Sage Reference Manual: Knot Theory
Release 7.2

The Sage Development Team

May 15, 2016

1 Kbnots
2 Links
3 Indices and Tables

Bibliography

CONTENTS

33

35

CHAPTER
ONE

KNOTS

AUTHORS:
* Miguel Angel Marco Buzunariz
* Amit Jamadagni

class sage.knots.knot .Knot (data, check=True)
Bases: sage.knots.link.Link

A knot.

A knot is defined as embedding of the circle S' in the 3-dimensional sphere S?, considered up to ambient isotopy.
They represent the physical idea of a knotted rope, but with the particularity that the rope is closed. That is, the
ends of the rope are joined.

See also:
Link
INPUT:
edata —see Link for the allowable inputs
echeck — optional, default True. If True, make sure that the data define a knot, not a link
EXAMPLES:

We construct the knot 814 and compute some invariants:

sage: B = BraidGroup (4)
sage: K = Knot(B([1,1,1,2,-1,2,-3,2,-31))

Sage Reference Manual: Knot Theory, Release 7.2

sage: K.alexander_polynomial ()

—2xt"=2 + 8xt”-1 - 11 + 8t — 2xt"2

sage: K. Jjones_polynomial ()

t~7 — 3*%t”6 + 4xt"5 — 5xt™4 4+ 6xt”3 - 5xt”2 4+ 4+t + 1/t - 2
sage: K.determinant ()

31

sage: K.signature()
-2

REFERENCES:

*Wikipedia article Knot_(mathematics)

Todo
eImplement the connect sum of two knots.

*Make a class Knots for the monoid of all knots and have this be an element in that monoid.

arf invariant ()
Return the Arf invariant.

EXAMPLES:

sage: B = BraidGroup (4)

sage: K Knot (B([-1, 2, 1, 21))
sage: K.arf_invariant ()

0

2 Chapter 1. Knots

https://en.wikipedia.org/wiki/Knot_(mathematics)

Sage Reference Manual: Knot Theory, Release 7.2

sage: B = BraidGroup (8)
sage: K = Knot (B([-2, 3, 1, 2, 1, 41))
sage: K.arf_invariant ()
0
sage: K = Knot (B([1l, 2, 1, 2]1))
sage: K.arf_invariant ()
1
dt_code ()
Return the DT code of self.
ALGORITHM:

The DT code is generated by the following way:

Start moving along the knot, as we encounter the crossings we start numbering them, so every crossing has
two numbers assigned to it once we have traced the entire knot. Now we take the even number associated
with every crossing.

The following sign convention is to be followed:

Take the even number with a negative sign if it is an overcrossing that we are encountering.
OUTPUT: DT code representation of the knot

EXAMPLES:

sage: K = Knot ([[1,5,2,4]1,1[5,3,6,21,1[3,1,4,611)

sage: K.dt_code ()

[4, 6, 2]

sage: B = BraidGroup (4)

sage: K = Knot(B([1, 2, 1, 21))

sage: K.dt_code ()

(4, -6, 8, -2]

sage: K = Knot([[[1, -2, 3, -4, 5, -1, 2, -3, 4, -511, [1, 1, 1, 1, 111)
sage: K.dt_code ()

[6, 8, 10, 2, 4]

Sage Reference Manual: Knot Theory, Release 7.2

4 Chapter 1. Knots

CHAPTER
TWO

LINKS

A knot is defined as embedding of the circle S* in the 3-dimensional sphere S3, considered up to ambient isotopy.
They represent the physical idea of a knotted rope, but with the particularity that the rope is closed. That is, the ends
of the rope are joined.

A link is an embedding of one or more copies of S! in S?, considered up to ambient isotopy. That is, a link represents
the idea of one or more tied ropes. Every knot is a link, but not every link is a knot.

Generically, the projection of a link on R? is a curve with crossings. The crossings are represented to show which
strand goes over the other. This curve is called a planar diagram of the link. If we remove the crossings, the resulting
connected components are segments. These segments are called the edges of the diagram.

REFERENCES:
» Wikipedia article Knot_(mathematics)
See also:

There are also tables of link and knot invariants at http://www.indiana.edu/~knotinfo/ and http://www.indiana.edu/
~linkinfo/.

AUTHORS:
* Miguel Angel Marco Buzunariz
* Amit Jamadagni

class sage.knots.link.Link (data)
Bases: object

A link.

A link is an embedding of one or more copies of S' in S3, considered up to ambient isotopy. That is, a link
represents the idea of one or more tied ropes. Every knot is a link, but not every link is a knot.

A link can be created by using one of the conventions mentioned below:
Braid:

*The closure of a braid is a link:

sage: B = BraidGroup (8)

sage: L = Link(B([-1, -1, -1, -2, 1, -2, 3, -2, 31))
sage: L

Link with 1 component represented by 9 crossings
sage: L = Link(B([1, 2, 1, -2, -11))

sage: L

Link with 2 components represented by 5 crossings

https://en.wikipedia.org/wiki/Knot_(mathematics)
http://www.indiana.edu/~knotinfo/
http://www.indiana.edu/~linkinfo/
http://www.indiana.edu/~linkinfo/

Sage Reference Manual: Knot Theory, Release 7.2

Note: The strands of the braid that have no crossings at all are removed.

