mda14jx_week1

August 21, 2018

In [4]: help(library)

1 Exercise 1

The code help(library) displays the Loading/Attaching and Listing of Packages. How to use the function.

In [23]: library
The library command code executes the command. The library() executes an empty command.

2 Exercise 2

In [9]: getwd()
In [36]: setwd("~/Autumn2016/Week1")
Marked in red as it's a string/ path, which has no value.

3 Exercise 3

In [14]: $\mathrm{x}<-3$
$\mathrm{y}<-10$
z<-15
In [16]: $x+y+z$
In [17]: $(y-x) / z$
In [21]: $\mathrm{x} * \mathrm{y} * \mathrm{z}$
In [22]: $(x+y+z)^{\wedge} 2$
In [25]: $\mathrm{v}<-\mathrm{c}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
In [26]: sum(v)

The question states calculate the sum of the vector raised to the power of 4 , which can be interperated in two ways. The first method calculates the (sum of the vector) raised to the power of 4 , and the second method calculates the sum of (vector raised to the power of 4)

```
In [29]: (sum(v))^4
In [30]: sum(v^4)
In [33]: sqrt(z-x)
```


4 Exercise 4

In [3]: myname <-"Jingyi"
email <-"jxie7@sheffield.ac.uk"
module <-"BMS353"
message <- paste(myname, email, module,sep=", ") print (message)
[1] "Jingyi,jxie7@sheffield.ac.uk,BMS353"

5 Exercise5

In [67]: $\operatorname{seq}(1,30, b y=2)$
In [53]: $\operatorname{seq}(2,30, b y=2)$
In [68]: $\mathrm{a}<-\operatorname{seq}(1,30, \mathrm{by}=2)$

In [64]: b<-seq (2, 30,by=2)

In [69]: length (seq $(1,30, b y=2))$

In [61]: length(seq (2, 30,by=2))
In [70]: sum (a)
In [71]: sum (b)
In [72]: $\operatorname{sum}(\operatorname{seq}(1,30))$
The conclusion is that the sum of the entire sequence of numbers ranging from 1-30 is equal to the total sum of the odd numbers from 1-30 and even numbers from 2-30.

In [1]: sample(1:100,12,replace=TRUE)

6 Exercise 6

```
In [21]: dept<- "BMS"
    code<- 353
    BMSmodule<- c(dept,as.character(code))
    print(BMSmodule)
[1] "BMS" "353"
In [12]: dept<- "APS"
        code<- 227
        APSmodule<- c(dept,as.character(code))
        print(APSmodule)
[1] "APS" "227"
In [14]: dept<- "MBB"
        code<- }25
    MBBmodule<- c(dept,as.character(code))
    print(MBBmodule)
[1] "MBB" "253"
In [18]: mergevector<- c(BMSmodule,APSmodule,MBBmodule)
    print(mergevector)
[1] "BMS" "353" "APS" "227" "MBB" "253"
In [24]: stringsvector<- c("BMS","APS","MBB")
    print(stringsvector)
[1] "BMS" "APS" "MBB"
In [28]: x<-c("BMS","APS","MSS")
    y<-c(353,227,253)
    z<-c(x,as.character(y))
    print(z)
[1] "BMS" "APS" "MSS" "353" "227" "253"
In [30]: x<-c("BMS","APS","MSS")
    y<-c(353,227,253)
    z<- paste(x,y,sep="")
    print(z)
[1] "BMS353" "APS227" "MSS253"
```


7 Exercise 7

```
In [40]: Mat1<- matrix(1:20,nrow=4,ncol=5,byrow=TRUE)
    M
```

In R, matrices are created by column by defult, therefore byrow=TRUE will create the matrix by row.

```
In [33]: rownames(M)<-c("A","B","C","D")
    colnames(M)<-c("1st", "2nd", "3rd","4th","5th")
    M
```

In [53]: M=matrix(1:20, nrow=4,ncol=5, byrow=TRUE)
M
In [88]: M[c(1,2), c(1,2)]
In [90]: $M[c(1,2), c(1,2,4,5)]$
In [87]: M[2,]

8 Exercise 8

In [92]: Mat2=matrix(c $(32,42,18,20,33,38,25,28,26)$, nrow=3, ncol=3, byrow=TRUE) Mat2

In [94]: rownames(Mat2)<- c("BMS353","APS227", "MBB253")
colnames (Mat2) <- c ("2013-14", "2014-15", "2015-16")
Mat2

In [96]: Mat2["BMS353",]

9 Exercise 9

```
In [97]: Mat3=matrix(sample(1:100,12,replace=TRUE),nrow=3,ncol=4)
    Mat3
In [98]: Mat4=matrix(sample(1:100,12,replace=TRUE),nrow=3,ncol=4)
    Mat4
In [99]: Mat3+Mat4
In [100]: Mat4-Mat3
In [101]: Mat3-Mat4
In [108]: Mat3 %*% t(Mat4)
    t(Mat3)%*%Mat4
In [111]: sqrt(Mat3)
    sqrt(Mat4)
```


10 Exercise 10

```
In [20]: myFunction <- function(x) {
        ux <- x^3-1
        return(ux)
    }
    test<-myFunction(2)
print(test)
```

[1] 7

2 is the value of the input, and 7 is the value of the output.
In [1]: $\mathrm{x}<-\mathrm{c}(5,4,3,2,1)$
print(var(x))
[1] 2.5

The command $\operatorname{var}(\mathrm{x})$ computes the variance of x , whcih can be a numeric vector, matrix or data frame.

```
In [11]: y<- sum(x)
    z<- mean(x)
    n<- length(x)
    m<- (x-z) ~
    a<- sum(m)
    sd<- (1/(n-1))*a
    print(sd)
```

[1] 2.5
$y=$ sum of $x z=$ mean of $x n=$ number of $x m=$ square of x minus mean $a=$ sum of the bars $s d=$ variance

11 Exercise 11

In [21]: BMI <- function(h,w) \{ux<- h/ (w~2)
return(ux)\}
test <- BMI $(55,1.65)$
print(test)
[1] 20.20202
$\mathrm{w}=$ weight of body in $\mathrm{kg} \mathrm{h}=$ height of body in m

12 Exercise 12

Week 1 practical content: * Basic operation in R * Use of markdown cells * Built in help functions in R^{*} Changing path and verifying location of workspace * Working with vairables and objects, to perform simple calculations * Assigning value to object * The print command * Creating vectors and matrices, as well as their manipulation and calculations. * Transform numbers to characters. * Rearranging dimensions of matrices * Create user defined functions * Calculation of variance

