2015-05-29-105121-billeray

William Stein

5/29/2015
Contents
0.1 Author of this worksheet: Willlam Steinl 1
[0.1.1 Question in email on May 28, 2015 from Nicolas Billerey|. 1

0.1 Author of this worksheet: William Stein
0.1.1 Question in email on May 28, 2015 from Nicolas Billerey

Hi William, I suspect that there exists a CM form of weight 12, level 232 and trivial Nebentypus character
which is congruent to A mod 23. Similarly, I suspect that there also exists a CM form of weight 16, level
312 and trivial Nebentypus congruent mod 31 to the unique newform of wt 16, level 1 and rational integer
coeflicients.

First want to check there is nothing at level 23, so what we find below is at level 232

%“time M = ModularSymbols (23, base_ring=GF(23), weight=12, sign=1)
CPU time: 0.14 s, Wall time: 0.15 s

d = delta_qexp (20); show(d)

q—24¢% +252¢% — 1472¢" + 4830¢° — 6048¢° — 16744 4 84480¢° — 113643¢° — 115920¢*° + 534612¢'* —
37094442 —577738¢'3 +401856¢* +1217160¢*° +-987136¢° —6905934¢*7 +2727432¢*® +10661420¢° + O (¢*°)

%time T2 = M.hecke_operator (2)
CPU time: 0.01 s, Wall time: 0.01 s

%time V2 = (T2 - d[2]) .kernel()
CPU time: 0.01 s, Wall time: 0.01 s

The following dimension shows that we have only the two images of delta under degen map, namely delta(q)
and delta(q?3).Nothingelseispossible.

V2.dimension ()
2

OK, time to look into level 232. We know a priori that we will have A(q), A(¢??), and A(q232), the images
under the degeneracy maps corresponding to the divisors of 232. So the question is whether or not there is
a fourth form.

In the calculation below we will work modulo 23 at level 232 and deduce that there is such a fourth form
(and no others). However, the mod 23 calculation doesnt tell us anything else about that form just that it
exists!

Incidentally, working mod a prime like below is fine as long as the prime isnt 2 or 3 if it is, then there
are problems.

import sage_server; sage_server.MAX_OUTPUT_MESSAGES = 10000 # below may \
generate a lot of output

this is a nontrivial sparse linear algebra computation over a small \
finite field, which should take 10s.

stime M = ModularSymbols (23~2, base_ring=GF(23), weight=12, sign=1)

M

CPU time: 10.20 s, Wall time: 10.66 s

Modular Symbols space of dimension 507 for Gamma_0(529) of weight 12 with sign 1 over
Finite Field of size 23

d = delta_qexp(600); show(d[:15])

q —24q¢° + 252¢° — 1472¢* + 4830¢° — 6048¢° — 16744¢" + 84480¢% — 113643¢° — 115920¢'° + 534612¢* —
370944¢'% — 577738¢'3 + 401856¢** + O(¢%°%)

%time T2 = M.hecke_operator (2)
CPU time: 0.02 s, Wall time: 0.02 s

%time V2 = (T2 - d[2]) .kernel ()
CPU time: 0.39 s, Wall time: 0.49 s

positive evidence
V2.dimension ()
4

%time V3 = (V2.hecke_operator(3) - d[3]).kernel()
CPU time: 0.33 s, Wall time: 0.33 s

more positive evidence
V3.dimension ()
4

htime V5 = (V3.hecke_operator(5) - d[5]).kernel()
CPU time: 0.37 s, Wall time: 0.37 s

even more evidence
V5.dimension ()
4

To prove we have a congruence with a newform we have to check up to the Sturm bound:

M.sturm_bound ()

552

Thats big and could be done in the following straightforward way, which would take a day. However, Im too
impatient and there is a trick that is massively faster (reducing an O(N) computation to O(1)).

htime # so get overall time
d = delta_qexp(M.sturm_bound()+1)
V=M
p = 2
while p <= M.sturm_bound () and V.dimension () >1:
print "working on p=Y%s"%p; sys.stdout.flush()
if p != 23:
%time V = (V.hecke_operator(p) - dlpl).kernel()
print p, V.dimension ()
else:
print "ignoring p=23 (for now)"
p = next_prime (p)

if p > 30:
THIS IS TOO SLOW FOR ME... but should work -- don’t run.
print "you should be morally convinced by now"
break

working on p=2

CPU time: 0.10 s, Wall time: 0.10 s
2 4

working on p=3

CPU time: 0.00 s, Wall time: 0.01 s
3 4

working on p=5

CPU time: 0.00 s, Wall time: 0.00 s
54

working on p=7

CPU time: 0.43 s, Wall time: 0.43 s
7 4

working on p=11

CPU time: 0.59 s, Wall time: 0.61 s
11 4

working on p=13

CPU time: 0.68 s, Wall time: 0.69 s
13 4

working on p=17

CPU time: 0.79 s, Wall time: 0.80 s
17 4

working on p=19

CPU time: 0.82 s, Wall time: 0.83 s
19 4

working on p=23

ignoring p=23 (for now)

working on p=29

CPU time: 1.10 s, Wall time: 1.17 s
29 4

you should be morally convinced by now
CPU time: 4.52 s, Wall time: 4.66 s

d = delta_qexp(M.sturm_bound()+1)

What do the matrices look like on this 4-dimensional space?

