g(x,y) )

answer(x,y) = sqrt( real_g(x,y)^2 + imag_g(x,y)^2 )

elif ( (style==’real’) or (style==’Real’) or (style==’REAL’) ):

answer(x,y) = real_part( g(x,y) )

elif ( (style==’imaginary’) or (style==’Imaginary’) or (style==’IMAGINARY’)

or (style==’imag’) or (style==’Imag’) or (style==’IMAG’)):

answer(x,y) = imag_part( g(x,y) )

elif ( (style==’argument’) or (style==’Argument’) or (style==’ARGUMENT’)

or (style==’phase’) or (style==’Phase’) or (style==’PHASE’)):

return newComplexArgumentPlot3d( f, xmin, xmax, ymin, ymax, zmin, zmax, **kwargs )

elif ( (style==’mixed’) or (style==’Mixed’) or (style==’MIXED’)):

real_g(x,y) = real_part( g(x,y) )

imag_g(x,y) = imag_part( g(x,y) )

answer(x,y) = sqrt( real_g(x,y)^2 + imag_g(x,y)^2 )

T = lambda x,y,z : ( CC( g(x,y) ).argument() + N(pi) ) / (2*N(pi))

new_color_option = (T, colormaps.gist_rainbow)

kwargs[’color’] = new_color_option

kwargs[’viewer’] = ’tachyon’
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return new_plot3d( answer(x,y), xmin, xmax, ymin, ymax, zmin, zmax, **kwargs )

else:

assert false, "I have no idea what you are asking me for."

P = new_plot3d( answer(x,y), xmin, xmax, ymin, ymax, zmin, zmax, **kwargs )

return P



Appendix I

Additional Index Entries

Coming soon!
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