
2015-05-29-105121-billeray

William Stein

5/29/2015

Contents
0.1 Author of this worksheet: William Stein . 1

0.1.1 Question in email on May 28, 2015 from Nicolas Billerey 1

0.1 Author of this worksheet: William Stein
0.1.1 Question in email on May 28, 2015 from Nicolas Billerey

Hi William, I suspect that there exists a CM form of weight 12, level 232 and trivial Nebentypus character
which is congruent to ∆ mod 23. Similarly, I suspect that there also exists a CM form of weight 16, level
312 and trivial Nebentypus congruent mod 31 to the unique newform of wt 16, level 1 and rational integer
coefficients.

First want to check there is nothing at level 23, so what we find below is at level 232

%time M = ModularSymbols (23, base_ring=GF(23), weight =12, sign =1)
CPU time: 0.14 s, Wall time: 0.15 s

d = delta_qexp (20); show(d)
q− 24q2 + 252q3− 1472q4 + 4830q5− 6048q6− 16744q7 + 84480q8− 113643q9− 115920q10 + 534612q11−

370944q12−577738q13+401856q14+1217160q15+987136q16−6905934q17+2727432q18+10661420q19+O(q20)

%time T2 = M.hecke_operator (2)
CPU time: 0.01 s, Wall time: 0.01 s

%time V2 = (T2 - d[2]).kernel ()
CPU time: 0.01 s, Wall time: 0.01 s

The following dimension shows that we have only the two images of delta under degen map, namely delta(q)
and delta(q23).Nothingelseispossible.

V2.dimension ()
2

OK, time to look into level 232. We know a priori that we will have ∆(q), ∆(q23), and ∆(q23
2

), the images
under the degeneracy maps corresponding to the divisors of 232. So the question is whether or not there is
a fourth form.

1

In the calculation below we will work modulo 23 at level 232 and deduce that there is such a fourth form
(and no others). However, the mod 23 calculation doesnt tell us anything else about that form just that it
exists!

Incidentally, working mod a prime like below is fine as long as the prime isnt 2 or 3 if it is, then there
are problems.

import sage_server; sage_server.MAX_OUTPUT_MESSAGES = 10000 # below may \
generate a lot of output

this is a nontrivial sparse linear algebra computation over a small \
finite field , which should take 10s.

%time M = ModularSymbols (23^2, base_ring=GF(23), weight =12, sign =1)
M
CPU time: 10.20 s, Wall time: 10.66 s

Modular Symbols space of dimension 507 for Gamma_0(529) of weight 12 with sign 1 over
Finite Field of size 23

d = delta_qexp (600); show(d[:15])
q− 24q2 + 252q3− 1472q4 + 4830q5− 6048q6− 16744q7 + 84480q8− 113643q9− 115920q10 + 534612q11−

370944q12 − 577738q13 + 401856q14 + O(q600)

%time T2 = M.hecke_operator (2)
CPU time: 0.02 s, Wall time: 0.02 s

%time V2 = (T2 - d[2]).kernel ()
CPU time: 0.39 s, Wall time: 0.49 s

positive evidence
V2.dimension ()
4

%time V3 = (V2.hecke_operator (3) - d[3]).kernel ()
CPU time: 0.33 s, Wall time: 0.33 s

more positive evidence
V3.dimension ()
4

%time V5 = (V3.hecke_operator (5) - d[5]).kernel ()
CPU time: 0.37 s, Wall time: 0.37 s

even more evidence
V5.dimension ()
4

To prove we have a congruence with a newform we have to check up to the Sturm bound:

M.sturm_bound ()

2

552

Thats big and could be done in the following straightforward way, which would take a day. However, Im too
impatient and there is a trick that is massively faster (reducing an O(N) computation to O(1)).

%time # so get overall time
d = delta_qexp(M.sturm_bound ()+1)
V = M
p = 2
while p <= M.sturm_bound () and V.dimension () >1:

print "working on p=%s"%p; sys.stdout.flush()
if p != 23:

%time V = (V.hecke_operator(p) - d[p]).kernel ()
print p, V.dimension ()

else:
print "ignoring p=23 (for now)"

p = next_prime(p)
if p > 30:

