Introduction to Ordinary Differential Equations

Emily Weymier
Department of Mathematics \& Statistics
Stephen F. Austin State University, Nacogdoches, TX

September 22, 2017

Outline

(1) What is a differential equation?
(2) Initial Value Problems

- Linear first order differential equations
- Second order differential equations
- Recasting high order differential equations as a system of first order differential equations
(3) Boundary Value Problems
(9) Solution techniques for nonlinear differential equations
- Power series solutions
- Perturbation theory concept
(5) Concluding Remarks

Differential Equations: The Basics

- Ordinary differential equations are used to model change over an independent variable (for our purposes it will usually be t for time) without using partial derivatives.

Differential Equations: The Basics

- Ordinary differential equations are used to model change over an independent variable (for our purposes it will usually be t for time) without using partial derivatives.
- Differential equations contain three types of variables: an independent variable, at least one dependent variable (these will be functions of the independent variable), and the parameters.

Differential Equations: The Basics

- Ordinary differential equations are used to model change over an independent variable (for our purposes it will usually be t for time) without using partial derivatives.
- Differential equations contain three types of variables: an independent variable, at least one dependent variable (these will be functions of the independent variable), and the parameters.
- ODE's can contain multiple iterations of derivatives. They are named accordingly (i.e. if there are only first derivatives, then the ODE is called a first order ODE).

Differential Equations: The Basics

- Ordinary differential equations are used to model change over an independent variable (for our purposes it will usually be t for time) without using partial derivatives.
- Differential equations contain three types of variables: an independent variable, at least one dependent variable (these will be functions of the independent variable), and the parameters.
- ODE's can contain multiple iterations of derivatives. They are named accordingly (i.e. if there are only first derivatives, then the ODE is called a first order ODE).

A Simple Example: Population Modeling

Population growth is commonly modeled with differential equations. In the following equation: $t=$ time, $P=$ population and $k=$ proportionality constant. k represents the constant ratio between the growth rate of the population and the size of the population.

$$
\frac{d P}{d t}=k P
$$

In this particular equation, the left hand side represents the growth rate of the population being proportional to the size of the population P. This is a very simple example of a first order, ordinary differential equation. The equation only contains first order derivatives and there are no partial derivatives.

Initial Value Problems

An initial value problem consists of a differential equation and an initial condition. So, going back to the population example, the following is an example of an initial value problem:

$$
\frac{d P}{d t}=k P, P(0)=P_{0}
$$

The solution to this set of equations is a function, call it $P(t)$, that satisfies both equations.

Linear First Order Differential Equations

- The standard form for a first-order differential equation is

$$
\frac{d y}{d t}=f(t, y)
$$

where the right hand side represents the function f that depends on the independent variable, t, and the dependent variable, y.

General Solutions to a Differential Equation

Let's look at a simple example and walk through the steps of finding a general solution to the following equation

$$
\frac{d y}{d t}=(t y)^{2}
$$

We will simply "separate" write as "separate" the variables then integrate the both sides of the equation to find the general solution.

$$
\begin{aligned}
\frac{d y}{d t} & =t^{2} y^{2} \\
\frac{1}{y^{2}} d y & =t^{2} d t \\
\int \frac{1}{y^{2}} d y & =\int t^{2} d t
\end{aligned}
$$

$$
\begin{aligned}
-y^{-1} & =\frac{t^{3}}{3}+c \\
-\frac{1}{y} & =\frac{t^{3}}{3}+c \\
y & =-\frac{1}{\frac{t^{3}}{3}+c} \\
\Rightarrow y(t) & =-\frac{3}{t^{3}+c_{1}}
\end{aligned}
$$

where c_{1} is any real number.

Linear First Order Differential Equations

Initial value problems consist of a differential equation and an initial value. We will work through the example below:

$$
\frac{d x}{d t}=-x t ; \quad x(0)=\frac{1}{\sqrt{\pi}}
$$

First we will need to find the general solution to $\frac{d x}{d t}=-x t$, then use the initial value $x(0)=\frac{1}{\sqrt{\pi}}$ to solve for c. Since we do not know what $x(t)$ is, we will need to "separate" the equation before integrating.

$$
\begin{aligned}
\frac{d x}{d t} & =-x t \\
-\frac{1}{x} d x & =t d t \\
\int-\frac{1}{x} d x & =\int t d t
\end{aligned}
$$

Linear First Order Differential Equations Continued

$$
\begin{aligned}
-\ln x & =\frac{t^{2}}{2}+c \\
x & =e^{-\left(\frac{t^{2}}{2}+c\right)} \\
x & =e^{-\left(\frac{t^{2}}{2}\right)} e^{-c} \\
x & =k e^{-\frac{t^{2}}{2}}
\end{aligned}
$$

The above function of t is the general solution to $\frac{d x}{d t}=-x t$ where k is some constant. Since we have the initial value $x(0)=\frac{1}{\sqrt{\pi}}$, we can solve for k.

