Define the Laplace Transform: $\mathcal{L}[f(t)]=\bar{f}(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$.

Proposition. Laplace transforms of derivatives. For all $n \in \mathbb{N}$,

$$
\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \bar{f}(s)-\sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0)
$$

PROOF. Define $P(n)$ to be the predicate, $\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \bar{f}(s)-\sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0)$, which becomes a statement for any $n \in \mathbb{N}$. We will do an induction on n. We will start by proving the base case, $P(1)$:

$$
\begin{aligned}
\mathcal{L}\left[f^{\prime}(t)\right] & =\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t \\
& =\int_{0}^{\infty}\left(f(t) e^{-s t}\right)^{\prime}-s f(t) e^{-s t} d t \\
& =\left[f(t) e^{-s t}\right]_{0}^{\infty}-s \bar{f}(s) \\
& =s \bar{f}(s)-f(0) \\
& =s^{1} \bar{f}(s)-\sum_{i=0}^{0} s^{0-i} f^{(i)}(0) \\
(n=1) \quad & =s^{n} \bar{f}(s)-\sum_{i=0}^{n-1} s^{n-1-i} f^{(i)}(0) .
\end{aligned}
$$

Assume $P(k)$ is true: for an arbitrary $k \in \mathbb{N}$,

$$
\mathcal{L}\left[f^{(k)}(t)\right]=s^{k} \bar{f}(s)-\sum_{i=0}^{k-1} s^{k-1-i} f^{(i)}(0)=s^{k} \mathcal{L}[f(s)]-\sum_{i=0}^{k-1} s^{k-1-i} f^{(i)}(0) .
$$

We will show that $P(k) \Longrightarrow P(k+1)$:

$$
\begin{aligned}
\mathcal{L}\left[f^{(k+1)}(t)\right] & =\mathcal{L}\left[\left(f^{\prime}\right)^{(k)}(t)\right] \\
& =s^{k} \mathcal{L}\left[f^{\prime}(s)\right]-\sum_{i=0}^{k-1} s^{k-1-i}\left(f^{\prime}\right)^{(i)}(0) \\
& =s^{k}(s \bar{f}(s)-f(0))-\sum_{i=0}^{k-1} s^{k-1-i} f^{(i+1)}(0) \\
& =s^{k+1} \bar{f}(s)-s^{k} f(0)-\left(s^{k-1} f^{(1)}(0)+s^{k} f^{(2)}(0)+\cdots+s^{1} f^{(k-1)}(0)+s^{0} f^{(k)}(0)\right) \\
& =s^{k+1} \bar{f}(s)-\left(s^{k} f(0)+s^{k-1} f^{(1)}(0)+s^{k} f^{(2)}(0)+\cdots+s^{1} f^{(k-1)}(0)+s^{0} f^{(k)}(0)\right) \\
& =s^{k+1} \bar{f}(s)-\sum_{i=0}^{k} s^{k-i} f^{(i)}(0) \\
& =s^{k+1} \bar{f}(s)-\sum_{i=0}^{(k+1)-1} s^{(k+1)-1-i} f^{(i)}(0) .
\end{aligned}
$$

So, $P(n)$ is true for all $n \in \mathbb{N}$.