*Oriented Gauss Code:

Label the crossings from 1 to n (where n is the number of crossings) and start moving along the link.
Trace every component of the link, by starting at a particular point on one component of the link and
writing down each of the crossings that you encounter until returning to the starting point. The crossings
are written with sign depending on whether we cross them as over or undercrossing. Each component is
then represented as a list whose elements are the crossing numbers. A second list of +1 and —1°s keeps
track of the orientation of each crossing:

sage: L = Link([[[-1, 2, 3, -4, 5, -6, 7, 8, -2, -5, 6, 1, -8, =3, 4, =711,
R (-, -1, -1, -1, 1, 1, -1, 111)

sage: L

Link with 1 component represented by 8 crossings

For links there may be more than one component and the input is as follows:

sage: L = Link([[[-1, 2], [-3, 4], [1, 3, -4, -2]], [-1, -1, 1, 111)
sage: L
Link with 3 components represented by 4 crossings

ePlanar Diagram (PD) Code:

The diagram of the link is formed by segments that are adjacent to the crossings. Label each one of this
segments with a positive number, and for each crossing, write down the four incident segments. The order
of these segments is clockwise, starting with the incoming undercrossing.

There is no particular distinction between knots and links for this input.
EXAMPLES:

One of the representations of the trefoil knot:

sage: L = Link([[1, 5, 2, 41, [5, 3, 6, 21, [3, 1, 4, 611)
sage: L
Link with 1 component represented by 3 crossings

6 Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

One of the representations of the Hopf link:

sage: L = Link([[1, 4, 2, 31, [4, 1, 3, 211)
sage: L

Link with 2 components represented by 2 crossings

Sage Reference Manual: Knot Theory, Release 7.2

We can construct links from from the braid group:

sage: B = BraidGroup (4)
sage: L = Link(B([-1, -1, -1, -2, 1, -2, 3, -21))
sage: L

Link with 2 components represented by 8 crossings

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

sage: L = Link(B([1, 2, 1, 31))
sage: L
Link with 2 components represented by 4 crossings

Sage Reference Manual: Knot Theory, Release 7.2

-
.
N

We construct the “monster” unknot using a planar code, and then construct the oriented Gauss code and braid
representation:

sage: L = Link([[3,1,2,41, [8,9,1,71, [5,6,7,31, [4,18,6,5],

(17,19,8,181, [(9,10,11,141, [10,12,13,117,

el [12,19,15,13], [20,16,14,15], [16,20,17,2]11])

sage: L.oriented_gauss_code ()

rrr, -4, 3, -1, 10, -9, 6, -7, 8, 5, 4, -3, 2, -6, 7, -8, 9, -10, -5, =211,
(., -1, 1, 1, 1, -1, -1, -1, -1, -111

sage: L.braid()

SO0xs1"=1%52"=1%s3"=1x82%s1"=1%s0"=1xs1*s2"2+x51"~1*%s3%s2%s1"-3

10

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

We construct the Ochiai unknot by using an oriented Gauss code:

sage: L = Link([[[1,-2,-3,-8,-12,13,-14,15,-7,-1,2,-4,10,11,-13,12,

el -11,-16,4,3,-5,6,-9,7,-15,14,16,-10,8,9,-6,511,

el [-1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,-111)

sage: L.pd_code()

[ro, 2, 11, 11, (2, 12, 3, 111, 1[3, 20, 4, 211, [12, 19, 13, 201,
[21, 32, 22, 11, [31, 22, 32, 231, 19, 25, 10, 241, 1[4, 29, 5, 30],
(23, 30, 24, 31], [28, 14, 29, 131, (17, 14, 18, 151, [5, 17, 6, 1le6],
(15, 7, 1e, 61, [7, 27, 8, 261, [25, 9, 26, 8], [18, 28, 19, 27]]

11

Sage Reference Manual: Knot Theory, Release 7.2

_

ﬁ

-~

We construct the knot 7; and compute some invariants:

sage: B = BraidGroup(2)
sage: L = Link(B([1]*7))

12

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

N

sage: L.alexander_polynomial ()

th"~-3 - t*"-2 + -1 -1 + t - t"2 + t73
sage: L. jones_polynomial ()

-t”~10 + £t°9 - t78 + t°7 - t76 + t°5 + t°3
sage: L.determinant ()

-

sage: L.signature()

-6

The links here have removed components in which no strand is used:

sage: B = BraidGroup (8)

sage: b = B([1])

sage: L = Link (b)

sage: b.components_in_closure ()

7

sage: L.number_of_components ()

1

sage: L.braid() .components_in_closure ()
1

sage: L.braid() .parent ()
Braid group on 2 strands

Warning: Equality of knots is done by comparing the corresponding braids, which may give false nega-
tives.

