
Author: Clay McGowen

Date: May 4, 2016

Boise State University

On Bachet’s Equation

Senior Thesis

Math 401

Under the supervision of

Dr. Marion Scheepers
Boise State University

Abstract

Bachet’s Equation is a famous Diophantine equation of the form y

2 = x

3 + k; we have been
researching specifically (y2 = x

3 + k) mod p with x, y, k in the set of integers less than p.
This equation has a group operation and we are focused on the number of solution sets
that have a prime size when we vary k, both including and excluding the identity element.
Our goal has been to recognize, understand, and classify patterns within the experimental
data by making use of the Online Encyclopedia of Integer Sequences.

Primary Subject 14H52
Secondary Subject 11G05
AMS 2010 Classifications

1

Contents
1 Introduction 3

1.1 Diophantine Equations . 3
1.2 Elliptic curves . 3
1.3 Focus of the Research . 4
1.4 The Algebraic Platform . 4
1.5 Structure of the Set of Solutions . 4

2 Experimental Data and Conjectures 5

3 Mathematical Analysis of the Conjectures 6
3.1 The First Conjecture . 6
3.2 The Second Conjecture . 7
3.3 The Infinitude of Primes of the Form 3x

2 + 3x + 1 8
3.4 The Fourth Conjecture . 9
3.5 Study of the k’s . 10

4 Acknowledgements 11

5 References 12

6 Useful Information 13
6.1 Definitions . 13
6.2 Additional Information . 13

A Appendix: Sage and IPython Code for Data 14
A.1 All Data . 14
A.2 p, S, & |Ek(p)| data . 24
A.3 k Data Correlating to the Cuban Primes . 25

2

1 Introduction

1.1 Diophantine Equations

Diophantine Equations are multivariable polynomial functions and typically consider
under the constraint that solutions be integers. They are named after the Greek
mathematician Diophantus of Alexandria, who first investigated equations with these
properties in the 3rd century. The study of these equations marks one of the first
introductions of symbolism in algebra. Work with diophantine equations are notoriously
di�cult, for example, in 1970, Yuri Matiyasevich proved that it was impossible to develop
any general algorithm to solve all diophantine equations.[5]

1.2 Elliptic curves

An elliptic curve is a plane algebraic curve6.1 defined by an equation of the form:

y

2 = x

3 + ax + k (1.2.1)

These curves take on distinctive shapes based on the values for a and k. As illustrated in
Figure 1.

Figure 1: Examples of curves described by Equation (1.2.1) [8]

3

1.3 Focus of the Research

The primary focus of this paper is on Bachet’s equation and the solutions thereto.
Bachet’s equation is the instance of the diophantine equation (1.2.1) where a = 0. Thus
Bachet’s equation is:

y

2 = x

3 + k (1.3.1)

It is named after famous French
mathematician Claude Gaspard Bachet

de Méziriac, who examined this as a
diophantine equation. Mordell
investigated this diophantine equation
and made a few important discoveries
including:

• There exists more than one
solution, as first proposed by
Bachet and Fermat.

• There exists a means to calculate
general solutions for certain values
of k.

C. G. Bachet de Méziriac[7]

1.4 The Algebraic Platform

The focus of this thesis is finding solutions for Bachet’s equation over the rings
(Zp, + mod p, ú mod p) where p is some prime. Recall that:

Zp = {0, 1, . . . , p ≠ 2, p ≠ 1}

1.5 Structure of the Set of Solutions

For a prime p and a k œ Zp, solutions in Bachet’s equation are the elements of the set,
Sk(p), of ordered pairs (x, y) where x, y œ Zp and y

2 = x

3 + k mod p. The set Sk(p) can be
supplemented with an extraneous element, here denoted by ID so that the set
Ek(p) = Sk(p) fi {ID} supports a group operation which will be denoted by ü. The group
(Ek(p), ü) is an example of an elliptic curve group. Our interest is in the order of this
group.

