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0.1 Author of this worksheet: William Stein
0.1.1 Question in email on May 28, 2015 from Nicolas Billerey

Hi William, I suspect that there exists a CM form of weight 12, level 232 and trivial Nebentypus character
which is congruent to A mod 23. Similarly, I suspect that there also exists a CM form of weight 16, level
312 and trivial Nebentypus congruent mod 31 to the unique newform of wt 16, level 1 and rational integer
coeflicients.

First want to check there is nothing at level 23, so what we find below is at level 232

%“time M = ModularSymbols (23, base_ring=GF(23), weight=12, sign=1)
CPU time: 0.14 s, Wall time: 0.15 s

d = delta_qexp (20); show(d)

q—24¢% +252¢% — 1472¢" + 4830¢° — 6048¢° — 16744 4 84480¢° — 113643¢° — 115920¢*° + 534612¢'* —
37094442 —577738¢'3 +401856¢* +1217160¢*° +-987136¢° —6905934¢*7 +2727432¢*® +10661420¢° + O (¢*°)

%time T2 = M.hecke_operator (2)
CPU time: 0.01 s, Wall time: 0.01 s

%time V2 = (T2 - d[2]) .kernel()
CPU time: 0.01 s, Wall time: 0.01 s

The following dimension shows that we have only the two images of delta under degen map, namely delta(q)
and delta(q?3).Nothingelseispossible.

V2.dimension ()
2

OK, time to look into level 232. We know a priori that we will have A(q), A(¢??), and A(q232), the images
under the degeneracy maps corresponding to the divisors of 232. So the question is whether or not there is
a fourth form.



In the calculation below we will work modulo 23 at level 232 and deduce that there is such a fourth form
(and no others). However, the mod 23 calculation doesnt tell us anything else about that form just that it
exists!

Incidentally, working mod a prime like below is fine as long as the prime isnt 2 or 3 if it is, then there
are problems.

import sage_server; sage_server.MAX_OUTPUT_MESSAGES = 10000 # below may \
generate a lot of output

# this is a nontrivial sparse linear algebra computation over a small \
finite field, which should take 10s.

stime M = ModularSymbols (23~2, base_ring=GF(23), weight=12, sign=1)

M

CPU time: 10.20 s, Wall time: 10.66 s

Modular Symbols space of dimension 507 for Gamma_0(529) of weight 12 with sign 1 over
Finite Field of size 23

d = delta_qexp(600); show(d[:15])

q —24q¢° + 252¢° — 1472¢* + 4830¢° — 6048¢° — 16744¢" + 84480¢% — 113643¢° — 115920¢'° + 534612¢* —
370944¢'% — 577738¢'3 + 401856¢** + O(¢%°%)

%time T2 = M.hecke_operator (2)
CPU time: 0.02 s, Wall time: 0.02 s

%time V2 = (T2 - d[2]) .kernel ()
CPU time: 0.39 s, Wall time: 0.49 s

# positive evidence
V2.dimension ()
4

%time V3 = (V2.hecke_operator(3) - d[3]).kernel()
CPU time: 0.33 s, Wall time: 0.33 s

# more positive evidence
V3.dimension ()
4

htime V5 = (V3.hecke_operator(5) - d[5]).kernel()
CPU time: 0.37 s, Wall time: 0.37 s

# even more evidence
V5.dimension ()
4

To prove we have a congruence with a newform we have to check up to the Sturm bound:

M.sturm_bound ()



552

Thats big and could be done in the following straightforward way, which would take a day. However, Im too
impatient and there is a trick that is massively faster (reducing an O(N) computation to O(1)).

htime # so get overall time
d = delta_qexp(M.sturm_bound()+1)
V=M
p = 2
while p <= M.sturm_bound () and V.dimension () >1:
print "working on p=Y%s"%p; sys.stdout.flush()
if p != 23:
%time V = (V.hecke_operator(p) - dlpl).kernel()
print p, V.dimension ()
else:
print "ignoring p=23 (for now)"
p = next_prime (p)

if p > 30:
# THIS IS TOO SLOW FOR ME... but should work -- don’t run.
print "you should be morally convinced by now"
break

working on p=2

CPU time: 0.10 s, Wall time: 0.10 s
2 4

working on p=3

CPU time: 0.00 s, Wall time: 0.01 s
3 4

working on p=5

CPU time: 0.00 s, Wall time: 0.00 s
54

working on p=7

CPU time: 0.43 s, Wall time: 0.43 s
7 4

working on p=11

CPU time: 0.59 s, Wall time: 0.61 s
11 4

working on p=13

CPU time: 0.68 s, Wall time: 0.69 s
13 4

working on p=17

CPU time: 0.79 s, Wall time: 0.80 s
17 4

working on p=19

CPU time: 0.82 s, Wall time: 0.83 s
19 4

working on p=23

ignoring p=23 (for now)

working on p=29

CPU time: 1.10 s, Wall time: 1.17 s
29 4

you should be morally convinced by now
CPU time: 4.52 s, Wall time: 4.66 s



d = delta_qexp(M.sturm_bound()+1)

What do the matrices look like on this 4-dimensional space?