Solving Initial Value Problems

Thus we can see that the solution to the initial value problem

$$
\frac{d x}{d t}=-x t ; x(0)=\frac{1}{\sqrt{\pi}}
$$

is

$$
\begin{aligned}
& x(0)=\frac{1}{\sqrt{\pi}}=k e^{-\frac{0^{2}}{2}} \\
& x(t)=\frac{1}{\sqrt{\pi}} e^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Let's verify that this solution is correct. We will need to show

$$
\begin{aligned}
\frac{d x}{d t} & =x^{\prime}(t)=f(t, x(t)) \\
\frac{d x}{d t} & =\frac{d}{d t}\left(\frac{1}{\sqrt{\pi}} e^{-\frac{t^{2}}{2}}\right)=\frac{1}{\sqrt{\pi}} e^{-\frac{t^{2}}{2}} \\
& \Rightarrow \frac{d}{d t}\left(\frac{1}{\sqrt{\pi}} e^{-\frac{t^{2}}{2}}\right)=-\frac{1}{\sqrt{\pi}} e^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Second Order Differential Equations

Second order differential equations simply have a second derivative of the dependent variable. The following is a common example that models a simple harmonic oscillator:

$$
\frac{d^{2} y}{d t^{2}}+\frac{k}{m} y=0
$$

where m and k are determined by the mass and spring involved. This second order differential equation can be rewritten as the following first order differential equation:

$$
\frac{d v}{d t}=-\frac{k}{m} y
$$

where v denotes velocity.

Second Order Differential Equations Continued

Referring back to some calculus knowledge, if $v(t)$ is velocity, then $v=\frac{d y}{d t}$. Thus, we can substitute in $\frac{d v}{d t}$ into our second order differential equation and essentially turn it into a first order differential equation.

$$
\frac{d^{2} y}{d t^{2}}=-\frac{k}{m} y \Leftrightarrow \frac{d v}{d t}=-\frac{k}{m} y
$$

Now we have the following system of first order differential equations to describe the original second order differential equation:

$$
\begin{aligned}
\frac{d y}{d t} & =v \\
\frac{d v}{d t} & =-\frac{k}{m} y
\end{aligned}
$$

Second Order Differential Equations Continued

Consider the following initial value problem:

$$
\frac{d^{2} y}{d t^{2}}+y=0
$$

with $y(0)=0$ and $y^{\prime}(0)=v(0)=1$. Let's show that $y(t)=\sin (t)$ is a solution. Let $v=\frac{d y}{d t}$, then we have the following system:

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=-y
\end{aligned}
$$

Second Order Differential Equations Continued

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t} \sin (t)=\cos (t)=v \\
\frac{d v}{d t} & =-\sin (t)=-y \\
\Rightarrow \frac{d^{2} y}{d t^{2}} & =-\sin (t) \\
\Rightarrow \frac{d^{2} y}{d t^{2}}+y & =\frac{d^{2}(\sin (t))}{d t^{2}}+\sin (t) \\
& =-\sin (t)+\sin (t)=0
\end{aligned}
$$

High Order Differential Equations as a System

Boundary Value Problems: The Basics

Power Series Solutions

To demonstrate how to use power series to solve a nonlinear differential equation we will look at Hermite's Equation:

$$
\frac{d^{2} y}{d t^{2}}-2 t \frac{d y}{d t}+2 p y=0
$$

We will use the following power series and its first and second derivatives to make a guess:

$$
\begin{align*}
y(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots=\sum_{n=0}^{\infty} a_{n} t^{n} \tag{1}\\
\frac{d y}{d t} & =a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+\ldots=\sum_{n=1}^{\infty} n a_{n} t^{n-1} \tag{2}\\
\frac{d^{2} y}{d t^{2}} & =2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+\ldots=\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} \tag{3}
\end{align*}
$$

From the previous equations we can conclude that

$$
\begin{aligned}
y(0) & =a_{0} \\
y^{\prime}(0) & =a_{1}
\end{aligned}
$$

Next we will substitute (1), (2) and (3) into Hermite's Equation and collect like terms.

$$
\begin{array}{r}
\frac{d^{2} y}{d t^{2}}-2 t \frac{d y}{d t}+2 p y=0=\left(2 a_{2}+6 a_{3} t+12 a_{4} t^{2}+\ldots\right) \\
-2 t\left(a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3}+\ldots\right) \\
+2 p\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+\ldots\right) \\
\Rightarrow\left(2 p a_{0}+2 a_{2}\right)+\left(2 p a_{1}-2 a_{1}+6 a_{3}\right) t+ \\
\left(2 p a_{2}-4 a_{2}+12 a_{4}\right) t^{2}+\left(2 p a_{3}-6 a_{3}+20 a_{5}\right) t^{3}=0
\end{array}
$$