13

Sage Reference Manual: Knot Theory, Release 7.2

Note: The behavior of removing unused strands from an element of a braid group may change without notice
in the future. Do not rely on this feature.

Todo

Implement methods to creating new links from previously created links.

alexander_polynomial (var='t’)
Return the Alexander polynomial of self.

INPUT:
svar — (default: ’ t ') the variable in the polynomial
EXAMPLES:

We begin by computing the Alexander polynomial for the figure-eight knot:

sage: B = BraidGroup(3)

sage: L = Link(B([1, -2, 1, -21))
sage: L.alexander_polynomial ()
-t*-1 4+ 3 - t

The “monster” unknot:

sage: L = Link([[3,1,2,41,18,9,1,71,105,6,7,31,104,18,6,51,
el (17,19,8,181,119,10,11,141,[10,12,13,11],
e [12,19,15,13],[20,16,14,15],[16,20,17,2]11])
sage: L.alexander_polynomial ()

Some additional examples:

sage: B = BraidGroup(2)

sage: L = Link(B([1]))

sage: L.alexander_polynomial ()
1

sage: L = Link(B.one())

sage: L.alexander_polynomial ()
1

sage: B = BraidGroup(3)

sage: L = Link(B([1, 2, 1, 2]1))
sage: L.alexander_polynomial ()
th"=-1 -1 + t

When the Seifert surface is disconnected, the Alexander polynomial is defined to be O:

sage: B = BraidGroup (4)

sage: L = Link(B([1,3]))

sage: L.alexander_polynomial ()

0

TESTS:

sage: B = BraidGroup (4)

sage: L = Link(B([-1, 3, 1, 31))
sage: L.alexander_polynomial ()

0

sage: L = Link(B([1,3,1,1,3,3]1))

14 Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

sage: L.alexander_polynomial ()

sage: B = BraidGroup(8)

sage: L = Link(B([-2, 4, 1, 6, 1, 41))
sage: L.alexander_polynomial ()
0

braid()

Return a braid representation of self.
OUTPUT: an element in the braid group
EXAMPLES:

sage: L = Link([[2, 3, 1, 41, [4, 1, 3, 211)
sage: L.braid()

s™2

sage: L = Link([[[-1, 2, -3, 1, -2, 311, [-1, -1, -111)
sage: L.braid()

s”=3

sage: L = Link([[1,8,2,7], [8,4,9,5], [3,9,4,10], [10,1,7,6]1, [5,3,6,2]11])
sage: L.braid()
(sOxs17”=1)"2%s1"-1

TESTS:

sage: L = Link([])
sage: L.braid()

1

sage: L = Link ([[]1, [11])
sage: L.braid()

1

determinant ()
Return the determinant of self.

EXAMPLES:

sage: B = BraidGroup (4)

sage: L Link(B([-1, 2, 1, 21))
sage: L.determinant ()

1

sage: B = BraidGroup (8)

sage: = Link(B([2, 4, 2, 3, 1, 21))
sage: L.determinant ()

3

sage: L = Link(B([1]*16 + [2,1,2,1,2,2,2,2,2,2,2,1,2,1,2,-1,2,-21))
sage: L.determinant ()

65

=

TESTS:

sage: Link(B([1, 2, 1, -2, —-11)).determinant ()
Traceback (most recent call last):

NotImplementedError: determinant implemented only for knots

dowker notation ()
Return the Dowker notation of self.

Similar to the PD code we number the components, so every crossing is represented by four numbers. We

15

Sage Reference Manual: Knot Theory, Release 7.2

focus on the incoming entities of the under and the overcrossing. It is the pair of incoming undercrossing
and the incoming overcrossing. This information at every crossing gives the Dowker notation.

OUTPUT:

A list containing the pair of incoming under cross and the incoming over cross.

EXAMPLES:

sage: L = Link(([[[-1, 2, -3, 4, 5, 1, -2, &, 7, 3, -4, -7, -6,-511, [-1, -1, -1
sage: L.dowker_notation ()

[((1, 6), (7, 2), (3, 10), (11, 4), (14, 5), (13, 8), (12, 9)]
sage: B = BraidGroup (4)

sage: L = Link(B([1, 2, 1, 2]1))

sage: L.dowker_notation()

(2, 1), (3, 5), (6, 4), (7, 9)]

sage: L = Link([[1, 4, 2, 31, [4, 1, 3, 211)

sage: L.dowker_notation()

[(L, 3), (4, 2)]

gauss_code ()
Return the Gauss code of self.

The Gauss code is generated by the following procedure:
1.Number the crossings from 1 to n.

2.Select a point on the knot and start moving along the component.

3.At each crossing, take the number of the crossing, along with sign, which is — if it is an undercrossing

and + if it is a overcrossing.

EXAMPLES:

sage: L = Link([[1, 4, 2, 31, [4, 1, 3, 211)

sage: L.gauss_code ()

(-1, 21, [1, -21]

sage: B = BraidGroup (8)

sage: L = Link(B([1, -2, 1, -2, =21))

sage: L.gauss_code ()

(-1, 3, -4, 51, [1, -2, 4, -5, 2, -31]

sage: L = Link(([[[-1, 2], [-3, 41, [1, 3, -4, -211, [-1, -1, 1, 111)

sage: L.gauss_code ()

(-1, 21, (-3, 41, [1, 3, -4, -2]1]
genus ()

Return the genus of self.

