Section 1.2

E.A. Smith
Catawba Valley Community College

Summer 2018

Definition (Punctured δ-interval)

Let there exist a real numbers c and $\delta>0$. Then the punctured interval is the open interval $(c-\delta, c) \cup(c, c+\delta)$.

Definition (Punctured δ-interval)

Let there exist a real numbers c and $\delta>0$. Then the punctured interval is the open interval $(c-\delta, c) \cup(c, c+\delta)$.

Basic Idea

- The value c is an x-value that you wish to get really close to and δ is how close you want to be to c.

Definition ($\varepsilon-\delta$ Definition of a Limit)

If $f(x)$ is a function where $\lim _{x \rightarrow c} f(x)=L$, then

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \text { if } x \in(c-\delta, c) \cup(c, c+\delta) \Rightarrow L \in(L-\varepsilon, L+\varepsilon) .
$$

Definition ($\varepsilon-\delta$ Definition of a Limit)

If $f(x)$ is a function where $\lim _{x \rightarrow c} f(x)=L$, then

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \text { if } x \in(c-\delta, c) \cup(c, c+\delta) \Rightarrow L \in(L-\varepsilon, L+\varepsilon) .
$$

Basic Idea

In this definition, the idea we are trying to formalize is that the closer and closer I get to c, I want to also be able to get closer and closer to L, regardless if c is in the domain or not.

Definition ($\varepsilon-\delta$ Definition of a Limit)

If $f(x)$ is a function where $\lim _{x \rightarrow c} f(x)=L$, then

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \text { if } x \in(c-\delta, c) \cup(c, c+\delta) \Rightarrow L \in(L-\varepsilon, L+\varepsilon) .
$$

Basic Idea

In this definition, the idea we are trying to formalize is that the closer and closer I get to c, I want to also be able to get closer and closer to L, regardless if c is in the domain or not.

Let's look at an illustration of this definition.
$\varepsilon=2$.

$\varepsilon=1$.

$\varepsilon=0.5$.

$\varepsilon=0.25$.

Basic Idea

No matter what value of ε I choose, I should be able to find a δ that will enclose the limit value inside of some rectangle.

Example (Finding a δ for a given ε - Example 1)
Let $f(x)=x^{3}$. Given $\varepsilon=0.25$, find a δ so that

$$
x \in(2-\delta, 2) \cup(2,2+\delta) \Rightarrow x^{3} \in(8-\varepsilon, 8+\varepsilon)
$$

Example (Finding a δ for a given ε - Example 1)

Let $f(x)=x^{3}$. Given $\varepsilon=0.25$, find a δ so that

$$
x \in(2-\delta, 2) \cup(2,2+\delta) \Rightarrow x^{3} \in(8-\varepsilon, 8+\varepsilon)
$$

Since $\varepsilon=0.25$, we know that $x^{3} \in(7.75,8.25)$. This means we need to find what the lower and upper x-values are. This happens when $x^{3}=7.75$ and $x^{3}=8.25$.

Example (Finding a δ for a given ε - Example 1)

Let $f(x)=x^{3}$. Given $\varepsilon=0.25$, find a δ so that

$$
x \in(2-\delta, 2) \cup(2,2+\delta) \Rightarrow x^{3} \in(8-\varepsilon, 8+\varepsilon)
$$

Since $\varepsilon=0.25$, we know that $x^{3} \in(7.75,8.25)$. This means we need to find what the lower and upper x-values are. This happens when $x^{3}=7.75$ and $x^{3}=8.25$.

The lower x-value is 1.98 and the upper x-value is 2.02 . Since the c value is 2 , this means δ must be 0.02 . Below is a picture of this punctured δ-interval.

Example (Finding a δ for a given ε - Example 2)
Let $f(x)=\sqrt{x}$. Given $\varepsilon=0.10$, find a δ so that

$$
x \in(4-\delta, 4) \cup(4,4+\delta) \Rightarrow \sqrt{x} \in(2-\varepsilon, 2+\varepsilon) .
$$

Example (Finding a δ for a given ε - Example 2)

Let $f(x)=\sqrt{x}$. Given $\varepsilon=0.10$, find a δ so that

$$
x \in(4-\delta, 4) \cup(4,4+\delta) \Rightarrow \sqrt{x} \in(2-\varepsilon, 2+\varepsilon) .
$$

Since $\varepsilon=0.10$, we know that $\sqrt{x} \in(1.9,2.1)$. This means we need to find what the lower and upper x-values are. This happens when $\sqrt{x}=1.9$ and $\sqrt{x}=2.1$.

Example (Finding a δ for a given ε - Example 2)

Let $f(x)=\sqrt{x}$. Given $\varepsilon=0.10$, find a δ so that

$$
x \in(4-\delta, 4) \cup(4,4+\delta) \Rightarrow \sqrt{x} \in(2-\varepsilon, 2+\varepsilon) .
$$

Since $\varepsilon=0.10$, we know that $\sqrt{x} \in(1.9,2.1)$. This means we need to find what the lower and upper x-values are. This happens when $\sqrt{x}=1.9$ and $\sqrt{x}=2.1$.

The lower x-value is 3.61 and the upper x-value is 4.41 . Here we have a bit of an issue. The distance between 4 and the end points of the interval are not the same. This means we have two potential δ-values to choose from. The first is 0.39 and the second is 0.41 . Which do we pick?

Example (Finding a δ for a given ε - Example 2)

Let $f(x)=\sqrt{x}$. Given $\varepsilon=0.10$, find a δ so that

$$
x \in(4-\delta, 4) \cup(4,4+\delta) \Rightarrow \sqrt{x} \in(2-\varepsilon, 2+\varepsilon) .
$$

Since $\varepsilon=0.10$, we know that $\sqrt{x} \in(1.9,2.1)$. This means we need to find what the lower and upper x-values are. This happens when $\sqrt{x}=1.9$ and $\sqrt{x}=2.1$.

The lower x-value is 3.61 and the upper x-value is 4.41 . Here we have a bit of an issue. The distance between 4 and the end points of the interval are not the same. This means we have two potential δ-values to choose from. The first is 0.39 and the second is 0.41 . Which do we pick?

We need to pick the smaller of the two in order to ensure the interval isn't too wide. So, we pick $\delta=0.39$.