V5
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 507 for
Gamma_0(529) of weight 12 with sign 1 over Finite Field of size 23

show (V5.hecke_matrix (13))
22 amp;0  amp;0  amp;0
0 amp;22 amp;0  amp;0
0 amp;0 amp;22 amp;0
0 amp;0  amp;0 amp;22

I bet they are all diagonal except for Tb3.

T23 = V5.hecke_matrix (23)

show (T23)

show (T23.fcp())
6 amp;4 amp;0 amp; 14
3 amp;2 amp;0  amp;7
16  amp;3 amp;0 amp;22
20 amp;21 amp;0 amp;16

(x +22) - 2°

d[23] % 23
1

Use a trick to reduce complexity dramatically

%time T2 = M.dual_hecke_matrix(2)
CPU time: 0.01 s, Wall time: 0.01 s

%time V2dual = (T2 - d[2]) .kernel()
CPU time: 0.06 s, Wall time: 0.06 s

V2dual.dimension ()
4

B = V2dual.free_module () .basis ()

# we need 4 easy-to-compute with basis elements that dot nonzero with our)
basis.

guess = [M.gen(i).element() for i in [0..3]]

A = matrix (4,4, [B[i].dot_product(guess[j]) for i in range(4) for j in \
range (4) 1)

show (A)
1 amp;0 amp;0 amp;0
0 amp;1 amp;0 amp;0
0 amp;0 amp;1 amp;0
0 amp;0 amp;0 amp;l

# we got super lucky in this case. The above means that computing



the action of Tp on M.gen(0),..., M.gen(3) will give the same matrix

as computing the action on our 4-dimensional subspace.

But surprisingly it is massively easier...

In general would have to invert a matrix and multiply by that.

This should really be implemented in general in Sage, but evidently isn\
B o0 o

H OH OH OB OH

Tp = M.hecke_operator (37)
%time x = Tp.apply_sparse(M.gen(0)) # fast even if "37" is large...
CPU time: 0.02 s, Wall time: 0.02 s

def fastT(p):
Tp = M.hecke_operator (p)
C = [Tp.apply_sparse(M.gen(i)).element() for i in range(4)] # the \
real work
return matrix(4,4,[b.dot_product(c) for b in B for c in C])

fastT(2) .fcp ()
(x +1)"4

# compare with
V2.hecke_matrix (2).fcp ()
(x + 1)°4

# try bigger
%time show (fastT (37))
amp;0  amp;0  amp;0
amp;0 amp;0 amp;0
amp; 0 amp;0  amp;0

0 amp;0 amp;0 amp;0
CPU time: 0.12 s, Wall time: 0.16 s

o O O

%time show(V2.hecke_matrix (37))
amp; 0 amp;0  amp;0
amp; 0 amp;0  amp;0
amp;0  amp;0 amp;0
0 amp;0 amp;0 amp;0
CPU time: 1.25 s, Wall time: 1.32 s

o O O

show (fastT (23) .fcp())
(z+22)-2°

show (V2.hecke_matrix (23) .fcp())
(z+22)-2°

So now we do the hard computation above for primes up to the Sturm bound, but using our fastT:

%time # so get overall time
d = delta_qexp(M.sturm_bound()+1)
V=M



p =2

while p <= M.sturm_bound():
print "doing p=%s"%p; sys.stdout.flush()
if p != 23:
%time Tp = fastT(p)

if Tp

'= dlpl:

print "FAIL

else:
print

"ignoring

p = next_prime (p)

doing p=2

CPU time: 0.09 s,
doing p=3

CPU time: 0.08 s,
doing p=5

CPU time: 0.09 s,
doing p=7

CPU time: 0.09 s,
doing p=11

CPU time: 0.08 s,
doing p=13

CPU time: 0.08 s,
doing p=17

CPU time: 0.08 s,
doing p=19

CPU time: 0.10 s,
doing p=23
ignoring p=23
doing p=29

CPU time: 0.08 s,
doing p=31

CPU time: 0.09 s,
doing p=37

CPU time: 0.10 s,
doing p=41

CPU time: 0.10 s,
doing p=43

CPU time: 0.10 s,
doing p=47

CPU time: 0.10 s,
doing p=53

CPU time: 0.10 s,
doing p=59

CPU time: 0.10 s,
doing p=61

CPU time: 0.12 s,
doing p=67

CPU time: 0.11 s,
doing p=71

CPU time: 0.11 s,
doing p=73

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

Wall time:

