Introduction to the CubicBraidGroup class

Sebastian Oehms

6.4.2017
Contents

Using the CubicBraidGroup clas 1
.1 Introduction L L L 1
2__ Gettin startii 2
3 Firststeps e 8
4 Classical realization 8
.5 ___Exceptions in Assions seriesl 10
.5.1 Description of the exceptions as centralizeJ 10
6 Conversion Maps e 11
.{___Preimages in the Artin braid @ 13
.8 Burau matrices for the cubic braid groupd 13
.9 Other matrix group realizations via the Burau representatior{ 17
.10 Realization as complex reflection groupg 18
.11 Realization as permutation groupg 20
12 Other useful methods 21

1 Using the CubicBraidGroup class

1.1 Introduction
This module is devoted to factor groups of the Artin braid groups, such that the images s; of the
braid generators have order three:

ss=1

In general these groups have firstly been investigated by Coxeter, H.S.M in: “Factor groups of
the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp.
05-122".

Coxeter showed, that these groups are finite as long as the number of strands is less than 6 and
infinite elsewise. More explicitely the factor group on three strand braids is isomorphic to SL(2, 3),
on four strand braids to GU(3,2) and on five strand braids to Sp(4, 3) x C3. Coxeter realized these
groups as subgroups of unitary groups with respect to a certain hermitian form over the complex
numbers (in fact over Q adjoined with a primitive 12-th root of unity).

1 Using the CubicBraidGroup class

In “Einige endliche Faktorgruppen der Zopfgruppen” (Math. Z., 163 (1978), 291-302) J. Assion
considered two series S(m) and U(m) of finite dimensional factors of these groups. The additional
relations on the braid group generators {sy,---,sn_1} are

5351t251t2_1t3t251t2_1t§1 =1 for m>=5 incaseof S(m)
tits=1 for m>=D5 incaseof U(m)

where t; = (s;s;41)3. He showed that each series of finite cubic braid group factors must be an
epimorhic image of one of his two series, as long as the groups with less than 5 strands are the full
cubic braid groups, whereas the group on 5 strands is not. He realized the groups S(m) as symplectic
groups over GF(3) (resp. subgroups therein) and U(m) as general unitary groups over GF(4) (resp.
subgroups therein).

This class implements all the groups conidered by Coxeter and Assion as finitely presented groups
(via the gap interface) together with the classical realizations given by the authors. It also contains
the coercion maps between the two ways of realization. In addition the user can construct other
realizations and maps to matrix groups with help of the burau representation. In case gap3 and
CHEVIE are installed under sage version 7.2 (or later) the reflection groups via the gap3 interface
are availlable, too. The methods for all this functionality are:

= as_classical_group
= as_matrix_group
» as_reflection_group (needs sage version 7.2 up and gap3 + CHEVIE)

= as_permutation_group
Further methods are:

= order

= pre_image_braid_group
= cubic_braid_subgroup
= character_table

AUTHOR
Sebastian Oehms, Sept. 2016

1.2 Getting started

The CubicBraidGroup class is not integrated into the sage library, right now. If you are using sage
on your own computer you may install the CubicBraidGoup class following the README.txt file. To
use the CubicBraidGroup on this plattform you can create a jupyter notebook or a sage worksheet
(like this) and start with a cell containing the first line of this:

Y%auto
from cubic_braid import *

1 Using the CubicBraidGroup class

To execute the command you must click on the “play” symbol (>|) above (instead of carriage
return key in a shell session)

On your own computer in a command-line sage-session you must start with this line, as well. For
further information on how to get started see the README.txt-File.

The general documentation concerning the CubicBraidGroup class can be shown using the following
command.

print CubicBraidGroup_class.__doc__
Class to handel cubic factors of braid group on n strands

If you don't see this well formatted type

sage: print CubicBraidGroup_ class._ doc_

This class implements quotient groups of the braid group mapping their generators to
elements of order 3

(see the module header for more informations on these groups)

These groups are implemented as a particular case of finitely presented groups similar
to the BraidGroup class

A cubic braid group can be created by giving the number of strands, and the name of
the generators in a similar

way as it works for the BraidGroup class.

INPUT (to the constructor):

- “names”: (see the BraidGroup_ class docomentation)

- “AdditionalRelation”: (keyword, explantaion see below)

- “verbose”: (keyword, explantaion see below)

RAISE (on init):

- ValueError: “the number of strands must be an integer larger than one”

Setting the keyword 'AdditionalRelation' to one on the values 'S' or 'U' the
additional relations due to
Assion are added:

'S':$s 3s 1t 2s 1t 27{-1}t 3t 2s 1t 27{-1}t_37{-1) =18 for $m >= 5%
'U': %t 1t 3=1% for $m >= 5%

1 Using the CubicBraidGroup class

where $t_i = (s_is_{i+1})"3$. If AdditionalRelation="'C" (default) only the cubic
relation on the generators is

active (Coxeters case of investigation). Note that for n=2,3,4 the groups do not
differ between the three possible

values of AdditionalRelation (as finitely presented groups). But anyway, the classes
for 'C', 'S' and 'U"' are

different, since they have different classical realizations implemented .