4

Helmut Hasse[6] was a German mathematician working in algebraic number theory who
proved the following restriction on the orders of these elliptic curve groups:

Theorem 1.1: The Hasse Interval Theorem

For primes p, the sizes of the elliptic curve groups over Zp must be in the interval:
1
(p + 1) ≠ 2Ô

p, (p + 1) + 2Ô
p

2

Note that the prime p is an element of this Hasse interval. In this thesis, we investigate
the pairs (p, k) for which |Ek(p)| = #Ek(p) = p

2 Experimental Data and Conjectures

Appendix A.1 contains code in sage that computes group orders for elliptic curve groups
Ek(p). Applying this code to the first 2043 primes, we found that the following list of
primes, p, are the ones for which there exists some k such that #Ek(p) = p:

p = {7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951,

2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057,

7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651}

(2.0.1)

To describe our data findings, define Kp to be Kp = {k : #Ek(p) = p}

Analysis of the members of Kp revealed that half of the primitive roots6.3 of p appear in
Kp. This focused attention on two things: which of the primitive roots are in Kp and what
other elements of Zp are in Kp

Conjecture 2.1

For each prime, p, for which Kp ”= ÿ exactly half of the primitive roots of p are
members of Kp.

Conjecture 2.2

For a prime number p, if Kp is nonempty, then p is a prime of the form 3x

2 + 3x + 1.
(And conversely)

5

Further experimentation with primes suggest that there may be infinitely many cuban
primes

Conjecture 2.3

There exist infinitely many primes p for which Kp ”= ÿ

Appendix A.3 contains code which computes for each cuban prime, p, the set of k for
which #Ek(p) = p.

Examining the data generated with this software, we observed a pattern which we
formulated as the following conjecture.

Conjecture 2.4: On the number of k’s

For a prime p such that Kp ”= ÿ,

#Kp = p ≠ 1
6

3 Mathematical Analysis of the Conjectures

We will make use of the following theorem, which appears as Theorem 2.4 in [2]

Definition 2.2. An elliptic prime (over d) is a prime number which is the first entry in
an elliptic pair over d.

For example, in Definition 2.1, p is an elliptic prime over d. In the example following
Definition 2.1, 7 is an elliptic prime over 3.

Lemma 2.3. If the prime number p is an elliptic prime over d, and if d �4 3, then d �8 3.

Proof. Let d �4 3, be a given fundamental discriminant, and let p be an elliptic prime
number over d. We may assume d > 3. Assuming that p is not prime in Z(

�
�d), let a and

b be the unique positive integers such that 4p = a2 + db2.
Let E be a representative curve witnessing that p is an elliptic prime over d. If E has

CM in Q(
�

�d), then #E(Fp) = p + 1 ± a. Then, as p + 1 is even and #E(Fp) is a prime
number, a must be odd. If it were the case that d �8 7, then 4 �8 4p = a2 + db2 �8 a2 � b2.
But since a is odd, a2 �8 1, implying b2 �8 5. But the congruence x2 �8 5 does not have a
solution, a contradiction. Thus, as d �4 3 we must have d �8 3. �

Among the fundamental discriminants d with d �4 3, the case of d = 3 has to be
treated separately. The curves E with CM in Q(

�
�3) are precisely those with j(E) �

{0, 54000, �12288000} [4]. Curves with j(E) = 54000 have trivial 2-torsion, but some curves
with j(E) = 0, �12288000 have trivial torsion (over Q), so we must consider those. Curves
with j = �12288000 are covered fully in [5], and they can be treated in exactly the same
way as other curves with CM, so we omit a full discussion of them here. When j(E) = 0, E
has the form E : y2 = x3 + k for k � Z, gcd(k, p) = 1. Now, p = a2 + 3b2 and #E(Fp) takes
on one of six values:

Theorem 2.4. Let p > 3 be an odd prime and let k ��p 0. Let Np denote #E(Fp), where
E is the elliptic curve y2 = x3 + k. Here, QR and CR denote quadratic residue and cubic
residue, respectively.

(a) If p �3 2, then Np = p + 1.
(b) If p �3 1, write p = a2 + 3b2,1 where a, b are integers with b positive and a �3 �1.

Then

Np =

�
����

����

p + 1 + 2a if k is a sixth power mod p

p + 1 � 2a if k is a CR, but not a QR, mod p

p + 1 � a ± 3b if k is a QR, but not a CR, mod p

p + 1 + a ± 3b if k is neither a QR nor a CR mod p.

