Define the Laplace Transform: $\mathcal{L}[f(t)] = \overline{f}(s) = \int_0^\infty f(t)e^{-st}dt$.

Proposition. Laplace transforms of derivatives. For all $n \in \mathbb{N}$,

$$\mathcal{L}[f^{(n)}(t)] = s^n \bar{f}(s) - \sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0).$$

PROOF. Define P(n) to be the predicate, $\mathcal{L}\left[f^{(n)}(t)\right] = s^n \bar{f}(s) - \sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0)$, which becomes a statement for any $n \in \mathbb{N}$. We will do an induction on n. We will start by proving the base case, P(1):

$$\mathcal{L}[f'(t)] = \int_0^\infty f'(t)e^{-st} dt$$

= $\int_0^\infty (f(t)e^{-st})' - sf(t)e^{-st} dt$
= $[f(t)e^{-st}]_0^\infty - s\bar{f}(s)$
= $s\bar{f}(s) - f(0)$
= $s^1\bar{f}(s) - \sum_{i=0}^0 s^{0-i}f^{(i)}(0)$
(n = 1) = $s^n\bar{f}(s) - \sum_{i=0}^{n-1} s^{n-1-i}f^{(i)}(0)$.

Assume P(k) is true: for an arbitrary $k \in \mathbb{N}$,

$$\mathcal{L}[f^{(k)}(t)] = s^k \bar{f}(s) - \sum_{i=0}^{k-1} s^{k-1-i} f^{(i)}(0) = s^k \mathcal{L}[f(s)] - \sum_{i=0}^{k-1} s^{k-1-i} f^{(i)}(0).$$

We will show that $P(k) \implies P(k+1)$:

$$\begin{split} \mathcal{L}\big[f^{(k+1)}(t)\big] &= \mathcal{L}\big[(f')^{(k)}(t)\big] \\ &= s^k \mathcal{L}[f'(s)] - \sum_{i=0}^{k-1} s^{k-1-i} (f')^{(i)}(0) \\ &= s^k (s\bar{f}(s) - f(0)) - \sum_{i=0}^{k-1} s^{k-1-i} f^{(i+1)}(0) \\ &= s^{k+1}\bar{f}(s) - s^k f(0) - (s^{k-1}f^{(1)}(0) + s^k f^{(2)}(0) + \dots + s^1 f^{(k-1)}(0) + s^0 f^{(k)}(0)) \\ &= s^{k+1}\bar{f}(s) - (s^k f(0) + s^{k-1}f^{(1)}(0) + s^k f^{(2)}(0) + \dots + s^1 f^{(k-1)}(0) + s^0 f^{(k)}(0)) \\ &= s^{k+1}\bar{f}(s) - \sum_{i=0}^k s^{k-i} f^{(i)}(0) \\ &= s^{k+1}\bar{f}(s) - \sum_{i=0}^{k} s^{(k+1)-1} s^{(k+1)-1-i} f^{(i)}(0). \end{split}$$

So, P(n) is true for all $n \in \mathbb{N}$. \Box