Setting the keyword verbose it is possible to print time stamp messages in order to do
a performance or

call stack debugging. This keyword uses the timeStampControl class. For more
information on this type

print setupTimeStamp._ doc___

print timeStampControl._ doc_

print timeStampControl.print_ timestamp._ doc
print print_ time_tb. doc_

The creation of instances of this class can also be done more easy by help of the
functions CubicBraidGroup,

AssionGroupS and AssionGroupU (similar to the function BraidGroup with respect to the
BraidGroup_ class)

EXAMPLES:

sage: from cubic_ braid import *

sage: U3 = CubicBraidGroup(3, AdditionalRelation = 'U"); U3
Assion group on 3 strands of type U

sage: U3.gens()

(c0, cl)

alternate possibilities defining U3:

sage: U3 = AssionGroupU(3); U3
Assion group on 3 strands of type U
sage: U3.gens()

(u0, ul)

sage: U3.<ul,u2> = AssionGroupU(3); U3
Assion group on 3 strands of type U

sage: U3.gens()

(ul, u2)

alternates naming the generators:

1 Using the CubicBraidGroup class

sage: U3 = AssionGroupU(3, 'a, b'); U3
Assion group on 3 strands of type U
sage: U3.gens()

(a, b)

sage: C3 = CubicBraidGroup(3, 't'); C3
Cubic Braid group on 3 strands

sage: C3.gens()

(t0, t1)

sage: U3.is_isomorphic(C3)

True

sage: U3.as_classical group()

Subgroup of (The projective general unitary group of degree 3 over Finite Field of
size 2) generated by

[(1,7,6) (3,19,14)(4,15,10)(5,11,18)(12,16,20),
(1,12,13)(2,15,19)(4,9,14)(5,18,8)(6,21,16)]

sage: C3.as_ classical_group()

Subgroup of General Unitary Group of degree 2 over Universal Cyclotomic Field with
respect to hermitian form

FE(12)77 + E(12)"11 -1]

[-1-E(12)77 + E(12)711]

generated by (

[E(3) E(12)"11]

[0 1],

[1 0]

[E(12)"11 E(3)])

using verbose mode:

sage: C3.<cl,c2> = CubicBraidGroup(3, verbose=True); C3
L: Stacklnfo Elapse: 0, Total: 0 Ident: C3 In: __ init Line: 403
L: StackInfo Elapse: 197, Total: 0 Begin In:
~ create classical realization Line: 910
L: Stacklnfo Elapse: 8, Total: 0 Begin In: as_ matrix_ group Line: 1031

L: Body Elapse: 92, Total: 0 genList prepared In: as_ matrix_ group
Line: 1038

L: Body Elapse: 52, Total: 0 MatGroup defined In: as_ matrix_ group
Line: 1054

L: StackInfo Elapse: 356, Total: 0 Begin In: gap_ hom Line: 143

L: Debug Elapse: 8, Total: 0 GroupHomomorphis In: gap__hom Line: 188

L: Debug Elapse: 17, Total: 0 checked if groupMap works In: gap__hom
Line: 199

L: StackInfo Elapse: 8, Total: 0 End In: gap_ hom Line: 226
L: StackInfo Elapse: 44, Total: 0 Begin In: __ check__homomorphism___ Line:
60

1 Using the CubicBraidGroup class

L: Stacklnfo Elapse: 52, Total: 0 End In: _ check homomorphism___ Line: 625
L: Body Elapse: 3, Total: 0 Hom from self defined In:

as_matrix_ group Line: 1064
L: Stacklnfo Elapse: 62, Total: 0 Begin In: gap__hom Line: 143

L: Debug Elapse: 4, Total: 0 GroupHomomorphis In: gap__hom Line: 188

L: Debug Elapse: 20, Total: 0 checked if groupMap works In: gap__hom
Line: 199

L: StackInfo Elapse: 4, Total: 0 End In: gap_ hom Line: 226

L: Body Elapse: 35, Total: 0 Section to self defined In:

as_ matrix_ group Line: 1077
L: StackInfo Elapse: 3, Total: 0 Ende In: as_matrix_group Line: 1102
L: StackInfo Elapse: 3, Total: 0 End In: __ create_ classical_realization__
Line: 975
L: Stacklnfo Elapse: 12, Total: 0 Ident: C3 In: __ init_ Line: 472
Cubic Braid group on 3 strands
sage:
sage:
sage: C3.<cl,c2> = CubicBraidGroup(3, verbose=30); C3
L: StackInfo Elapse: 62, Total: 0 (truncated 1) Begin In:
~ create_classical realization Line: 910
---> ___init__ In: lib/cubic_ braid.py Line: 471
---> classcall _ In: /opt/sage/sage-6.9-1686-Linux/local/lib/python2.7/site-
packages/sage/structure
/unique__representation.py Line: 1021
---> CubicBraidGroup In: lib/cubic_ braid.py Line: 1231
L: StackInfo Elapse: 405, Total: 0 Begin In: as_ matrix_ group Line: 1031
---> __ create_ classical realization___ In: lib/cubic_ braid.py Line: 968
-—-> ___init___ In: lib/cubic_braid.py Line: 471
---> _ classcall _ In: /opt/sage/sage-6.9-1686-Linux/local/lib/python2.7/site-
packages/sage/structure
/unique__representation.py Line: 1021
L: Body Elapse: 145, Total: 0 genList prepared In: as_ matrix_ group
Line: 1038
---> __ create_classical realization___ In: lib/cubic_ braid.py Line: 968
---> ___init___ In: lib/cubic_ braid.py Line: 471
-—-> _ classcall __ In: /opt/sage/sage-6.9-1686-Linux/local/lib/python2.7/site-
packages/sage/structure
/unique__representation.py Line: 1021
Cubic Braid group on 3 strands
sage:

TESTS:
sage: C4 = CubicBraidGroup(4)

sage: TestSuite(C4).run()
sage: C5 = CubicBraidGroup(5)

1 Using the CubicBraidGroup class

sage: TestSuite(C5).run()
sage: C6 = CubicBraidGroup(6)
sage: TestSuite(C6).run()
sage: S3 = AssionGroupS(3)
sage: TestSuite(S3).run()
sage: S4 = AssionGroupS(4)
sage: TestSuite(S5).run()
sage: U3 = AssionGroupU(3)
sage: TestSuite(U3).run()
sage: U4 = AssionGroupU(4)
sage: TestSuite(U4).run()
sage: U5 = AssionGroupU(5)
sage: TestSuite(U5).run()

METHODS (implemented / overwriten here):

- as__classical__group(): type

sage: print CubicBraidGroup_ class.as_ classical group._ doc
- as_matrix__group(): type

sage: print CubicBraidGroup_ class.as_ matrix_group._ doc_
- as_refection__group(): type

sage: print CubicBraidGroup_ class.as_ refection_ group._ doc
- as_ permutation_ group(): type

sage: print CubicBraidGroup_ class.as_ permutation_ group._ doc_
- pre_image braid_ group: type

sage: print CubicBraidGroup_ class.pre_image braid_group. doc_
- cubic__braid__subgroup(): type

sage: print CubicBraidGroup__ class.cubic_ braid__subgroup._ doc
- centralizing__element(): type

sage: print CubicBraidGroup_ class.centralizing_element. doc__
- order(): type

sage: print CubicBraidGroup_ class.order._ doc_
- character__table(): type

sage: print CubicBraidGroup_ class.character table._ doc_

AUTHOR
- Sebastian Oehms, Sept. 2016
REFERENCES:
- Coxeter, H.S.M: “Factor groups of the braid groups, Proceedings of the Fourth
Candian Mathematical Congress

(Vancover 1957), pp. 95-122”.

- J. Assion: “Einige endliche Faktorgruppen der Zopfgruppen” (Math. Z., 163 (1978),
291-302)

1 Using the CubicBraidGroup class

1.3 First steps

To definine the cubic braid group on 3 strand, for example, type:

C3 = CubicBraidGroup(3); C3
Cubic Braid group on 3 strands

There are several ways to obtain the braid generators as variables: First using the pre defined
names:

C3.inject variables ()
Defining c0, c1

Second, if you like to use your own names it is possiblbe to include a generator declaration inside
the group declaration in two ways (caution: sage-kernel needed, this does no work for a pure python
kernel):

C4.<cl, c¢2, c¢3> = CubicBraidGroup(4); print ”Element of C4”, cl1*c2\
**k2% 3

U4 = AssionGroupU (4, 'a, b, ¢'); a, b, ¢ = Ud.gens(); print 7\
Element of U4”, a*b**2*c

Element of C4

cl*c272%c3

Element of U4

a*b"2%c

But, note:

S4 = AssionGroupS(4); x, y, z = S4.gens(); print "Element of S47, x*\
% 9
y z
Element of S4
s0*s172%s2

1.4 Classical realization

Now, lets define Coxeter's realization of the 3 strand cubic braid group:

C3Cl = C3.as__classical_group(); C3Cl
Subgroup of Unitary Group of degree 2 over Universal Cyclotomic Field with respect to
hermitian form
FE(12)°7 + E(12)"11 1]
-1 -E(12)"7 4+ E(12)"11] generated by:
[E(3) E(12)711]
0 1], [1 0]

—_— o~

1 Using the CubicBraidGroup class

[E(12)711 E@)))

You may apply any method implemented for groups and finitely presented resp. finitely generated
matrix groups in sage to C3 resp. C3Cl, for instance to check if they are isomorphic:

C3.is_isomorphic(C3Cl)

True

To see which methods are availlable you may use the python dir’ function. To see all methods
containing the substring is_" in their names, for instance, type:

print 'Attributes of C3:\n', [attrib for attrib in dir(C3) if \
attrib.find('is ') >= 0]

Attributes of C3:

['_interface is_cached ', ' is category initialized', ' is valid homomorphism ',

'is_abelian', 'is_atomic_repr', 'is_coercion_ cached', 'is commutative',

'is_ conversion__cached', 'is_ empty', 'is_exact', 'is_finite', 'is_isomorphic"',

'is_multiplicative', 'is_parent_of', 'is_subgroup']

Restriction to substrings at the beginning or end works like this:

print 'Attributes of C3:\n', [attrib for attrib in dir(C3) if \
attrib.startswith('as ')], '\n'

print 'Attributes of C3:\n', [attrib for attrib in dir(C3) if \
attrib.endswith('_ group')], '\n'

print 'Attributes of C3Cl:\n', [attrib for attrib in dir(C3Cl) if \
attrib.startswith('as ')], '\n'

print 'Attributes of C3Cl:\n', [attrib for attrib in dir (C3Cl) if \
attrib.endswith(' group') |

Attributes of C3:

['as_ classical _group', 'as_matrix_group', 'as_permutation_group', 'as_reflection_ group']

Attributes of C3:

['_free_group', 'as_classical group', 'as_matrix_group', 'as_permutation_group',

'as_reflection_ group', 'free_group', 'pre_image braid_group']

Attributes of C3Cl:

['as_matrix_ group', 'as_permutation_ group']

Attributes of C3Cl:

['as_matrix_ group', 'as_permutation_ group']

In stead of the “startswith” query you can use the “TAB"“-key functionality like with “bash”, as
well.

The above used method "as_ classical__group” is a special method of the CubicBraidGroup class. It
returns the realization of the cubic braid group as classical group. These are (in principal) symplectic
groups over GF(3) resp. unitary groups over GF(4) in the case of Assion groups of type “S" and
“U" respectively (realization of Assion) and subgroups of the unitary groups over Q adjoined with
a primitive 12-th root of unity with respect to a certain hermitian form in the case of the ordinary
cubic braid groups (Coxeters realization):

1 Using the CubicBraidGroup class

S3 = AssionGroupS(3); print S3; print "7

S3Cl = S3.as__classical_group(); print S3Cl; print 77
U3 = AssionGroupU (3); print U3; print 77

U3Cl = U3.as_ classical _group(); print U3CI

Assion group on 3 strands of type S

Symplectic Group of degree 2 over Finite Field of size 3
Assion group on 3 strands of type U

Subgroup of (The projective general unitary group of degree 3 over Finite Field of size 2)
generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)(12,16,20),
(1,12,13)(2,15,19)(4,9,14)(5,18,8)(6,21,16)]

1.5 Exceptions in Assions series

U3Cl is an exception to the statement above! It is not identical to the unitary group of degree 2.
This exception occurs if the number of strands is zero mululo three in the case of Assion groups of
type U resp. if the number of strands is even concerning the Assion groups of type S. But, since
U3Cl is a subgroup of U4CI (the unitary group of degree 3 over GF(4)) you may obtain it like this:

U3Clemb = U3.as_ classical group(embedded = True); print U3Clemb; \

print
uml, um2 =U3Clemb. gens ()

U4 = AssionGroupU (4)
U4Cl = U4.as_ classical__group(); print U4Cl; print 77

print 'first generator in U4Cl?', wuml in U4Cl
print 'second generator in U4Cl?', um2 in U4Cl
Matrix group over Finite Field in a of size 272 with 2 generators (
00a] a+1 a a

010 [aa+1 a

a0al,[a aa+1]

)

General Unitary Group of degree 3 over Finite Field in a of size 272
first generator in U4Cl? True

second generator in U4Cl1? True

Don't confuse about the difference with respect to the base field concerning GU(3,2) (size 22) and
PGU(3,2) (size 2) which is caused by non conform conventions inside sage.
1.5.1 Description of the exceptions as centralizer

Assion described the exceptional cases of the groups S(m) and U(m) as centralizer groups of certain
elements in the projective counterpart of the corresponding classical group. These elements can be
obtained by the following method:

10

1 Using the CubicBraidGroup class

u3cent = U3.centralizing element (); print ”centalizing element (\
udcent) :\n%s\n” %(u3cent)

print ”u3cent in U3CI? %s” %(u3cent in U3CI)

print ”u3cent in U3Clemb? %s\n” %(u3cent in U3Clemb)

u3centP = U3.centralizing element (projective = True); print 7\
projective centalizing element (u3centP):\n%s\n” %(u3centP)

print ”u3centP in U3CI? %s” %(u3centP in U3CI)

print "u3centP in U3Clemb? %s\n” %(u3centP in U3Clemb)

PU3 = U3Cl.ambient_group(); print ”"Ambient Group of U3Cl (PU3):\n%s\\
n” %(PU3)