Proof. This result is well-known; the proof is entirely computational and is contained in
Appendix A. The end result is that Np = p + 1 � � � �̄, where � = ��6(k)�1J(�2, �3). This
Jacobi sum is evaluated as J(�2, �3) = a + ib

�
3, with a �3 �1 [1]. �

It immediately follows that if (p, q)3 is an elliptic pair, then p �3 1. Note also that if k is
a QR modulo p then 3|Np, and if k is a CR modulo p then 2|Np. From this observation, two
corollaries follow immediately:

Corollary 2.5. Let p �3 1 be a prime and let E : y2 = x3 + k be an elliptic curve with
k ��p 0. If #E(Fp) is prime, then k is neither a QR nor CR, except in the case where p = 7
and k �7 4 (in which case N7 = 3).

1Most previous authors formulate this theorem using p = a2 � ab + b2 instead.

3

3.1 The First Conjecture

Proposition 3.1: On k

If k is a primitive root of p and p mod 3 = 1, then Np = p + 1 + a ± 3b.

6

Proof 3.1

In the following we use facts from 6.1

• If g is a generator of Up then order(g2) = p≠1
gcd(2,p≠1) = p≠1

2 .
Therefore, quadratic residues are not primitive roots.

• Further, if g is a generator of Up then order(g3) = p≠1
gcd(3,p≠1) = p≠1

3 .
Therefore, cubic residues are not primitive roots.

• Finally, if g is a generator of Up then order(g6) = p≠1
gcd(6,p≠1) = p≠1

6 .
Therefore, sixth power mod p’s are not primitive roots.

Therefore Np = p + 1 + a ± 3b.

Now the challenge is to decide if we are in the addition or subtraction case. Through
investigation, p = u

2 + 3v

2 where u, v > 0
If u mod 3 = 1 put a = ≠u and b = v, else put a = u and b = ≠v. This enables us to
always use the positive version for Np leaving us Np = (p + 1) ≠ a + 3b

Observation 3.1: On the last case

Primitive roots are all in the last category of Case (b) of Theorem 2.4 ; however,
data suggests that only half of these produce elliptic curve groups of size p.

3.2 The Second Conjecture

Proposition 3.2

If p is a prime such that for some k œ Kp we have #Ek(p) = p then p is of the form
3x

2 + 3x + 1 for some integer x.

7

Proof 3.2

By Proposition 3.1, p = Np = p + 1 + a ± 3b. This means, û3b = a + 1 or a = û3b ≠ 1.
Thus

p = a

2 + 3b

2

= (û3b ≠ 1)2 + 3b

2

= 9b

2 ± 6b + 1 + 3b

2

= 12b

2 ± 6b + 1
= 3(2b)2 ± 3(2b) + 1
= 3(≠2b)2 + 3(≠2b) + 1

which is of the form 3x

2 + 3x + 1 where x is an integer.

Recall the definition of a cuban prime:

Definition 3.1: Cuban Primes

Let x be a positive integer.
Then cuban primes are primes that are of the form (x + 1)3 ≠ x

3.

Note that p(x) = (x + 1)3 ≠ x

3 = 3x

2 + 3x + 1 is a second degree polynomial; thus each
cuban prime is a prime value of p(x).

Remark 3.1

If in the above argument we can prove that x is positive, then we can conclude that
p is a cuban prime. Our data suggests that in fact x should be positive in all cases.

A proof of the converse of Conjecture 2.2 would most likely aid in proving x is posi-
tive.

We turned to the Online Encyclopedia of Integer Sequences to see if the particular set of
primes, given in Equation 2.0.1, was already recorded in a database. It turned out to be
entry A002407, which is the list of primes which are the di�erence of two consecutive
cubes, called the cuban primes.

3.3 The Infinitude of Primes of the Form 3x

2 + 3x + 1

If Conjecture 2.3 is true, then Proposition 3.2 would imply that there are infinitely many
primes of the form 3x

2 + 3x + 1.

8

https://oeis.org
https://oeis.org/A002407

There is no known proof that some quadratic polynomial over the integers has infinitely
many prime values; however, there is a classical conjecture that implies for certain
polynomials over the integers, these polynomials have infinitely many prime values.

Conjecture 3.1: Bunyuakowski’s

If f(x) satisfies the following three conditions, then f(n) is prime for infinitely many
positive integers.

1. The leading coe�cient of f(x) is positive
2. The polynomial is irreducible over the integers
3. As n runs over the positive integers, the numbers f(n) should be relatively

prime (Thus, the coe�cients of f(x) should be relatively prime.)