V5
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 507 for
Gamma_0(529) of weight 12 with sign 1 over Finite Field of size 23

show (V5.hecke_matrix (13))
22 amp;0 amp;0 amp;0
0 amp;22 amp;0 amp;0
0 amp;0 amp;22 amp;0
0 amp;0 amp;0 amp;22

I bet they are all diagonal except for Tb3.

T23 = V5.hecke_matrix (23)

show (T23)

show (T23.fcp())
6 amp;4 amp;0 amp; 14
3 amp;2 amp;0 amp;7
16 amp;3 amp;0 amp;22
20 amp;21 amp;0 amp;16

(x +22) - 2°

d[23] % 23
1

Use a trick to reduce complexity dramatically

%time T2 = M.dual_hecke_matrix(2)
CPU time: 0.01 s, Wall time: 0.01 s

%time V2dual = (T2 - d[2]) .kernel()
CPU time: 0.06 s, Wall time: 0.06 s

V2dual.dimension ()
4

B = V2dual.free_module () .basis ()

we need 4 easy-to-compute with basis elements that dot nonzero with our)
basis.

guess = [M.gen(i).element() for i in [0..3]]

A = matrix (4,4, [B[i].dot_product(guess[j]) for i in range(4) for j in \
range (4) 1)

show (A)
1 amp;0 amp;0 amp;0
0 amp;1 amp;0 amp;0
0 amp;0 amp;1 amp;0
0 amp;0 amp;0 amp;l

we got super lucky in this case. The above means that computing

the action of Tp on M.gen(0),..., M.gen(3) will give the same matrix

as computing the action on our 4-dimensional subspace.

But surprisingly it is massively easier...

In general would have to invert a matrix and multiply by that.

This should really be implemented in general in Sage, but evidently isn\
B o0 o

H OH OH OB OH

Tp = M.hecke_operator (37)
%time x = Tp.apply_sparse(M.gen(0)) # fast even if "37" is large...
CPU time: 0.02 s, Wall time: 0.02 s

def fastT(p):
Tp = M.hecke_operator (p)
C = [Tp.apply_sparse(M.gen(i)).element() for i in range(4)] # the \
real work
return matrix(4,4,[b.dot_product(c) for b in B for c in C])

fastT(2) .fcp ()
(x +1)"4

compare with
V2.hecke_matrix (2).fcp ()
(x + 1)°4

try bigger
%time show (fastT (37))
amp;0 amp;0 amp;0
amp;0 amp;0 amp;0
amp; 0 amp;0 amp;0

0 amp;0 amp;0 amp;0
CPU time: 0.12 s, Wall time: 0.16 s

o O O

%time show(V2.hecke_matrix (37))
amp; 0 amp;0 amp;0
amp; 0 amp;0 amp;0
amp;0 amp;0 amp;0
0 amp;0 amp;0 amp;0
CPU time: 1.25 s, Wall time: 1.32 s

o O O

show (fastT (23) .fcp())
(z+22)-2°

show (V2.hecke_matrix (23) .fcp())
(z+22)-2°

So now we do the hard computation above for primes up to the Sturm bound, but using our fastT:

%time # so get overall time
d = delta_qexp(M.sturm_bound()+1)
V=M

p =2

while p <= M.sturm_bound():
print "doing p=%s"%p; sys.stdout.flush()
if p != 23:
%time Tp = fastT(p)

if Tp

'= dlpl:

print "FAIL

else:
print

"ignoring

p = next_prime (p)

doing p=2

CPU time: 0.09 s,
doing p=3

CPU time: 0.08 s,
doing p=5

CPU time: 0.09 s,
doing p=7

CPU time: 0.09 s,
doing p=11

CPU time: 0.08 s,
doing p=13

CPU time: 0.08 s,
doing p=17

CPU time: 0.08 s,
doing p=19

CPU time: 0.10 s,
doing p=23
ignoring p=23
doing p=29

CPU time: 0.08 s,
doing p=31

CPU time: 0.09 s,
doing p=37

CPU time: 0.10 s,
doing p=41

CPU time: 0.10 s,
doing p=43

CPU time: 0.10 s,
doing p=47

CPU time: 0.10 s,
doing p=53

CPU time: 0.10 s,
doing p=59

CPU time: 0.10 s,
doing p=61

CPU time: 0.12 s,
doing p=67

CPU time: 0.11 s,
doing p=71

CPU time: 0.11 s,
doing p=73

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

the right scalar matrix
at p=%s"%p

p=23"

0.09 s

CPU time: O.

doing p=79

CPU time: O.

doing p=83

CPU time: O.