EXAMPLES:

sage: B = BraidGroup (4)

sage: L = Link(B([-1, 3, 1, 31))

sage: L.genus ()

0

sage: L = Link(B([1,3]))

sage: L.genus ()

0

sage: B = BraidGroup (8)

sage: L = Link(B([-2, 4, 1, 6, 1, 41))

sage: L.genus|()

0

sage: L = Link(B([1, 2, 1, 21))

16

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

sage: L.genus ()
1

is_alternating ()
Return True if the given knot diagram is alternating else returns False.

Alternating diagram implies every overcross is followed by an undercross or the vice-versa.

We look at the Gauss code if the sign is alternating, True is returned else the knot is not alternating
False is returned.

EXAMPLES:

sage: B = BraidGroup (4)

sage: L = Link(B([-1, -1, -1, -11))
sage: L.is_alternating()

False

sage: L = Link(B([1, -2, -1, 21))
sage: L.is_alternating()

False

sage: L = Link(B([-1, 3, 1, 3, 21))
sage: L.is_alternating()

False

sage: L = Link(B([1]*1l6 + [2,1,2,1,2,2,2,2,2,2,2,1,2,1,2,-1,2,-21))
sage: L.is_alternating()

False

sage: L = Link(B([-1,2,-1,21))
sage: L.is_alternating()
True

is_knot ()
Return True if self is a knot.

Every knot is a link but the converse is not true.

EXAMPLES:

sage: B = BraidGroup (4)

sage: = Link(B([1, 3, 1, -31))
sage: L.is_knot ()

False

sage: B = BraidGroup (8)

=

sage: L = Link(B([1, 2, 3, 4, 5, 61))
sage: L.is_knot ()
True

jones_polynomial (variab=None, skein_normalization=False, algorithm="jonesrep’)
Return the Jones polynomial of self.

The normalization is so that the unknot has Jones polynomial 1. If skein_normalizationis True,
the variable of the result is replaced by a itself to the power of 4, so that the result agrees with the conven-
tions of [Lic] (which in particular differs slightly from the conventions used otherwise in this class), had
one used the conventional Kauffman bracket variable notation directly.

If variab is None return a polynomial in the variable A or ¢, depending on the value
skein_normalization. In particular, if skein_normalization is False, return the result in
terms of the variable ¢, also used in [Lic].

ALGORITHM:

The calculation goes through one of two possible algorithms, depending on the value of algorithm.

17

Sage Reference Manual: Knot Theory, Release 7.2

Possible values are ’ jonesrep’ which uses the Jones representation of a braid representation of self
to compute the polynomial of the trace closure of the braid, and st atesum which recursively computes
the Kauffman bracket of self. Depending on how the link is given, there might be significant time gains
in using one over the other. When the trace closure of the braid is self, the algorithms give the same
result.

INPUT:

evariab — variable (default: None); the variable in the resulting polynomial; if unspecified, use either
a default variable in Z[A, A~!] or the variable ¢ in the symbolic ring

eskein_normalization — boolean (default: False); determines the variable of the resulting
polynomial

*algorithm — string (default: * jonesrep’); algorithm to use and can be one of the following:
-’ jonesrep’ - use the Jones representation of the braid representation
-’ statesum’ - recursively computes the Kauffman bracket

OUTPUT:

If skein_normalization if False, this returns an element in the symbolic ring as the Jones polyno-
mial of the link might have fractional powers when the link is not a knot. Otherwise the result is a Laurant
polynomial in variab.

EXAMPLES:

The unknot:

sage: B BraidGroup (9)

sage: b B([1, 2, 3, 4, 5, 6, 7, 81)
sage: Link (b) .jones_polynomial ()

1

The “monster” unknot:

sage: L = Link([[3,1,2,4],18,9,1,71,105,6,7,31,104,18,6,51,
et [17,19,8,18j1,19,10,11,141,110,12,13,11],
et [12,19,15,13],[20,16,14,15],[16,20,17,2]1])
sage: L.Jjones_polynomial ()

The Ochiai unknot:

sage: L Link(rr(r11,-2,-3,-8,-12,13,-14,15,-7,-1,2,-4,10,11,-13,12,
R -11,-16,4,3,-5,6,-9,7,-15,14,16,-10,8,9,-6,511,
ceeat [-1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,-111)

sage: L.jones_polynomial() # long time

1

Two unlinked unknots:

sage: B BraidGroup (4)

sage: b = B([1, 31)

sage: Link (b) .jones_polynomial ()
-sqgrt(t) - 1/sqgrt(t)

The Hopf link:

sage: B = BraidGroup(2)

sage: b = B([-1,-1])

sage: Link (b) .jones_polynomial ()
-1/sqgrt(t) - 1/t"(5/2)