Proposition 3.3

Bunyuakowski’s conjecture implies that there are infinitely many primes of the form
3x

2 + 3x + 1 over the integers.

Proof 3.3

1. The leading coe�cient of p(x) is 3 which is positive.
2. The discriminant of the quadratic polynomial is not an integer and thus this

polynomial has no integer roots. Hence, p(x) is irreducible over the integers.
3. The gcd(3, 3, 1) = 1, thus the numbers f(n) are relatively prime.

Bunyuakowski’s conjecture, though a conjecture, is another source of confidence that
would suggest that Conjecture 2.3 is true; however, we still have no proof thereof.

3.4 The Fourth Conjecture

Lemma 3.1

When p is of the form 3x

2 + 3x + 1, then (p ≠ 1)/6 is an integer.

Proof 3.4

p = 3x

2 + 3x + 1 = 3(x2 + x) + 1 = 3x(x + 1) + 1

Noting that either x is even or x + 1 is even, 3x

2 + 3x + 1 mod 6 = 1.
Thus (p ≠ 1)/6 is an integer.

9

At this point, we generated a table of: prime, number of k’s the ratio of p ≠ 1 to 6, and the
percent di�erence between the expected and gained result:

p Kp

a

b

(p ≠ 1)
6 A �%

1 7 1 1 0.000
2 19 3 3 0.000
3 37 6 6 0.000
4 61 10 10 0.000
5 127 21 21 0.000
6 271 45 45 0.000
7 331 55 55 0.000
8 397 66 66 0.000
9 547 91 91 0.000
10 631 105 105 0.000
11 919 153 153 0.000
12 1657 276 276 0.000
13 1801 300 300 0.000
14 1951 325 325 0.000
15 2269 378 378 0.000
16 2437 406 406 0.000
17 2791 465 465 0.000
18 3169 528 528 0.000
19 3571 595 595 0.000

Table 1: k Data

3.5 Study of the k’s

Regarding Conjecture 2.4, half of the primitive roots of p appear in Kp. However, there
have been cases where there are more than primitive roots in Kp, thus leaving some
“mystery number,” M .

So we developed this formula:

#Kp = # Primitive Roots of p

2 + M (3.5.1)

Using Conjecture 2.4, solving for M directly we obtain:

M = (p ≠ 1) ≠ 3(# Primitive Roots)
6 (3.5.2)

10

Recalling from Abstract Algebra,

Theorem 3.1: Number of Primitive Roots

The number of primitive roots of a prime p is Ï(p ≠ 1)

Thus, from Corollary 3.1 and Formula 3.5.2,

Conjecture 3.2: Value of the mystery number

The value of the mystery number M should be

M = (p ≠ 1) ≠ 3Ï(p ≠ 1)
6 (3.5.3)

Thus

Conjecture 3.3: Number of k’s

The the overall number of k’s for which |Ek(p)| = p can be calculated from

#Kp = # Primitive Roots of p

2 + (p ≠ 1) ≠ 3Ï(p ≠ 1)
6 = p ≠ 1

6 (3.5.4)

Aside from the conjectures formulated above, we also considered the question “Why do
half the primitive roots occur among these k’s? Additionally, which half thereof?”

From this, no clear pattern emerged from our data.

4 Acknowledgements

Throughout the project, I received extensive support in the way of coding from Charles
Burnell. He used Sage and IPython to generate data and stored the data as a MySQL
database.

Further, a special thank you to Digital Ocean for allowing us to use their cloud server free
of charge.

The most adamant and continued support came from my thesis advisor, Dr. Marion
Scheepers, who worked tirelessly in order to assist me in developing a unique body of work.
Thank you.

11

https://www.digitalocean.com/?utm_source=google&utm_medium=brand_sem&utm_campaign=Brand_Protection&utm_term=digital%20ocean&adgroup=9971414725&matchtype=e&network=g&device=c&position=1t1

5 References

[1] L. Babinkostova, K. M. Bombardier, M. M. Cole, T. A. Morrell, and C. B. Scott.
Elliptic pairs and elliptic reciprocity. Boise State REU.

[2] L. Babinkostova, K. M. Bombardier, M. M. Cole, T. A. Morrell, and C. B. Scott.
Elliptic Reciprocity. ArXiv e-prints, December 2012.

[3] Reinier Bröker and Peter Stevenhagen. Elliptic curves with a given number of points.