PU3cent = PU3. centralizer (u3centP); print ”"Centralizer of u3centP in)\
PU3 (PU3cent):\n%s\n” %(PU3cent)

print ”Check PU3cent = U3Cl: %s” %(U3Cl =— PU3cent)
centalizing element (u3cent):

a+la+1 1]

a+1 0 a

[1 a a

u3dcent in U3C1? False

u3dcent in U3Clemb? True

projective centalizing element (u3centP):
(1,16)(2,9)(3,10)(4,19)(6,12)(7,20)(13,21)(14,15)

udcentP in U3C1? True

u3centP in U3Clemb? False

Ambient Group of U3Cl (PU3):

The projective general unitary group of degree 3 over Finite Field of size 2
Centralizer of u3centP in PU3 (PU3cent):

Subgroup of (The projective general unitary group of degree 3 over Finite Field of size 2)
generated by [(2,3,4)(6,13,20)(7,12,21)(8,11,18)(9,10,19),
(1,6,7)(3,14,19)(4,10,15)(5,18,11)(12,20,16),
(1,16)(2,9)(3,10)(4,19)(6,12)(7,20)(13,21)(14,15)]

Check PU3cent == U3Cl: True

1.6 Conversion maps

Observe, that the cubic braid groups do not differ from the corresponding Assion groups in terms of
isomorphism as long as the number of strand is less than five:

print 'C3 isomorphic to S37', C3.is_isomorphic(S3)

print 'C3 isomorphic to U3?', C3.is_isomorphic (U3)

print 'C3 isomorphic to S3Cl?', C3.is_isomorphic(S3Cl)

print 'C3 isomorphic to U3Cl?', C3.is_isomorphic (U3Cl)

print 'C3 isomorphic to U3Clemb?', C3.is_isomorphic (U3Clemb)
C3 isomorphic to S37?

True

11

1 Using the CubicBraidGroup class

C3 isomorphic to U3?

True

C3 isomorphic to S3CI1? True

C3 isomorphic to U3CI? True

C3 isomorphic to U3Clemb? True

These isomorphisms are canonical in the case of S3 and U3 since all these groups are defined as
finitely presented groups with identical number of generators and according relations:

print 'Relations of C3:\n%s\n'%(list (C3.relations()))
print 'Relations of S3:\n%s\n'%(list (S3.relations()))
Relations of C3:

[c0*c1*c0*cl™-1%c0™-1*c1™-1, c073, c173]

Relations of S3:

[s0*s1*s0*s1™-1*s07-1*s17-1, s0”3, s173]

In the other cases the maps are realized as conversion maps, that is:

C3.inject_ variables(); element = c0*cl**2; image element = C3CI(\
element)

print 'Image of %s in C3Cl:\n%s\n' %(element, image element)

U3.inject__variables(); element = u0*ul**2; image_element = U3CI(\

element)
print 'Image of %s in U3Cl:\n%s\n' %(element, image_element)
image element = U3Clemb (element)

print 'Image of %s in U3Clemb:\n%s\n' %(element, image_ element)
Defining c0, c1

Image of ¢c0*c172 in C3Cl:

[-E(3)72 E(12)77]

FE(12)°7 E(3)°2]

Defining u0, ul

Image of u0*ul™2 in U3Cl:

(1,7,16,20)(2,19,9,4)(3,15,10,14)(5,11)(6,13,12,21)(8,18)

Image of u0*ul™2 in U3Clemb:

[1 la-+1]
a+1 aa-+1]
[a 0 a

You may also convert in the opposite direction:

elements = list (S3Cl.some_elements())
image elements = [S3(element) for element in elements]

print 'Images of\n\n%s\n\nand\n\n%s\n\nin S3:\n\n%s\n' %(elements)
[0], elements[1l], image elements)

Images of

[11]

12

1 Using the CubicBraidGroup class

in S3:

[s1, s0*s1*s0]

1.7 Preimages in the Artin braid group

For each element of a cubic braid group you can define a preimage in the braid group as instance of
the element class of the braid group class:

braid_elements = [element.braid () for element in image_elements]

print 'Braid preimages of\n%s\nand\n%s:\n\n%s\n' %(elements[0], \
elements [1], braid_elements)

type(braid__elements [0])

jones__polynomial = [element.jones_polynomial () for element in \

braid__elements |
print 'Coresponding Jones polynomials:\n%s\n' %(jones_polynomial)
burau matrix = braid elements[1].burau_ matrix ()
print 'Burau matrix to second braid preimage:\n%s' %(burau_matrix)
Braid preimages of
[11]
[0 1]
and
[0 1]
[2 0]:

[s1, s0*s1*s0]

<class 'lib.local_ braid.local_BraidGroup_ class_with_ category.element_ class'>
Coresponding Jones polynomials:

[-sqrt(t) - 1/sqrt(t), -t7(5/2) - sqrt(t)]

Burau matrix to second braid preimage:

[1-tt-t72 72

[1-¢ t 0]

[1 0 0]

1.8 Burau matrices for the cubic braid groups

You can calculate the burau matrix correspondig to elements of the cubic braid groups, as well. By
default you will get it as matrix over QQ adjoint with a third root of unity (zeta3):

13

1 Using the CubicBraidGroup class

elem = image elements|[1]

print ”Burau:\n%s” %(elem.burau_ matrix())
Burau:

[-zetal 1 zetad]

[-zeta3 zeta3 + 1 0]

[1 0 0]

Using the additional options of this method, you can construct representations in finite matrix
groups, as well:

bur_mat = elem.burau_matrix(characteristic = 5)

print "Burau in characteristic 5:\n%s\nbase_ring: %s” %(bur_mat, \
bur_mat.base_ring())

Burau in characteristic 5:

[2*%1T 4 2 1 3% + 3]
[2*r] + 2 3*rT + 4 0]
[1 0 0

base_ ring: Finite Field in rI of size 572

To see all possible options type (but again, note that carriage return is ignored in the sage work-
sheet. To see it better use jupyter notebook or command line):

print CubicBraidElement.burau_matrix._ doc_
Return the Burau matrix of the cubic braid coset.

If you don't see this well formatted type
sage: print CubicBraidElement.burau_matrix. doc__

This method uses the same method belonging to the Braid class, but reduces the
parameter to a primitive six
root of unity, respectivly an element vanishing on the polynomial $x"2-x+1$

INPUT: (all parameters are optional by keyword)

- “rootBur”: six root of unity in some field (default six root of unity over
$\QQS)
- “Domain”: base_ring for the burau matrix (default is Cyclotomic Field of order
3 and degree 2, resp. the
domain of rootBur if given)
- “reduced”: boolean (default: False); whether to return the reduced or unreduced
Burau representation
(see Braid class)
- “characteristic”: integer giving the characteristic of the domain (default is 0
or the characteristic of
the doamain if given)
- “version”: values:

14

1 Using the CubicBraidGroup class

'"unitary': gives the unitary form according to Squier (see
Braid.__unitary__burau_ matrix_ ())

"default': the method behaves like the original one of the Braid
-class

any value else: gives the reduced form given on wikipedia

OUTPUT:

The Burau matrix of the cubic braid coset with entries in the domain given by
the options

If you need the values of the reconstructed keywords “rootBur”, “Domain” or

“characteristic” use the internal
version __burau_matrix__ of this method

RAISE:
- ValueError: 'characteristic must be in integer'
- ValueError: 'characteristic must be a prime'
- ValueError: 'characteristic of Domain does not match given characteristic'
- ValueError: 'rootBur must belong to a domain containing 1'
- ValueError: 'rootBur must vanish on $x~2-x+1$ default case

- ValueError: 'rootBur must vanish on $x 4-x"2+41$ in case of call with version
= "unitary'

EXAMPLES::

sage: C3.<cl, ¢2> = CubicBraidGroup(3)
sage: elel = cl*c2*cl
sage: BurauTest = elel.burau_ matrix(); print BurauTest

[-zeta3 1 zetad]
[-zeta3d zeta3 + 1 0]
[1 0 0]

sage: BurauTest.base_ ring|()
Cyclotomic Field of order 3 and degree 2

sage:

sage: BurauTest = elel.burau_ matrix(characteristic = 0); print BurauTest
[-zeta3 1 zetad]

[-zeta3 zeta3 + 1 0]

15

1 Using the CubicBraidGroup class

[1 0 0]

sage: BurauTest.base_ ring()

Cyclotomic Field of order 3 and degree 2

sage:

sage: BurauTest = elel.burau_ matrix(Domain = QQ); print BurauTest

Warning: Domain extended to splitting field of tT72 - tT + 1

[r] + 1 1 rI-1]

[r] + 1 rl 0]

[1 0 0]

sage: BurauTest.base_ring|()

Number Field in rI with defining polynomial tT72 - tT + 1

sage:

sage: BurauTest = elel.burau_matrix(Domain = QQ][I, sqrt(3)]); print
BurauTest

[1/2%sqrt3*I + 1/2 1-1/2*sqrt3*I - 1/2]
[1/2%sqrt3*T + 1/2 -1/2%sqrt3*T + 1/2 0]
[1 0 0]

sage: BurauTest.base_ ring|()

Number Field in I with defining polynomial x~2 + 1 over its base field

sage:

sage: BurauTest = elel.burau_ matrix(characteristic = 7); print BurauTest
[3 1 4]

[3 5 0]

[100]

sage: BurauTest.base ring()

Finite Field of size 7

sage:

sage: BurauTest = elel.burau_ matrix(characteristic = 2); print BurauTest
I+ 1 11l + 1]

PI+1 1l 0]

[1 0 0]

sage: BurauTest.base_ring()

Finite Field in rI of size 272

sage:

sage:

sage: F4.<r64> = GF(4)

sage: BurauTest = elel.burau_matrix(rootBur=r64); print BurauTest
[r64 + 1 1164 4 1]

64 +1 164 0]

[1 0 0]

sage: BurauTest.base_ring()

Finite Field in r64 of size 272

sage:

sage: BurauTest = elel.burau_matrix(Domain = GF(5)); print BurauTest
Warning: Domain extended to splitting field of tT™2 + 4*T + 1

[2%1T + 2 1 3*T + 3]

[2%rT + 2 3*rT + 4 0]