18

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

Different representations of the trefoil and one of its mirror:

sage: B = BraidGroup(2)

sage: b = B([-1, -1, -11)

sage: Link (b).jones_polynomial (skein_normalization=True)
-A*-16 + A"-12 + A4

sage: Link (b) .jones_polynomial ()

1/t + 1/t73 - 1/t™4

sage: B = BraidGroup (3)

sage: b = B([-1, -2, -1, -21)

sage: Link (b).jones_polynomial (skein_normalization=True)
-A*-16 + A"-12 + A"-4

sage: R.<x> = LaurentPolynomialRing (GF (2))

sage: Link (b).jones_polynomial (skein_normalization=True, variab=x)
x =16 + x"-12 + x"-4

sage: B = BraidGroup(3)

sage: b = B([1, 2, 1, 2])

sage: Link (b) .jones_polynomial (skein_normalization=True)
AN + AN12 - A™16

K11n42 (the mirror of the “Kinoshita-Terasaka” knot) and K 11n34 (the mirror of the “Conway” knot) in
[KnotAtlas]:

sage: B = BraidGroup (4)

sage: Kl11ln42 = Link(B([1, -2, 3, -2, 3, -2, -2, -1, 2, =3, -3, 2, 21))
sage: K11n34 = Link(B([1, 1, 2, -3, 2, -3, 1, -2, -2, -3, -31))

sage: cmp (K11n42. jones_polynomial (), Klln34.jones_polynomial ())

0

The two algorithms for computation give the same result when the trace closure of the braid representation
is the link itself:

sage: L = Link([[([-1, 2, -3, 4, 5, 1, -2, 6, 7, 3, -4, -7, -6, =511,
et [-1, -1, -1, -1, 1, -1, 111)
sage: jonesrep = L.jones_polynomial (algorithm="'jonesrep')

sage: statesum = L. jones_polynomial (algorithm="'statesum')
sage: cmp (jonesrep, statesum)
0

When we have thrown away unknots so that the trace closure of the braid is not necessarily the link itself,
this is only true up to a power of the Jones polynomial of the unknot:

sage: B = BraidGroup (3)

sage: b = B([1])

sage: L = Link (b)

sage: b.components_in_closure ()
2

sage: L.number_of_components ()
1

sage: b.Jjones_polynomial ()
-sqgrt (t) - 1/sqrt(t)

sage: L.Jjones_polynomial (algorithm="'"statesum')
1

TESTS:

sage: L = Link([])
sage: L.Jjones_polynomial (algorithm="'statesum')
1

19

Sage Reference Manual: Knot Theory, Release 7.2

sage: L.Jjones_polynomial (algorithm='other")
Traceback (most recent call last):

ValueError: bad value of algorithm

number_of_ components ()
Return the number of connected components of self.

OUTPUT: number of connected components

EXAMPLES:

sage: B = BraidGroup (4)

sage: L Link(B([-1, 3, 1, 31))
sage: L.number_of_components ()

4

sage: B = BraidGroup (8)

sage: Link(B([-2, 4, 1, 6, 1, 41))
sage: L.number_of_components ()

5

sage: L = Link(B([1, 2, 1, 2]))

sage: L.number_of_components ()

1

sage: L = Link(B.one())

sage: L.number_of_components ()

1

=
1

orientation ()
Return the orientation of the crossings of the link diagram of self.

EXAMPLES:

sage: L = Link([[1, 4
sage: L.orientation()
(-1, 1, -1, 1, -1, 1]
sage: L = Link([[1, 7
sage: L.orientation()
-1, -1, -1, -1, 1, -1, 1]
sage: L = Link([[1, 2, 3, 31, [2, 4, 5, 51, 1[4, 1, 7, 711)
sage: L.orientation()

-1, -1, -1]

r 2, 61, U7, 3, 8, 2], [3, 11, 4, 101,

5, 21, [3, 5, 6, 71, [4, 8, 9, 61, [7, 9, 10, 111, [8, 1

oriented_gauss_code ()
Return the oriented Gauss code of self.

The oriented Gauss code has two parts:
1.the Gauss code
2.the orientation of each crossing

The following orientation was taken into consideration for construction of knots:

From the outgoing of the overcrossing if we move in the clockwise direction to reach the outgoing of the

undercrossing then we label that crossing as —1.

From the outgoing of the overcrossing if we move in the anticlockwise direction to reach the outgoing of

the undercrossing then we label that crossing as +1.

One more consideration we take in while constructing the orientation is the order of the orientation is same

as the ordering of the crossings in the Gauss code.

20

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

Note: Convention: under is denoted by —1, and over by +1 in the crossing info.

