
Common Mistakes with Sage

Aaron Tresham

February 16, 2018

1 Common Error Messages

Many (but not all) mistakes that you make in Sage will result in an error message. This
is usually several lines of output all in red. You can ignore most of the message; just look
down at the last line, which tells you the type of error.

1.1 SyntaxError: invalid syntax

This is one of the broader errors, and many mistakes can lead to this error. Here are some
examples:

• Missing Explicit Multiplication

Every multiplication in Sage must be explicitly typed.

For example, to define the function f(x) = 5x2+3x−2, you must type a multiplication
after the 5 and 3: f(x)=5*x^2+3*x-2. If you try f(x)=5x^2+3x-2, you will get this
error.

• Extra End Parenthesis

Every set of parentheses must have a beginning and an end: (· · ·). If you have an
extra end parenthesis, you will get this error. For example, try f(x)=sin(x)).

• Unmarked Comment

Sometimes you may want to write a note in Sage. You can do this by putting a pound
sign (#) at the beginning of the line. This tells Sage that the rest of the line is a
comment and should be ignored when processing. If you leave of the comment marker,
Sage will try to intepret your comment as a command, often resulting in a syntax error
(may depend on exactly what’s in your comment).

1.2 SyntaxError: unexpected EOF while parsing

I have seen two kinds of mistakes that lead to this message:

1

• Missing End Parenthesis

This error usually results from missing an end parenthesis (or, equivalently, having an
extra beginning parenthesis).

For example, f(x)=sin(x will result in this error.

This mistake is more common than having an extra end parenthesis. If you see “un-
expected EOF,” then check for unmatched parentheses.

• Adding a Space after a %

Another mistake that results in this message is having a space after the % sign in a %
decorator. For example, % var (note the space after %) instead of %var.

1.3 TypeError: object is not callable

I have seen two kinds of mistakes result in this error:

• Missing Multiplication

Every multiplication must be explicitly typed (with a *), and missing multiplications
may result in this error. For example, try 3(5+2). The reason is that Sage confuses
this with function notation, such as f(5+2). When you type 3(5+2), Sage wants to
call a function named “3,” but of course 3 is not a function, so it is “not callable.”
What you want to type is 3*(5+2), with an explicit multiplication.

• Overwriting a Sage Command

This error may also result if you try to use a Sage command that you have accidentally
overwritten. For example, if you type cos=5, the cos function will be overwritten with
the number 5. Then if you try cos(2), you will get a “object is not callable” error
(Sage tries to do 5(2), as if 5 were a function).

1.4 TypeError: takes at least 1 argument (0 given)

If you fail to give a Sage command the number of arguments it expects, you will get an error
like this (the numbers may be different).

For example, if you try to run plot() with no function to graph, you will see

“TypeError: plot() takes at least 1 argument (0 given).”

If you try solve(x^2==4), then you will see

“TypeError: solve() takes at least 1 positional argument (0 given).”

This is because you forgot to specify the variable to solve for. You should have typed
solve(x^2==4,x).

2

1.5 TypeError: unable to simplify to float approximation

There may be various ways for this error to arise.

For example, if you try find_root(x^2==4,x,0,5), you will get this error. The problem is
the “x” – the correct syntax would be find_root(x^2==4,0,5) (note: you need the extra
“x” when using the solve command, since solve can handle equations with more than one
variable).

1.6 TypeError: invalid integration algorithm

You may see this error when using the numerical_integral command. For example,∫ 2

1

1

x
dx ≈ numerical_integral(1/x,1,2). Notice that the regular integral command likes

to have the variable of integration specified: integral(1/x,x,1,2). The “x” specifies the
variable. However, numerical_integral does not need the variable specified, since there
can be only one variable involved (so the answer will be a number). If you try to specify the
variable anyway, e.g., numerical_integral(1/x,x,1,2), then you will get this TypeError.

1.7 NameError: name ’ ’ is not defined

There are a few different situations in which a “NameError” may arise.

• Failing to Declare a Variable

The variable x is automatically declared, but any other variable must be explicitly
declared using %var.

For example, you may want to find d
dx
ax2 + bx + c, so you type

derivative(a*x^2+b*x+c,x).

When you run this, you will get “NameError: name ’a’ is not defined.”

Instead, you need to do this:

%var a,b,c

derivative(a*x^2+b*x+c,x)

Note: There are certain contexts that do not require a variable declaration. For ex-
ample, if you type y=10, you do not have to declare y. In this case, y is not really a
variable, it’s just another name for 10.

• Misspelling a Command Name

This error can also result from a simple typo. For example, if you try f(x)=son(x)

instead of f(x)=sin(x) you will get “NameError: name ’son’ is not defined.”

• Forgetting Quote Marks

Some options, such as the plot options color and linestyle, will require quote marks.

3

For example, if you want to change the plot color to black, you can add color=’black’

inside the plot command. If you leave off the quote marks, you will get “NameError:
name ’black’ is not defined.”

1.8 RuntimeError: Error in line(): option ’ ’ not valid

Many commands have optional arguments. For example, you can set the plot range using
the xmin and xmax options: plot(f(x),xmin=-10,xmax=10). If you misspell one of these
options, you may get this error.

For example, if you misspell “xmax” and type plot(x^2,xmin=0,xman=5), you will get
“RuntimeError: Error in line(): option ’xman’ not valid.”

1.9 RuntimeError: f appears to have no zero on the interval

This error occurs when you try to solve an equation using the find_root command, but the
equation has no solutions in the interval you specified.

For example, if you try find_root(cos(x)==x,-1,0), you will get this error. This is because
the equation cos(x) = x has only one solution (x ≈ 0.74), and this solution is not in the
interval from −1 to 0 that you gave to find_root.