16

1 Using the CubicBraidGroup class

[

1 0 0]

sage: BurauTest.base_ ring()

F

inite Field in rI of size 572

sage:
sage: BurauTest = elel.burau_ matrix(version = 'unitary'); print BurauTest

[

0 -zetal2™ 3]

[-zetal2™3 0]

sage: BurauTest.base_ring()

Cyclotomic Field of order 12 and degree 4

sage:

sage: BurauTest = elel.burau_matrix(Domain = QQ][I, sqrt(3)], version =
"unitary'); print BurauTest

[
-

0]
I 0]

sage: BurauTest.base_ring()
Number Field in I with defining polynomial x~2 + 1 over its base field

AUTHOR:

- Sebastian Oehms, Sept. 2016

REFERENCES:

wikipedia: “Burau_ representation”

for more inormation type

sage
sage
sage
sage

: print Braid.burau_ matrix._ doc___

: print local_Braid.burau_matrix. doc_

: print local_Braid._ burau_matrix_wikipedia__ . doc___
: print local_Braid._ burau_matrix_unitary . doc_

1.9 Other matrix group realizations via the Burau representation

If you want to create the image of the Burau representation as as matrix group together with the

correspond

ing group homorphism you just need to type, for instance:

C3c7 = C3.as_matrix_group(Domain = GF(7)); C3c7
Matrix group over Finite Field of size 7 with 2 generators (

350] [1
[100] [0
001],[0
)

0 0]
3 5]
10]

17

1 Using the CubicBraidGroup class

Conversion maps are availlable as in the case of the classical groups:

cl, c2 = C3.gens(); elemC3 = cl1*c2

elemC3c7 = C3c7(elemC3); print "elemC3c7:\n”, elemC3c7
elemC3back = C3(elemC3c7); print “elemC3back:\n”, elemC3back
print 7Check: 7, elemC3back = elemC3

elem(C3c7:

31 4]

100]

[010]

elemC3back:

c0*cl

Check: True

Of course, the map backwards is a group homomorphism only if the representation is faithfull. In
general this conversion map is a section. Further, note that the Burau representation does factor
through the relations of Assion, just for certain characteristic.

1.10 Realization as complex reflection groups

A third kind of realization of the cubic braid groups leads to complex reflection groups. This real-
ization is availlable starting wirh sage version 7.2 if in addition gap3 with the CHEVIE package is
installed. In this case the complex reflection group is obtained by:

R3 = C3.as_reflection_group(); R3
Irreducible complex reflection group of rank 2 and type ST4

All methods implemented for the IrreduclibeComplexReflectionGroup class can be used for R3, for
example:

ctmat = R3.cartan matrix()
print ”"Cartan matrix corresponding to %s:\n%s\n” %(C3, ctmat)
simproots = R3.simple_roots()

print ”simple roots corresponding to %s:\n%s\n” %(C3, simproots)

reflhplanes = R3.reflection__hyperplanes()

print "reflection hyperplanes corresponding to %s:\n%s\n” %(C3, \
reflhplanes)

coxele = R3.coxeter_ element ()

print ”Coxeter element corresponding to %s:\n%s” %(C3, coxele)

Cartan matrix corresponding to Cubic Braid group on 3 strands:

[-2*E(3) - E(3)72 E(3)72]

[-E(3)72 -2*E(3) - E(3)72]

simple roots corresponding to Cubic Braid group on 3 strands:

Finite family {1: (0, -2*E(3) - E(3)72), 2: (2*E(3)72, E(3)72)}

reflection hyperplanes corresponding to Cubic Braid group on 3 strands:

Finite family {1: Vector space of degree 2 and dimension 1 over Universal Cyclotomic Field

18

1 Using the CubicBraidGroup class

Basis matrix:

[1 0], 2: Vector space of degree 2 and dimension 1 over Universal Cyclotomic Field

Basis matrix:

[1-1], 3: Vector space of degree 2 and dimension 1 over Universal Cyclotomic Field
Basis matrix:

[1-E(3)], 4: Vector space of degree 2 and dimension 1 over Universal Cyclotomic Field
Basis matrix:

[1-E(3)72))

Coxeter element corresponding to Cubic Braid group on 3 strands:
(1,7,6,12,23,20)(2,8,17,24,9,5)(3,16,10,19,15,21)(4,14,11,22,18,13)

Elements in R3 may be interpreted as element of the cubic braid group or the classical realization
via conversion:

coxeleC3 = C3(coxele); print ”"Coxeter element as element of %s:\\
n%s\n” %(C3, coxeleC3)

coxeleC3Cl = C3Cl(coxele); print "Coxeter element as element of the \
classical group corresponding to the %s:\n%s\n” %(C3, coxeleC3Cl)

Coxeter element as element of Cubic Braid group on 3 strands:

c0*cl

Coxeter element as element of the classical group corresponding to the Cubic Braid group

on 3 strands:

[0 E)

[E(12)711 E(3)]