# the right scalar matrix
at p=%s"%p

p=23"

0.09 s



CPU time: O.

doing p=79

CPU time: O.

doing p=83

CPU time: O.

doing p=89

CPU time: O.

doing p=97

CPU time: O.

doing p=101

CPU time: O.

doing p=103

CPU time: O.

doing p=107

CPU time: O.

doing p=109

CPU time: O.

doing p=113

CPU time: O.

doing p=127

CPU time: O.

doing p=131

CPU time: O.

doing p=137

CPU time: O.

doing p=139

CPU time: O.

doing p=149

CPU time: O.

doing p=151

CPU time: O.

doing p=157

CPU time: O.

doing p=163

CPU time: O.

doing p=167

CPU time: O.

doing p=173

CPU time: O.

doing p=179

CPU time: O.

doing p=181

CPU time: O.

doing p=191

CPU time: O.

doing p=193

CPU time: O.

doing p=197

CPU time: O.

doing p=199

CPU time: O.
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doing p=211

CPU time: O.

doing p=223

CPU time: O.

doing p=227

CPU time: O.

doing p=229

CPU time: O.

doing p=233

CPU time: O.

doing p=239

CPU time: O.

doing p=241

CPU time: O.

doing p=251

CPU time: O.

doing p=257

CPU time: O.

doing p=263

CPU time: O.

doing p=269

CPU time: O.

doing p=271

CPU time: O.

doing p=277

CPU time: O.

doing p=281

CPU time: O.

doing p=283

CPU time: O.

doing p=293

CPU time: O.

doing p=307

CPU time: O.

doing p=311

CPU time: O.

doing p=313

CPU time: O.

doing p=317

CPU time: O.

doing p=331

CPU time: O.

doing p=337

CPU time: O.

doing p=347

CPU time: O.

doing p=349

CPU time: O.

doing p=353

CPU time: O.

doing p=359
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CPU time: O.

doing p=367

CPU time: O.

doing p=373

CPU time: O.

doing p=379

CPU time: O.

doing p=383

CPU time: O.

doing p=389

CPU time: O.

doing p=397

CPU time: O.

doing p=401

CPU time: O.

doing p=409

CPU time: O.

doing p=419

CPU time: O.

doing p=421

CPU time: O.

doing p=431

CPU time: O.

doing p=433

CPU time: O.

doing p=439

CPU time: O.

doing p=443

CPU time: O.

doing p=449

CPU time: O.

doing p=457

CPU time: O.

doing p=461

CPU time: O.

doing p=463

CPU time: O.

doing p=467

CPU time: O.

doing p=479

CPU time: O.

doing p=487

CPU time: O.

doing p=491

CPU time: O.

doing p=499

CPU time: O.

doing p=503

CPU time: O.

doing p=509

CPU time: O.
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doing p=521
CPU time: 0.39 s, Wall time: 0.40 s

doing p=523
CPU time: 0.40 s, Wall time: 0.41 s
doing p=541
CPU time: 0.31 s, Wall time: 0.32 s
doing p=547

CPU time: 0.50 s, Wall time: 0.60 s
CPU time: 21.27 s, Wall time: 22.28 s
So in less than minute total CPU time weve verified your first claim using exactly the right algorithms

Some stuff involving new subspaces I left around New subspaces with modular symbols behave funny in
characteristic p.

set_verbose (2)

%time Mn = M.new_subspace ()
%time V2new = V2.new_subspace ()
V2new

Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 507 for
Gamma_0(529) of weight 12 with sign 1 over Finite Field of size 23

V2new.hecke_operator (23) .fcp ()

verbose 1 (6534: free_module.py, echelon_coordinates) mod-p multiply of 1 x 2 matrix by 2
x 507 matrix modulo 23

verbose 1 (6534: free_module.py, echelon_coordinates) mod-p multiply of 1 x 2 matrix by 2
x 507 matrix modulo 23

verbose 1 (579: matrix_morphism.py, characteristic_polynomial) _charpoly_linbox...

x"2

%time D = V2new.dual_free_module (bound=5)

10
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