1.10 RuntimeError: ECL says: Error executing code in Maxima

Sage uses another program called Maxima to perform many mathematical calculations; how-
ever, there are some calculations that Maxima is not able to do, which can result in this
error.

For example, if you try to compute

∫ √
1 + sin(x)2 dx by typing

integral(sqrt(1+sin(x)^2),x), you will get this error, since Maxima is not able to eval-
uate this antiderivative. If you get this error from a definite integral, then you can use the
numerical_integral command to get a decimal approximation of the answer.

1.11 ValueError: Assumption is inconsistent

This error arises when you set assumptions about variables (we do this when dealing with
improper integrals). If your assumptions are contradictory, you will get this error. For
example, if you try: assume(x<-1); assume(x>1), you will get this ValueError.

A common way to get this error is failing to “forget” previous assumptions. You may use
assume(x<-1) for one problem, and then when you move on to a different problem you may
use assume(x>1). After you finish the first problem, you must run the command forget(),
which will clear the assumptions.

4

1.12 ValueError: Assumption is redundant

This is similar to the last error, except you have two assumptions that are redundant rather
than contradictory. For example, if you try: assume(x>5); assume(x>1), you will get this
ValueError. This can also result from failing to use forget().

You must remember to forget()!

1.13 ValueError: Integral is divergent

Mathematically, this is really no error at all. This error may result when you try to calculate
a divergent improper integral.

For example, try to find

∫ 1

0

1

x
dx by typing: integral(1/x,x,0,1).

1.14 ValueError: Sum is divergent

This is similar to the last error, but this message results when you try to calculate the sum
of a divergent infinite series.

For example, try to find
∞∑
n=1

1

n
by typing: sum(1/n,n,1,+Infinity)

(note: you must have %var n before this line).

Some divergent series will not give you this error. Here are some examples:

sum(n*(-2)^n,n,1,+Infinity) will output Infinity.

sum(n*(-1)^n,n,1,+Infinity) will output und.

sum(n*2^n,n,1,+Infinity) will output +Infinity.

1.15 DeprecationWarning

This is not an error, but it will result in a block of red in the output. When you get a
deprecation warning, Sage will output the answer you expect. However, a future version of
Sage may eliminate the syntax you used to get that output.

For example, if you type derivative(x^2,x)(3), then you expect to get
d

dx
x2

∣∣∣∣
x=3

= 6.

You do indeed get 6, but you also get this warning message:

“DeprecationWarning: Substitution using function-call syntax and unnamed arguments is
deprecated and will be removed from a future release of Sage; you can use named arguments
instead, like EXPR(x=..., y=...)”

5

Sage is telling you to do this: derivative(x^2,x)(x=3). Sage wants you to explicitly
indicate that x = 3. Right now, this is optional (although preferred). In a future version of
Sage, x = 3 may be necessary.

1.16 verbose 0 (3757: plot.py, generate plot points) WARNING:
When plotting, failed to evaluate function at 100 points.

This message appears in black rather than red. You will get this warning before a graph if
your plot window includes input values not in the domain of the function you are plotting.

For example, if you try plot(ln(x)), then the plot will use −1 ≤ x ≤ 1 by default. However,
logarithms are not defined for x ≤ 0 (if you want the output to be a real number). Sage will
produce a graph (with 0 ≤ x ≤ 1), but it will warn you that it has ignored −1 ≤ x ≤ 0.

2 Other Common Mistakes

Some mistakes commonly made when using Sage do not result in an error message, but you
don’t get the right answer. You must be very careful about these!

2.1 Missing Explicit Multiplication

Sometimes missing multiplications will result in an error message (see above). However, here
is an example that does not: To define the function f(x) = (x − 3)(x + 2), you must type
f(x)=(x-3)*(x+2), with an explicit multiplication between the two factors. If you leave off
this multiplication, you will not get an error message, but you will get the wrong function!

2.2 Missing Parentheses

There are many situations when parentheses are not optional.

For example, to write the fraction
x + y

5
in Sage, you must type (x+y)/5. If you leave

the parentheses off, you will not get an error message, you’ll just get the wrong fraction:

x + y/5 = x +
y

5
6= x + y

5
.

Here’s an example involving powers: e^2*x = e2 · x 6= e2x = e^(2*x).

2.3 Scientific Notation

If the output from Sage is 2.801232340e9, you may think this is a number close to 2.8.
However, this is actually a very large number (about 2.8 billion). You have to watch out
for scientific notation in Sage, which is indicated by the little “e” in the output above. This
output is actually 2.801232340× 109 = 2, 801, 232, 340.

6

Here is another example: 3.456400000e-12 is not close to 3.5, it is actually close to 0:

3.456400000× 10−12 = 0.0000000000034564 ≈ 0.

2.4 Derivatives

There are two kinds of derivative questions: (1) the derivative function, such as f ′(x), and
(2) the derivative at a particular value, such as f ′(3).

The derivative command in Sage answers the first question. If you want f ′(x), then type
derivative(f,x).

To answer the second question, you should use a two step process. First, assign the derivative
function a name. I like to use “df” for “derivative of f”, but you can use any name you want.
Type df(x)=derivative(f,x).

Now that you have the derivative function, the second step is to plug the particluar value
into this. For example, df(3) is f ′(3), and df(-1) is f ′(−1).

If you want the second derivative, then you add a 2 to the derivative command:

derivative(f,x,2) is f ′′(x).

Similarly, derivative(f,x,10) is the 10th derivative, f (10)(x).

A common mistake is to use derivative(f,x,2) when you want f ′(2). Of course, f ′′(x) is
very different from f ′(2).

Help me build this list! Tell me any other common mistakes you come across. Thanks.

7