doing p=89

CPU time: O.

doing p=97

CPU time: O.

doing p=101

CPU time: O.

doing p=103

CPU time: O.

doing p=107

CPU time: O.

doing p=109

CPU time: O.

doing p=113

CPU time: O.

doing p=127

CPU time: O.

doing p=131

CPU time: O.

doing p=137

CPU time: O.

doing p=139

CPU time: O.

doing p=149

CPU time: O.

doing p=151

CPU time: O.

doing p=157

CPU time: O.

doing p=163

CPU time: O.

doing p=167

CPU time: O.

doing p=173

CPU time: O.

doing p=179

CPU time: O.

doing p=181

CPU time: O.

doing p=191

CPU time: O.

doing p=193

CPU time: O.

doing p=197

CPU time: O.

doing p=199

CPU time: O.

12

12

13

12

19

13

13

16

14

19

23

14

14

15

21

16

15

16

16

16

16

16

16

17

17

17

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

.12

.13

.14

.13

.20

.13

.14

.17

.14

.20

.25

.14

.15

.15

.22

.16

.15

.16

.16

.16

.16

17

.17

.17

.17

.18

doing p=211

CPU time: O.

doing p=223

CPU time: O.

doing p=227

CPU time: O.

doing p=229

CPU time: O.

doing p=233

CPU time: O.

doing p=239

CPU time: O.

doing p=241

CPU time: O.

doing p=251

CPU time: O.

doing p=257

CPU time: O.

doing p=263

CPU time: O.

doing p=269

CPU time: O.

doing p=271

CPU time: O.

doing p=277

CPU time: O.

doing p=281

CPU time: O.

doing p=283

CPU time: O.

doing p=293

CPU time: O.

doing p=307

CPU time: O.

doing p=311

CPU time: O.

doing p=313

CPU time: O.

doing p=317

CPU time: O.

doing p=331

CPU time: O.

doing p=337

CPU time: O.

doing p=347

CPU time: O.

doing p=349

CPU time: O.

doing p=353

CPU time: O.

doing p=359

18

18

18

24

24

20

20

19

20

21

25

20

23

29

22

21

22

22

22

29

24

26

24

26

25

S,

S,

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

.18

.19

.19

.24

.25

.20

.20

.20

.21

.22

.26

.21

.23

.30

.23

.23

.23

.22

.23

.30

.25

.26

.24

.27

.26

CPU time: O.

doing p=367

CPU time: O.

doing p=373

CPU time: O.

doing p=379

CPU time: O.

doing p=383

CPU time: O.

doing p=389

CPU time: O.

doing p=397

CPU time: O.

doing p=401

CPU time: O.

doing p=409

CPU time: O.

doing p=419

CPU time: O.

doing p=421

CPU time: O.

doing p=431

CPU time: O.

doing p=433

CPU time: O.

doing p=439

CPU time: O.

doing p=443

CPU time: O.

doing p=449

CPU time: O.

doing p=457

CPU time: O.

doing p=461

CPU time: O.

doing p=463

CPU time: O.

doing p=467

CPU time: O.

doing p=479

CPU time: O.

doing p=487

CPU time: O.

doing p=491

CPU time: O.

doing p=499

CPU time: O.

doing p=503

CPU time: O.

doing p=509

CPU time: O.

25

26

25

26

37

46

37

31

33

30

37

28

28

28

30

30

30

29

29

29

30

30

38

33

36

32

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

Wall

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

time:

.30

.33

.26

.26

.38

.49

.45

.31

.34

.30

.38

.29

.28

.29

.31

.31

.31

.30

.30

.31

.31

.31

.39

.34

.37

.33

doing p=521
CPU time: 0.39 s, Wall time: 0.40 s

doing p=523
CPU time: 0.40 s, Wall time: 0.41 s
doing p=541
CPU time: 0.31 s, Wall time: 0.32 s
doing p=547

CPU time: 0.50 s, Wall time: 0.60 s
CPU time: 21.27 s, Wall time: 22.28 s
So in less than minute total CPU time weve verified your first claim using exactly the right algorithms

Some stuff involving new subspaces I left around New subspaces with modular symbols behave funny in
characteristic p.

set_verbose (2)

%time Mn = M.new_subspace ()
%time V2new = V2.new_subspace ()
V2new

Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 507 for
Gamma_0(529) of weight 12 with sign 1 over Finite Field of size 23

V2new.hecke_operator (23) .fcp ()

verbose 1 (6534: free_module.py, echelon_coordinates) mod-p multiply of 1 x 2 matrix by 2
x 507 matrix modulo 23

verbose 1 (6534: free_module.py, echelon_coordinates) mod-p multiply of 1 x 2 matrix by 2
x 507 matrix modulo 23

verbose 1 (579: matrix_morphism.py, characteristic_polynomial) _charpoly_linbox...

x"2

%time D = V2new.dual_free_module (bound=5)

10

	Author of this worksheet: William Stein
	Question in email on May 28, 2015 from Nicolas Billerey