[4] Lawrence C. Washington. Elliptic Curves : number theory and cryptography. Chapman
& Hall/CRC, 2nd edition, 2008.

[5] Eric W. Weisstein. Diophantine equation.

[6] Wikipedia. Helmut hasse. Electronic.

[7] Wikipedia. Claude gaspard bachet de méziriac, April 2016.

[8] Wikipedia. Elliptic curve, April 2016.

12

6 Useful Information

6.1 Definitions

Definition 6.1: Plane Algebraic Curve

A Plane Algebraic Curve is the set of points on the Euclidean plane whose coordi-
nates are zeros of some polynomial in two variables.

Plane Algebraic Curve wiki article

Definition 6.2: Group

A group G is a finite or infinite set of elements together with a binary operation
(called the group operation) that together satisfy the four fundamental properties of
closure, associativity, the identity property, and the inverse property. The operation
with respect to which a group is defined is often called the “group operation,” and a
set is said to be a group “under” this operation.

Rowland, Todd and Weisstein, Eric W. "Group." From MathWorld–A Wolfram Web
Resource.

Definition 6.3: Primitive Roots

The group (Up, ú mod p) is cyclic when p is prime.
Traditionally, generators of these particular cyclic groups have been called
Primitive Roots of p.

6.2 Additional Information

Note 6.1: Facts from group theory

If g generates the finite group (G, �), say k =order(g) then

order(gm) = order(g)
gcd(m, k)

Up = {a œ Zp : gcd(a, p) = 1} =∆ {1, 2, . . . , p ≠ 1} as p is prime and
|Up| = p ≠ 1 which is even if p > 2.

13

A Appendix: Sage and IPython Code for Data

A.1 All Data

This is the process that was used to generate data

def nextBatch(cur,conn):
P=Primes()
batchsize=1000

Gets the next check
Calculates what the new NextToCheck is
Updates NextToCheck

cur.execute("SELECT * FROM NextToCheck;")
nextCheck = list(cur.fetchone())
nextCheck = [Integer(x) for x in nextCheck]

#Right here we need to make sure that the low isnt the highest
newLow = nextCheck[3]+1
curPrime = nextCheck[1]
curLow = nextCheck[2]
curHigh = nextCheck[3]
#makes it so if it is a new prime ti makes a zero for it so its
easier to prime the database.
if nextCheck[2]==1:

cur.execute("INSERT INTO PrimeNumPrime (Prime,SPrime,SUidPrime) VALUES
({0},0,0)".format(int(curPrime)))

cur.connection.commit();
#print(nextCheck)
if curPrime<=newLow:

newLow=1
newPrime = P.next(curPrime)

if newLow+batchsize>=newPrime:
newHigh=newPrime-1

else:
newHigh=newLow+batchsize

updateQuery=’UPDATE NextToCheck SET Prime={0},FromConstant={1},
ToConstant={2} WHERE 1;’.format(newPrime,newLow,newHigh)
#updateQuery="""UPDATE NextToCheck
SET Prime=%s,FromConstant=%s,ToConstant=%s WHERE 1"""
#print"{0} {1} {2}\n{3}".format(newPrime,newLow,newHigh,updateQuery)
cur.execute(updateQuery)
#cur.execute(updateQuery,(newPrime,newLow,newHigh,))

14

cur.connection.commit();
else:

if newLow+batchsize>=curPrime:
newHigh=curPrime-1

else:
newHigh=newLow+batchsize

#print"{0} {1}".format(newLow,newHigh)
updateQuery=’UPDATE NextToCheck SET Prime={0},FromConstant={1},
ToConstant={2} WHERE 1;’.format(curPrime,newLow,newHigh)
cur.execute(updateQuery)
cur.connection.commit();

rowToAdd = []
SPrime = 0
SUidPrime=0
curHigh+1 because it is needed to makeit reach to p-1
for b in xrange(curLow,curHigh+1):

A=EllipticCurve(GF(curPrime),[0,b])
sizeA=A.cardinality()
if is_prime(sizeA):

SUidPrime+=1
if is_prime(sizeA-1):

SPrime+=1
rowToAdd.append((curPrime,b,sizeA))

#print "SPrime={0},SUidPrime={1}".format(SPrime,SUidPrime)
primeUpdate = ’UPDATE PrimeNumPrime SET SPrime=SPrime+{0},SUidPrime=
SUidPrime+{1} WHERE Prime={2};’.format(SPrime, SUidPrime,curPrime)
#print (primeUpdate)
cur.execute(primeUpdate)
cur.connection.commit()
query = "insert into PrimeConstSize (Prime,Constant,Size) values "
print ",".join(str(row) for row in rowToAdd)
query += ",".join(str(row) for row in rowToAdd)
#print query
cur.execute(query)
cur.connection.commit()

Searches for the first 100 of each class if they exist otherwise as many as possible.