EXAMPLES:

sage: L = Link(([1, 11, 2, 101, [e, 2, 7, 31, [3, 12, 4, 91, 19, 5, 10, 61, I[8,
sage: L.oriented_gauss_code ()

(-1, 2, -3, 51, (4, -2, 6, =51, [-4,
sage: L = Link([[1, 4, 2, 31, 6, 1, 3, 21, I[7, 4, 8, 51, [5, 8, 6, 711)
sage: L.oriented_gauss_code ()

(re-1, 21, (-3, 41, (1, 3, -4, -211, [-1, -1, 1, 111

sage: B = BraidGroup (8)

sage: b = B([1, 1, 1, 1, 11)
sage: L = Link (b)

sage: L.oriented_gauss_code ()

[[[ll 72! 3! 741 5! 71/ 2! 73/ 4! 75]}! [lr ll 1/ ll l]]

TESTS:

sage: L = Link([])

sage: L.oriented_gauss_code ()

(01, [11]

sage: L = Link (BraidGroup(2) .one())
sage: L.oriented_gauss_code ()

(01, [1]

pd_code ()

Return the planar diagram code of self.
The planar diagram is returned in the following format.

We construct the crossing by starting with the entering component of the undercrossing, move in the
clockwise direction and then generate the list. If the crossing is given by [a, b, ¢, d], then we interpret this
information as:

1.a is the entering component of the undercrossing;
2., d are the components of the overcrossing;

3.c is the leaving component of the undercrossing.

EXAMPLES:

sage: L = Link(([([[1, -2, 3, -4, 2, -1, 4, -311, (1, 1, -1, -111)

sage: L.pd_code ()

(e, 1, 7, 21, 112, 5, 3, 61, [8, 4, 1, 31, [4, 8, 5, 7]]

sage: B = BraidGroup(2)

sage: b = B([1, 1, 1, 1, 1])

sage: L = Link(b)

sage: L.pd_code ()

(tr2, 1, 3, 41, 14, 3, 5, 61, [6, 5, 7, 81, [8, 7, 9, 10], [10, 9, 1, 211
[

sage: L = Link([[[2, -11, [1, -211, [1, 111)
sage: L.pd_code
[([2, 3, 1, 41,
sage: L = Link(
sage: L.pd_code
(ry, 2, 3, 31,

)
4, 1, 3, 2
[1

b
(
[
[
(
[]

(ry, 2, 3, 31, [2, 4, 5, 51, [4, 1, 7, 711)
(

[

)
2, 4, 5, 5

~
i
~
=
~
~J
~
~J

TESTS:

21

Sage Reference Manual: Knot Theory, Release 7.2

sage: L = Link ([[], [11])
sage: L.pd_code ()

sage: L = Link (BraidGroup(2) .one())
sage: L.pd_code ()
[]

plot (gap=0.1, component_gap=0.5, solver=None, **kwargs)
Plot self.

INPUT:
*gap — (default: 0.1) the size of the blank gap left for the crossings
ecomponent_gap — (default: 0.5) the gap between isolated components
esolver — the linear solver to use, see MixedIntegerLinearProgram.

The usual keywords for plots can be used here too.

EXAMPLES:

We construct the simplest version of the unknot:

sage: L = Link([[2, 1, 1, 211])
sage: L.plot ()
Graphics object consisting of ... graphics primitives

We construct a more interesting example of the unknot:

sage: L = Link([[2, 1, 4, 51, [3, 5, 6, 71, [4, 1, 9, 61, [9, 2, 3, 711)
sage: L.plot ()

22 Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

Graphics object consisting of ... graphics primitives

The “monster” unknot:

sage: L = Link([[3,1,2,41,18,9,1,71,15,6,7,31,14,18,6,51,
ceeet (17,19,8,181,19,10,11,141,[(10,12,13,117,
R [12,19,15,131,120,16,14,15]1,1[16,20,17,211)
sage: L.plot ()

Graphics object consisting of ... graphics primitives

23

Sage Reference Manual: Knot Theory, Release 7.2

The Ochiai unknot:

sage: L = Link((([[1,-2,-3,-8,-12,13,-14,15,-7,-1,2,-4,10,11,-13,12,
-11,-16,4,3,-5,6,-9,7,-15,14,16,-10,8,9,-6,511,
[-1,-1,1,1,1,1,-1,1,1,-1,1,-1,-1,-1,-1,-111)

sage: L.plot ()

Graphics object consisting of ... graphics primitives

24

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

ﬁ

gy,
N w
_ _J

One of the representations of the trefoil knot:

sage: L = Link([[1, 5, 2, 41, [5, 3, 6, 21, [3, 1, 4, 611)
sage: L.plot ()

Graphics object consisting of 14 graphics primitives

25

Sage Reference Manual: Knot Theory, Release 7.2

The figure-eight knot:

sage: L = Link([[2, 1, 4, 51,
sage: L.plot ()

[5,

Graphics object consisting of ...