THIS IS TOO SLOW FOR ME... but should work -- don’t run.
print "you should be morally convinced by now"
break

working on p=2
CPU time: 0.10 s, Wall time: 0.10 s
2 4
working on p=3
CPU time: 0.00 s, Wall time: 0.01 s
3 4
working on p=5
CPU time: 0.00 s, Wall time: 0.00 s
5 4
working on p=7
CPU time: 0.43 s, Wall time: 0.43 s
7 4
working on p=11
CPU time: 0.59 s, Wall time: 0.61 s
11 4
working on p=13
CPU time: 0.68 s, Wall time: 0.69 s
13 4
working on p=17
CPU time: 0.79 s, Wall time: 0.80 s
17 4
working on p=19
CPU time: 0.82 s, Wall time: 0.83 s
19 4
working on p=23
ignoring p=23 (for now)
working on p=29
CPU time: 1.10 s, Wall time: 1.17 s
29 4
you should be morally convinced by now
CPU time: 4.52 s, Wall time: 4.66 s

3

d = delta_qexp(M.sturm_bound ()+1)

What do the matrices look like on this 4-dimensional space?

V5
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 507 for
Gamma_0(529) of weight 12 with sign 1 over Finite Field of size 23

show(V5.hecke_matrix (13))
22 amp; 0 amp; 0 amp; 0
0 amp; 22 amp; 0 amp; 0
0 amp; 0 amp; 22 amp; 0
0 amp; 0 amp; 0 amp; 22

I bet they are all diagonal except for T23.

T23 = V5.hecke_matrix (23)
show(T23)
show(T23.fcp())

6 amp; 4 amp; 0 amp; 14
3 amp; 2 amp; 0 amp; 7

16 amp; 3 amp; 0 amp; 22
20 amp; 21 amp; 0 amp; 16

(x + 22) · x3

d[23] % 23
1

Use a trick to reduce complexity dramatically

%time T2 = M.dual_hecke_matrix (2)
CPU time: 0.01 s, Wall time: 0.01 s

%time V2dual = (T2 - d[2]).kernel ()
CPU time: 0.06 s, Wall time: 0.06 s

V2dual.dimension ()
4

B = V2dual.free_module ().basis ()
we need 4 easy -to -compute with basis elements that dot nonzero with our\

basis.
guess = [M.gen(i).element () for i in [0..3]]
A = matrix(4,4, [B[i]. dot_product(guess[j]) for i in range (4) for j in \

range (4)])
show(A)

1 amp; 0 amp; 0 amp; 0
0 amp; 1 amp; 0 amp; 0
0 amp; 0 amp; 1 amp; 0
0 amp; 0 amp; 0 amp; 1

we got super lucky in this case. The above means that computing

4

the action of Tp on M.gen(0) ,..., M.gen (3) will give the same matrix
as computing the action on our 4-dimensional subspace.
But surprisingly it is massively easier ...
In general would have to invert a matrix and multiply by that.
This should really be implemented in general in Sage , but evidently isn\

’t...

Tp = M.hecke_operator (37)
%time x = Tp.apply_sparse(M.gen (0)) # fast even if "37" is large ...
CPU time: 0.02 s, Wall time: 0.02 s

def fastT(p):
Tp = M.hecke_operator(p)
C = [Tp.apply_sparse(M.gen(i)).element () for i in range (4)] # the \

real work
return matrix (4,4,[b.dot_product(c) for b in B for c in C])

fastT (2).fcp()
(x + 1)^4

compare with
V2.hecke_matrix (2).fcp()
(x + 1)^4

try bigger
%time show(fastT (37))

0 amp; 0 amp; 0 amp; 0
0 amp; 0 amp; 0 amp; 0
0 amp; 0 amp; 0 amp; 0
0 amp; 0 amp; 0 amp; 0

CPU time: 0.12 s, Wall time: 0.16 s

%time show(V2.hecke_matrix (37))
0 amp; 0 amp; 0 amp; 0
0 amp; 0 amp; 0 amp; 0
0 amp; 0 amp; 0 amp; 0
0 amp; 0 amp; 0 amp; 0

CPU time: 1.25 s, Wall time: 1.32 s

show(fastT (23).fcp())
(x + 22) · x3

show(V2.hecke_matrix (23).fcp())
(x + 22) · x3

So now we do the hard computation above for primes up to the Sturm bound, but using our fastT:

%time # so get overall time
d = delta_qexp(M.sturm_bound ()+1)
V = M

5

p = 2
while p <= M.sturm_bound ():

print "doing p=%s"%p; sys.stdout.flush()
if p != 23:

%time Tp = fastT(p)
if Tp != d[p]: # the right scalar matrix

print "FAIL at p=%s"%p
else:

print "ignoring p=23"
p = next_prime(p)

doing p=2
CPU time: 0.09 s, Wall time: 0.09 s
doing p=3
CPU time: 0.08 s, Wall time: 0.11 s
doing p=5
CPU time: 0.09 s, Wall time: 0.10 s
doing p=7
CPU time: 0.09 s, Wall time: 0.09 s
doing p=11
CPU time: 0.08 s, Wall time: 0.08 s
doing p=13
CPU time: 0.08 s, Wall time: 0.09 s
doing p=17
CPU time: 0.08 s, Wall time: 0.08 s
doing p=19
CPU time: 0.10 s, Wall time: 0.10 s
doing p=23
ignoring p=23
doing p=29
CPU time: 0.08 s, Wall time: 0.09 s
doing p=31
CPU time: 0.09 s, Wall time: 0.09 s
doing p=37
CPU time: 0.10 s, Wall time: 0.10 s
doing p=41
CPU time: 0.10 s, Wall time: 0.10 s
doing p=43
CPU time: 0.10 s, Wall time: 0.10 s
doing p=47
CPU time: 0.10 s, Wall time: 0.10 s
doing p=53
CPU time: 0.10 s, Wall time: 0.10 s
doing p=59
CPU time: 0.10 s, Wall time: 0.11 s
doing p=61
CPU time: 0.12 s, Wall time: 0.12 s
doing p=67
CPU time: 0.11 s, Wall time: 0.11 s
doing p=71
CPU time: 0.11 s, Wall time: 0.12 s
doing p=73

6

CPU time: 0.12 s, Wall time: 0.12 s
doing p=79
CPU time: 0.12 s, Wall time: 0.13 s
doing p=83
CPU time: 0.13 s, Wall time: 0.14 s
doing p=89
CPU time: 0.12 s, Wall time: 0.13 s
doing p=97
CPU time: 0.19 s, Wall time: 0.20 s
doing p=101
CPU time: 0.13 s, Wall time: 0.13 s
doing p=103
CPU time: 0.13 s, Wall time: 0.14 s
doing p=107
CPU time: 0.16 s, Wall time: 0.17 s
doing p=109
CPU time: 0.14 s, Wall time: 0.14 s
doing p=113
CPU time: 0.19 s, Wall time: 0.20 s
doing p=127
CPU time: 0.23 s, Wall time: 0.25 s
doing p=131
CPU time: 0.14 s, Wall time: 0.14 s
doing p=137
CPU time: 0.14 s, Wall time: 0.15 s
doing p=139
CPU time: 0.15 s, Wall time: 0.15 s
doing p=149
CPU time: 0.21 s, Wall time: 0.22 s
doing p=151
CPU time: 0.16 s, Wall time: 0.16 s
doing p=157
CPU time: 0.15 s, Wall time: 0.15 s
doing p=163
CPU time: 0.16 s, Wall time: 0.16 s
doing p=167
CPU time: 0.16 s, Wall time: 0.16 s
doing p=173
CPU time: 0.16 s, Wall time: 0.16 s
doing p=179
CPU time: 0.16 s, Wall time: 0.16 s
doing p=181
CPU time: 0.16 s, Wall time: 0.17 s
doing p=191
CPU time: 0.16 s, Wall time: 0.17 s
doing p=193
CPU time: 0.17 s, Wall time: 0.17 s
doing p=197
CPU time: 0.17 s, Wall time: 0.17 s
doing p=199
CPU time: 0.17 s, Wall time: 0.18 s