-*- coding: utf-8 -*-
"""
Spyder Editor

"""

import sqlite3

pathway = "D:\School\EllipticCurves\database.sqlite"
conn = sqlite3.connect(pathway)
runningtotal = 0

15

#BASE DATA

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime")
totalNumData = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(totalNumData)

#CLASS 1 DATA
print "\n\n Class1"
SPrimePart = "0"
SUidPrimePart = "0"
QueryWhere = " WHERE SPrime={0} AND SUidPrime={1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)
runningtotal+=numResults

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS 2 DATA
print "\n\n Class2"
SPrimePart = "(Prime-1)/6"
SUidPrimePart = "0"
QueryWhere = " WHERE SPrime={0} AND SUidPrime={1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)
runningtotal+=numResults

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""

16

i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS 3 DATA
print "\n\n Class3"
SPrimePart = "(Prime-1)"
SUidPrimePart = "0"
QueryWhere = " WHERE SPrime={0} AND SUidPrime={1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)
runningtotal+=numResults

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS4 DATA
print "\n\n Class4"
SPrimePart = "0"
SUidPrimePart = "(Prime-1)/3"
QueryWhere = " WHERE SPrime={0} AND SUidPrime={1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)
runningtotal+=numResults

17

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS5 DATA
print "\n\n Class5"
SPrimePart = "(Prime-1)/6"
SUidPrimePart = "(Prime-1)/3"
QueryWhere = " WHERE SPrime={0} AND SUidPrime={1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)
runningtotal+=numResults

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS5 DATA
print "\n\n Class6"
SPrimePart = "0"
SUidPrimePart = "(Prime-1)/6"
QueryWhere = " WHERE SPrime={0} AND SUidPrime={1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)

18

numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)
runningtotal+=numResults

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS7 DATA
print "\n\n Class7"
SPrimePart = "(Prime-1)/6"
SUidPrimePart = "(Prime-1)/6"
QueryWhere = " WHERE SPrime={0} AND SUidPrime={1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)
runningtotal+=numResults

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

print totalNumData-runningtotal

#CLASS DATA SUidPrime =0

19

print "\n\n Class all SUidPrime=0"
SPrimePart = "SPrime=SPrime"
SUidPrimePart = "SUidPrime=0"
QueryWhere = " WHERE {0} AND {1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS DATA SUidPrime =(Prime-1)/3
print "\n\n Class all SUidPrime=(Prime-1)/3"
SPrimePart = "SPrime=SPrime"
SUidPrimePart = "SUidPrime=(Prime-1)/3"
QueryWhere = " WHERE {0} AND {1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

20

#CLASS DATA SUidPrime =(Prime-1)/6
print "\n\n Class all SUidPrime=(Prime-1)/6"
SPrimePart = "SPrime=SPrime"
SUidPrimePart = "SUidPrime=(Prime-1)/6"
QueryWhere = " WHERE {0} AND {1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

#CLASS DATA SPrime =0
print "\n\n Class all SPrime=0"
SPrimePart = "SPrime=0"
SUidPrimePart = "SUidPrime=SUidPrime"
QueryWhere = " WHERE {0} AND {1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

21

print search

#CLASS DATA SPrime =(Prime-1)/6
print "\n\n Class all SPrime=(Prime-1)/6"
SPrimePart = "SPrime=(Prime-1)/6"
SUidPrimePart = "SUidPrime=SUidPrime"
QueryWhere = " WHERE {0} AND {1}".format(SPrimePart,SUidPrimePart)

resultPrimesClass = conn.execute("SELECT COUNT(*) FROM PrimeNumPrime"+QueryWhere)
numResults = resultPrimesClass.fetchone()[0]
print "Number of primes {0}".format(numResults)

resultPrimesClass = conn.execute("SELECT * FROM PrimeNumPrime"+QueryWhere)

row = resultPrimesClass.fetchone()
search = ""
i =0
while row != None and i<100:

Prime = row[0]
SPrime = row[1]
SUidPrime = row[2]
#print Prime
search+=str(Prime)+","
row = resultPrimesClass.fetchone()
i+=1

print search

This is the tree building program that finds the where each prime travels for each one

-*- coding: utf-8 -*-
"""
Created on Mon Dec 14 17:18:48 2015

@author: Charles
"""

import pickle

#,PNPDict,PCSDict
def RecursionPrep(prime,PNPDict,PCSDict):

#print len(({prime:[]},[],prime,PNPDict,PCSDict))
return RecursionWork({prime:[]},[],prime,PNPDict,PCSDict)

22

def RecursionWork(dict,checked,prime,PNPDict,PCSDict):
toCheck={}
stillgoing = False
for key in dict:

if key not in checked:
toCheck[key]=PCSDict[key]
checked.append(key)

Plist=[]
for key in toCheck:

for num in toCheck[key]:
if num in PNPDict:

Plist.append(num)
if num not in dict.keys():

dict[num]=[]
dict[key].append(num)

for keys in dict:
if keys not in checked:

stillgoing=True
if stillgoing:

return RecursionWork(dict,checked,prime,PNPDict,PCSDict)
else:

return dict
PNPDict=pickle.load(open("PNPDict.p","rb"))
PCSDict=pickle.load(open("PCSDict.p","rb"))

This is the basis of the code we used to find the points for the weak elliptic cycle
\begin{verbatim}
foundupint=0
founddownint=0
foundup=False
founddown = False
for test in xrange(1,primecheck):

A = EllipticCurve(GF(primecheck),[0,test]).cardinality()
if A==primedown and not founddown:

founddown=True
founddownint=test

if A==primeup and not foundup:
foundup=True
foundupint=test

if foundup and founddown:
break

founddownint
foundupint

23

A.2 p, S, & |Ek(p)| data

This is the process that was used to generate data for finding the following:
p S |Ek(p)|

-*- coding: utf-8 -*-
"""
Created on Mon Apr 04 15:51:27 2016

@author: Charles
"""
import sqlite3

pathway = "D:\School\EllipticCurves\database.sqlite"
conn = sqlite3.connect(pathway)

results =[]
cubanPrimes = (7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801,
1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351,
8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447,
23497, 24571, 25117, 26227)
for cprime in cubanPrimes:
print "SELECT * FROM PrimeNumPrime WHERE Prime in {0}".format(cprime)

resultCubanPrimes = conn.execute("SELECT * FROM PrimeNumPrime WHERE Prime
in ({0})".format(cprime))

results.append(resultCubanPrimes.fetchall())

for result in results:
print result

24

A.3 k Data Correlating to the Cuban Primes

This is the process that was used to generate data for finding the constant k for which
|Ek(p)| = p.

constant data finding program

-*- coding: utf-8 -*-
"""
Created on Mon Apr 04 15:51:27 2016

@author: Charles
"""
import sqlite3

pathway = "D:\School\EllipticCurves\database.sqlite"
conn = sqlite3.connect(pathway)

results =[]
cubanPrimes = (7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801,
1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351,
8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651)

for cprime in cubanPrimes:
print "SELECT * FROM PrimeNumPrime WHERE Prime in {0}".format(cprime)

query = "SELECT * FROM PrimeConstSize WHERE Prime ={0} and Size = {0}"
.format(cprime)
print query
resultCubanPrimes = conn.execute(query)
results.append(resultCubanPrimes.fetchall())

for result in results:
print "For Prime {0}".format(result[0][0])
constants = []
for subresult in result:

constants.append(subresult[1])
print constants

25

	Introduction
	Diophantine Equations
	Elliptic curves
	Focus of the Research
	The Algebraic Platform
	Structure of the Set of Solutions

	Experimental Data and Conjectures
	Mathematical Analysis of the Conjectures
	The First Conjecture
	The Second Conjecture
	The Infinitude of Primes of the Form 3x2 + 3x +1
	The Fourth Conjecture
	Study of the k's

	Acknowledgements
	References
	Useful Information
	Definitions
	Additional Information

	Appendix: Sage and IPython Code for Data
	All Data
	p, S, & |Ek(p)| data
	k Data Correlating to the Cuban Primes