6, 7, 31, [e6, 4, 1,

graphics primitives

26

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

The knot K11n121 in [KnotAtlas]:

sage: L = Link([[4,2,5,1],
..... [18,9,19,10],
..... [22,18,1,17],
sage: L.plot ()

Graphics object consisting of

[10,3,11,471,

[5,16,6,17],
[2,11,3,121,
[8,19,9,201,

[7,12,8,131,
[13,20,14,21], [15,6,16,7],
[21,14,22,151])

graphics primitives

27

Sage Reference Manual: Knot Theory, Release 7.2

~

One of the representations of the Hopf link:

sage: L = Link([[1, 4, 2, 31, [4, 1, 3, 211)
sage: L.plot ()

Graphics object consisting of ... graphics primitives

28

Chapter 2. Links

Sage Reference Manual: Knot Theory, Release 7.2

Plotting links with multiple isolated components:

sage: L = Link((([[-1, 2, -3, 1, -2, 31, [4, -5, 6, -4, 5, -611,
sage: L.plot ()

Graphics object consisting of graphics primitives

29

Sage Reference Manual: Knot Theory, Release 7.2

TESTS:

Check that trac ticket #20315 is fixed:

sage: L =
sage:

sage:

sage:

sage:

Link ([[2,1,4,5],
L.plot (solver="'GLPK")
Graphics object consisting of
L.plot (solver='Coin'")

Graphics object consisting of
L.plot (solver='CPLEX")

Graphics object consisting of
L.plot (solver="Gurobi'")
Graphics object consisting of

[5I6l7l3]l

[6,4,1,91, 19,2

graphics primitives

optional - chc

graphics primitives

optional - CPLEX

optional

graphics primitives
- Gurobi
graphics primitives

+3,711)

regions ()

Return the regions from the link diagram of self.

Regions are obtained always turning left at each crossing.

Then the regions are represented as a list with the segments that form its boundary, with a sign depending
on the orientation of the segment as part of the boundary.

EXAMPLES:

sage: L = Link([[[-1, +2, -3, 4, +5, +1, -2, +e6, +7, 3, -4, -7, -6,-511,[-1, -1
sage: L.regions ()

rr, 7, 3, 11, 51, [2, -71, [4, -111, [e6, -11, [8, -13, 10, -31, [9, 131, [12,
sage: L = Link([[[1, -2, 3, -4, 2, -1, 4, -311,I1%1, 1, -1, -111)

sage: L.regions ()

(rr, 7, -41, (2, -5, -71, [3, -8, 51, 14, 81, [6, -1, =31, [-2, -6]]

sage: L = Link([[[-1, +2, 3, -4, 5, -6, 7, 8, -2, -5, +6, +1, -8, -3, 4, -711,1

30

Chapter 2. Links

http://trac.sagemath.org/20315

Sage Reference Manual: Knot Theory, Release 7.2

sage: L.regions|()
(rr, 13, -81, 2, -9, -131, [3, -14, 91, 1[4, 1le, 8, 141, [5, 11, 7, -16]1, [6, —1l11, [10, -5,
sage: B = BraidGroup(2)
sage: L = Link(B([-1, -1, 11))
sage: L.regions ()
[[ll 3/ 5]/ [21 71]/ [41 73}/ [61 75]/ [721 6/ 74]1
sage: L = Link([[[1, -2, 3, 41, [-1, 5, -3, 2, -5, 411, [-1, 1, 1, -1, -111)
sage: L.regions ()
(r1, -51, I[2, -8, 4, 51, I3, 8], [6, -9, -21, (7, -3, 9], [10, -4, =71, [-10, 6, -11]
sage: L = Link([[1, 2, 3, 31, [2, 5, 4, 41, [5, 7, 6, 61, [7, 1, 8, 811)
sage: L.regions ()
((-31, [-41, [(-6], [-81, [, 2, 5, 71, [-2, 3, -1, 8, -7, 6, =5, 4]]
Note: The link diagram is assumed to have only one completely isolated component. This is because
otherwise some regions would have disconnected boundary.
TESTS:
sage: B = BraidGroup (6)
sage: L = Link(B([1l, 3, 51))
sage: L.regions ()
Traceback (most recent call last):
NotImplementedError: can only have one isolated component
seifert_circles ()
Return the Seifert circles from the link diagram of self.
Seifert circles are the circles obtained by smoothing all crossings respecting the orientation of the segments.
Each Seifert circle is represented as a list of the segments that form it.
EXAMPLES:
sage: L = Link(([([[1, -2, 3, -4, 2, -1, 4, =311, (1, 1, -1, -111)
sage: L.seifert_circles/()
(r, 7, 5, 31, 12, 61, [4, 8]]
sage: L = Link(([([[-1, 2, 3, -4, 5, -6, 7, 8, -2, -5, 6, 1, -8, -3, 4, =711, [-44, -1, -1, -1,
sage: L.seifert_circles/()
(r1, 13, 9, 3, 15, 5, 11, 71, [2, 10, 6, 12], [4, le6, 8, 14]1]
sage: L = Link(([([[-1, 2, -3, 4, 5, 1, -2, 6, 7, 3, -4, 7, -6,-511, [-1, -1, -4, -1, 1, -1,
sage: L.seifert_circles/()
(r, 7, 3, 11, 51, [2, 8, 14, 61, [4, 12, 101, [9, 13]]
sage: L = Link(([X, 7, 2, 61, (7, 3, 8, 21, [3, 11, 4, 101, [11, 5, 12, 41, [14, 5, 1, 61, |
sage: L.seifert_circles/()
(r, 7, 3, 1, 51, [2, 8, 14, 6], [4, 12, 101, [9, 13]]
sage: L = Link((([[-1, 2, -3, 51, [4, -2, 6, =51, [-4, 1, -6, 311, [-1, 1, 1, 1, -1, —-111)
sage: L.seifert_circles/()
rr1, 11, 81, 12, 7, 12, 4, 5, 101, [3, 9, 6]]
sage: B = BraidGroup(2)
sage: L = Link(B([1, 1, 11))
sage: L.seifert_circles()
(rx, 3, 51, [2, 4, 611

seifert matrix ()
Return the Seifert matrix associated with self.