Then from here, we will set all coefficients equal to 0 since the equation is equal to 0 and $t \neq 0$. We get the following sequence of equations:

$$
\begin{array}{r}
2 p a_{0}+2 a_{2}=0 \\
2 p a_{1}-2 a_{1}+6 a_{3}=0 \\
2 p a_{2}-4 a_{2}+12 a_{4}=0 \\
2 p a_{3}-6 a_{3}+20 a_{5}=0
\end{array}
$$

Then will several substitutions we arrive at the following set of equations:

$$
\begin{aligned}
\Rightarrow a_{2} & =-p a_{0} \\
a_{3} & =-\frac{p-1}{3} a_{1} \\
a_{4} & =-\frac{p-2}{6} a_{2}=\frac{(p-2) p}{6} a_{0} \\
a_{5} & =-\frac{p-3}{10} a_{3}=\frac{(p-3)(p-1)}{30} a_{1}
\end{aligned}
$$

Perturbation Theory Concept

Perturbation theory is used when a mathematical equation involves a small perturbation, usually ϵ. From here we create $y(x)$ such that it is an expansion in terms of ϵ. For example

$$
y(x)=y_{0}(x)+\epsilon y_{1}(x)+\epsilon^{2} y_{2}(x)+\cdots
$$

This summation is called a perturbation series and it has a nice feature that allows each y_{i} to be solved using the previous y_{i} 's. Consider the equation,

$$
\begin{equation*}
x^{2}+x+6 \epsilon=0, \quad \epsilon \ll 1 \tag{4}
\end{equation*}
$$

Let's consider using perturbation theory to determine approximations for the roots of Equation (4).

Perturbation Theory Concept Continued

Notice this equation is a perturbation of $x^{2}+x=0$. Let $x(\epsilon)=\sum_{n=0}^{\infty} a_{n} \epsilon^{n}$. This series will be substituted into (4) and powers of ϵ will be collected. Next we will calculate the first term of the series by setting $\epsilon=0$ in (4). So the leading order equation is

$$
\begin{equation*}
a_{0}^{2}+a_{0}=0 \tag{5}
\end{equation*}
$$

with solutions $x=-1,0$. Thus $x(0)=a_{0}=-1,0$. Now the perturbation series are as follows

$$
\begin{aligned}
& =1-a_{1} \epsilon-a_{2} \epsilon^{2}-a_{1} \epsilon+a_{1}^{2} \epsilon^{2}+a_{1} a_{2} \epsilon^{3}-a_{2} \epsilon^{2}+a_{1} a_{2} \epsilon^{3}+a_{2}^{2} \epsilon^{4}-1+a_{1} \epsilon \\
& =(1-1)+\left(-2 a_{1}+a_{1}+6\right) \epsilon+\left(-2 a_{2}+a_{1}^{2}+a_{2}\right) \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

Perturbation Theory Concept Continued

$$
\begin{equation*}
x_{1}(\epsilon)=-1+a_{1} \epsilon+a_{2} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}(\epsilon)=0+b_{1} \epsilon+b_{2} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \tag{10}
\end{equation*}
$$

Next, we will substitute in (9) into (4) while ignoring powers of ϵ greater than 2 . Since we are only approximating the solution to the second-order, we can disregard the powers of ϵ greater than 2 .

$$
\begin{aligned}
x^{2}+x+6 \epsilon & =\left(-1+a_{1} \epsilon+a_{2} \epsilon^{2}\right)^{2}+\left(-1+a_{1} \epsilon+a_{2} \epsilon^{2}\right)+6 \epsilon \\
& \Rightarrow\left(-a_{1}+6\right) \epsilon+\left(-a_{2}+a_{1}^{2}\right) \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

Perturbation Theory Concept Continued

From here we take the coefficient of each power of ϵ and set it equal to zero. This step is justified because (4) is equal to zero and $\epsilon \neq 0$ so each coefficient must be equal to zero. Thus we have the following equations

$$
\begin{aligned}
& \mathcal{O}\left(\epsilon^{1}\right):-a_{1}+6=0 \\
& \mathcal{O}\left(\epsilon^{2}\right): a_{1}^{2}-a_{2}=0
\end{aligned}
$$

These equations will be solved sequentially. The results are $a_{1}=6$ and $a_{2}=36$. Thus the perturbation expansion for the root $x_{1}=-1$ is:

$$
x_{1}(\epsilon)=-1+6 \epsilon+36 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
$$

The same process can be repeated for x_{2} with the perturbation expansion for the root $x_{2}=0$ resulting in

$$
x_{2}(\epsilon)=-6 \epsilon-36 \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)
$$

Concluding Remarks

Questions?