7

doing p=211
CPU time: 0.18 s, Wall time: 0.18 s
doing p=223
CPU time: 0.18 s, Wall time: 0.19 s
doing p=227
CPU time: 0.18 s, Wall time: 0.19 s
doing p=229
CPU time: 0.24 s, Wall time: 0.24 s
doing p=233
CPU time: 0.24 s, Wall time: 0.25 s
doing p=239
CPU time: 0.20 s, Wall time: 0.20 s
doing p=241
CPU time: 0.20 s, Wall time: 0.20 s
doing p=251
CPU time: 0.19 s, Wall time: 0.20 s
doing p=257
CPU time: 0.20 s, Wall time: 0.21 s
doing p=263
CPU time: 0.21 s, Wall time: 0.22 s
doing p=269
CPU time: 0.25 s, Wall time: 0.26 s
doing p=271
CPU time: 0.20 s, Wall time: 0.21 s
doing p=277
CPU time: 0.23 s, Wall time: 0.23 s
doing p=281
CPU time: 0.29 s, Wall time: 0.30 s
doing p=283
CPU time: 0.22 s, Wall time: 0.23 s
doing p=293
CPU time: 0.21 s, Wall time: 0.23 s
doing p=307
CPU time: 0.22 s, Wall time: 0.23 s
doing p=311
CPU time: 0.22 s, Wall time: 0.22 s
doing p=313
CPU time: 0.22 s, Wall time: 0.23 s
doing p=317
CPU time: 0.29 s, Wall time: 0.30 s
doing p=331
CPU time: 0.24 s, Wall time: 0.25 s
doing p=337
CPU time: 0.26 s, Wall time: 0.26 s
doing p=347
CPU time: 0.24 s, Wall time: 0.24 s
doing p=349
CPU time: 0.26 s, Wall time: 0.27 s
doing p=353
CPU time: 0.25 s, Wall time: 0.26 s
doing p=359

8

CPU time: 0.25 s, Wall time: 0.30 s
doing p=367
CPU time: 0.26 s, Wall time: 0.33 s
doing p=373
CPU time: 0.25 s, Wall time: 0.26 s
doing p=379
CPU time: 0.26 s, Wall time: 0.26 s
doing p=383
CPU time: 0.37 s, Wall time: 0.38 s
doing p=389
CPU time: 0.46 s, Wall time: 0.49 s
doing p=397
CPU time: 0.37 s, Wall time: 0.45 s
doing p=401
CPU time: 0.31 s, Wall time: 0.31 s
doing p=409
CPU time: 0.33 s, Wall time: 0.34 s
doing p=419
CPU time: 0.30 s, Wall time: 0.30 s
doing p=421
CPU time: 0.37 s, Wall time: 0.38 s
doing p=431
CPU time: 0.28 s, Wall time: 0.29 s
doing p=433
CPU time: 0.28 s, Wall time: 0.28 s
doing p=439
CPU time: 0.28 s, Wall time: 0.29 s
doing p=443
CPU time: 0.30 s, Wall time: 0.31 s
doing p=449
CPU time: 0.30 s, Wall time: 0.31 s
doing p=457
CPU time: 0.30 s, Wall time: 0.31 s
doing p=461
CPU time: 0.29 s, Wall time: 0.30 s
doing p=463
CPU time: 0.29 s, Wall time: 0.30 s
doing p=467
CPU time: 0.29 s, Wall time: 0.31 s
doing p=479
CPU time: 0.30 s, Wall time: 0.31 s
doing p=487
CPU time: 0.30 s, Wall time: 0.31 s
doing p=491
CPU time: 0.38 s, Wall time: 0.39 s
doing p=499
CPU time: 0.33 s, Wall time: 0.34 s
doing p=503
CPU time: 0.36 s, Wall time: 0.37 s
doing p=509
CPU time: 0.32 s, Wall time: 0.33 s

9

doing p=521
CPU time: 0.39 s, Wall time: 0.40 s
doing p=523
CPU time: 0.40 s, Wall time: 0.41 s
doing p=541
CPU time: 0.31 s, Wall time: 0.32 s
doing p=547
CPU time: 0.50 s, Wall time: 0.60 s

CPU time: 21.27 s, Wall time: 22.28 s

So in less than minute total CPU time weve verified your first claim using exactly the right algorithms

Some stuff involving new subspaces I left around New subspaces with modular symbols behave funny in
characteristic p.

set_verbose (2)
%time Mn = M.new_subspace ()

%time V2new = V2.new_subspace ()

V2new
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 507 for
Gamma_0(529) of weight 12 with sign 1 over Finite Field of size 23

V2new.hecke_operator (23).fcp()
verbose 1 (6534: free_module.py, echelon_coordinates) mod-p multiply of 1 x 2 matrix by 2
x 507 matrix modulo 23
verbose 1 (6534: free_module.py, echelon_coordinates) mod-p multiply of 1 x 2 matrix by 2
x 507 matrix modulo 23
verbose 1 (579: matrix_morphism.py, characteristic_polynomial) _charpoly_linbox...
x^2

%time D = V2new.dual_free_module(bound =5)

10

	Author of this worksheet: William Stein
	Question in email on May 28, 2015 from Nicolas Billerey