ALGORITHM:

31

Sage Reference Manual: Knot Theory, Release 7.2

This is the algorithm presented in Section 3.3 of [Collinsi3].

OUTPUT:

The intersection matrix of a (not necessarily minimal) Seifert surface.

EXAMPLES:

sage: B = BraidGroup (4)

sage: L = Link(B([-1, 3, 1, 31))
sage: L.seifert_matrix()
[O 0]
[0 -1]
sage: B = BraidGroup (8)
sage: L = Link(B([-1, 3, 1, 5, 1, 7, 1, 61))
sage: L.seifert_matrix()
[0O 0 0]
[1 -1 0]
[0 1 -1]
sage: L = Link (B([-2, 4, 1, 6, 1, 41))
sage: L.seifert_matrix()
[-1 0]
[0 -1]
signature ()
Return the signature of self.
EXAMPLES:
sage: B = BraidGroup (4)
sage: L = Link(B([-1, 3, 1, 31))
sage: L.signature ()
-1
sage: B = BraidGroup(8)
sage: L = Link(B([-2, 4, 1, 6, 1, 41))
sage: L.signature ()
-2
sage: L = Link(B([1, 2, 1, 21))
sage: L.signature ()
-2
writhe ()
Return the writhe of self.
EXAMPLES:
sage: L = Link(([([[1, -2, 3, -4, 2, -1, 4, -311,I11, 1, -1, -111)
sage: L.writhe()
0
sage: L = Link([[[-1, 2, -3, 4, 5, 1, -2, 6, 7, 3, -4, -7, -6,-511,
..... (-1, -1, -1, -1, 1, -1, 111)
sage: L.writhe()
-3
sage: L = Link(([[-1, 2, 3, -4, 5, -6, 7, 8, -2, -5, 6, 1, -8, =3, 4, -711,
..... (-, -1, -1, -1, 1, 1, -1, 1171)
sage: L.writhe()
-2

32

Chapter 2. Links

CHAPTER
THREE

INDICES AND TABLES

¢ Index
¢ Module Index
e Search Page

33

Sage Reference Manual: Knot Theory, Release 7.2

34 Chapter 3. Indices and Tables

BIBLIOGRAPHY

[Collins13] Julia Collins. An algorithm for computing the Seifert matrix of a link from a braid representation. (2013).
http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/SeifertMatrix.pdf

[KnotAtlas] The Knot atlas. http://katlas.org/wiki/Main_Page

35

http://www.maths.ed.ac.uk/~jcollins/SeifertMatrix/SeifertMatrix.pdf
http://katlas.org/wiki/Main_Page

Sage Reference Manual: Knot Theory, Release 7.2

36 Bibliography

PYTHON MODULE INDEX

k

sage.knots.knot, I
sage.knots.link,5

37

Sage Reference Manual: Knot Theory, Release 7.2

38 Python Module Index

A

alexander_polynomial() (sage.knots.link.Link method), 14

arf_invariant() (sage.knots.knot.Knot method), 2

B

braid() (sage.knots.link.Link method), 15

D

determinant() (sage.knots.link.Link method), 15
dowker_notation() (sage.knots.link.Link method), 15
dt_code() (sage.knots.knot.Knot method), 3

G

gauss_code() (sage.knots.link.Link method), 16
genus() (sage.knots.link.Link method), 16

is_alternating() (sage.knots.link.Link method), 17
is_knot() (sage.knots.link.Link method), 17

J

jones_polynomial() (sage.knots.link.Link method), 17

K

Knot (class in sage.knots.knot), 1

L

Link (class in sage.knots.link), 5

N

number_of_components() (sage.knots.link.Link method), 20

O

orientation() (sage.knots.link.Link method), 20

oriented_gauss_code() (sage.knots.link.Link method), 20

INDEX

39

Sage Reference Manual: Knot Theory, Release 7.2

P

pd_code() (sage.knots.link.Link method), 21
plot() (sage.knots.link.Link method), 22

R

regions() (sage.knots.link.Link method), 30

S

sage.knots.knot (module), |

sage.knots.link (module), 5

seifert_circles() (sage.knots.link.Link method), 31
seifert_matrix() (sage.knots.link.Link method), 31
signature() (sage.knots.link.Link method), 32

W

writhe() (sage.knots.link.Link method), 32

40

Index

	Knots
	Links
	Indices and Tables
	Bibliography