Conversion backwards is posible, as well:

cl, ¢2 = C3.gens()

element = cl1*c2/cl/c2; elementcl = C3Cl(element)

image = R3(element); print ”"Image of %s in %s:\n%s\n” %(element, \

R3, image)

image = R3(elementcl); print "Image of \n%s\nin %s:\n%s\n” %(\
elementcl, R3, image)

Image of c0*c1*c0™-1*c17-1 in Irreducible complex reflection group of rank 2 and type ST4:

(1,15,12,16)(2,18,24,14)(3,17,19,5)(4,20,22,6)(7,9,23,8)(10,11,21,13)

Image of

[E@3) E(12)711]

[E(12)°11 -E(3)]

in Irreducible complex reflection group of rank 2 and type ST4:

(1,15,12,16)(2,18,24,14)(3,17,19,5) (4,20,22,6) (7,9,23,8)(10,11,21,13)

The realization as reflection group allows another relaization as matrix group beeing compatible
to the corresponding root system. A method for this prurpose has been added to the Irreducible-
ComplexReflectionGroup__class inside the CubicBraidGroup_class:

R4 = C4.as_reflection_group(); R4Cl = R4.as_matrix group(); R4Cl
Subgroup of General Unitary Group of degree 3 over Universal Cyclotomic Field generated

19

1 Using the CubicBraidGroup class

by:
(1 0 0

[0 1 0

[0 O0E(@3)], [-1/3*E(3) - 2/3*E(3)"2 2/3*E(3) + 1/3*E(3)"2 2/3*E(3) + 1/3*E(3)"2]
[
[
[
[

2/3%E(3) + 1/3%E(3)"2 -1/3*E(3) - 2/3*E(3)"2 2/3*E(3) + 1/3*E(3)"2]

2/3%E(3) + 1/3*E(3)"2 2/3*B(3) + 1/3*E(3)"2 -1/3*E(3) - 2/3*E(3)™2],[1 0 0]
0E®3) 0]
0 0 1))

But note, that even in the case where this matrix group is a subgroup of a general linear group,
this realization is different from the classical group realization. Even the respective ambient groups
are different, since they are defined with respect to different hermitian forms:

C4Cl = C4.as_ classical_group ()

print ”"ambient group of C4Cl:\n”, C4Cl.ambient(); print 7”7

print “ambient group of R4Cl:\n”, R4Cl.ambient (); print
\

"
)
9

print "hermitian Form of ambient group of R4Cl:\n”, RA4Cl.ambient () .\
invariant bilinear form ()

ambient group of C4Cl:

Unitary Group of degree 3 over Universal Cyclotomic Field with respect to hermitian form

FE(12)°7 4+ E(12)"11 -1 0]
[-1-E(12)°7 + E(12)"11 1]
[0 -1-E(12)°7 + BE(12)"11]

ambient group of R4Cl:

General Unitary Group of degree 3 over Universal Cyclotomic Field
hermitian Form of ambient group of R4Cl:

[100]

[0 10]

00 1]

1.11 Realization as permutation groups

A third kind of realization of the cubic braid groups is that as permutation groups. This realization
is in sage available for all finetely presented groups via the gap interface. In addition you will
get coercion maps here, as well and a permutation group constructed with respect to the classical
realization. This is the default in the call:

C3.as_permutation group ()

Subgroup of (Symmetric group of order 8! as a permutation group) generated by
[(2,3,5)(4,6,8), (1,2,4)(5,7,6)]

To obtain the permutation group calculated for the finitely presented group you must type:

C3.as__permutation_group(native = True)

20

1 Using the CubicBraidGroup class

Subgroup of (Symmetric group of order 8! as a permutation group) generated by
[(2,4,5)(3,6,7), (1,2,3)(5,8,6)]

1.12 Other useful methods

In principal you can use all gap functions being available for these types of groups and being imple-
mented via the gap interface of sage. Use the online help (“print dir(C3)” for example) as shown
above to see them all. Here are some examples:

S3.character_table ()

[1 1 1 1 1 1 1]

[1 -zeta3 - 1 zetad 1 zetad -zetad - 1 1]
[1 zeta3 -zeta3 - 1 1 -zetad - 1 zetal 1]
[2 -1 -1 -2 1 1 0]

[2 -zetad zeta3 + 1 -2 -zeta3 - 1 zeta3 0]
[2 zeta3 +1 -zeta3 -2 zeta3 -zeta3 - 1 0]
[3 0 0 3 0 0 -1]

U7 = AssionGroupU(7); print "Order of U7:”, U7.order ()

conClsls2 = S4.conjugacy_class(x*y**2*z); conClsls2
Conjugacy class of s0*s172*s2 in Assion group on 4 strands of type S

21

	Using the CubicBraidGroup class
	Introduction
	Getting started
	First steps
	Classical realization
	Exceptions in Assions series
	Description of the exceptions as centralizer

	Conversion maps
	Preimages in the Artin braid group
	Burau matrices for the cubic braid groups
	Other matrix group realizations via the Burau representation
	Realization as complex reflection groups
	Realization as permutation groups
	Other useful methods

